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The purpose of the paper was the assessment of the success of an artificial intelligence (AI) algorithm formed on a deep-
convolutional neural network (D-CNN) model for the segmentation of apical lesions on dental panoramic radiographs. A total
of 470 anonymized panoramic radiographs were used to progress the D-CNN AI model based on the U-Net algorithm
(CranioCatch, Eskisehir, Turkey) for the segmentation of apical lesions. The radiographs were obtained from the Radiology
Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Eskisehir Osmangazi University.
A U-Net implemented with PyTorch model (version 1.4.0) was used for the segmentation of apical lesions. In the test data set,
the AI model segmented 63 periapical lesions on 47 panoramic radiographs. The sensitivity, precision, and F1-score for
segmentation of periapical lesions at 70% IoU values were 0.92, 0.84, and 0.88, respectively. AI systems have the potential to
overcome clinical problems. AI may facilitate the assessment of periapical pathology based on panoramic radiographs.

1. Introduction

Chronic apical periodontitis is an infection of tissues sur-
rounding the dental apex induced by pulpal disease, mostly
because of bacterial disease in the root canal complex devel-
oping during untreated or incorrectly treated dental caries
[1–3]. Apical periodontitis is common, and its prevalence
increases with age. Epidemiological studies have reported
that apical periodontitis is present in 7% of teeth and 70%
of the general population. The diagnosis of acute apical peri-
odontitis is made clinically, but the detection of chronic api-
cal periodontitis is done by radiography [4]. In general,
following root canal treatment, complete healing of periapi-
cal lesions is expected or at least improvement in the form of

a decrease of the size of periapical lesion [1, 5]. Radiograph-
ically, apical periodontitis manifests as a widened periodon-
tal ligament space or visible lesions. Such radiolucencies, also
called apical lesions, tend to be detected incidentally or by
radiographic follow-up of endodontically treated teeth [6,
7]. Radiolucency in radiographs is an important feature of
apical periodontitis [2]. Apical periodontitis can be detected
on periapical and panoramic radiographs and by cone-beam
computed tomography (CBCT). CBCT has superior dis-
criminatory power but is costly and exposes the patient to
radiation burden [6, 8]. Periapical and panoramic radio-
graphs are the most frequently used techniques in the diag-
nosis and treatment of apical lesions [2]. Panoramic
radiography generates two-dimensional (2D) tomographic
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images of the entire maxillomandibular area [9], enabling
the evaluation of all teeth simultaneously. Also, panoramic
radiography requires a far lower dose of radiation than
CBCT imaging [6, 10]. Besides, panoramic radiography is
painless, unlike intraoral radiographs, thus well tolerated
by patients [9, 11]. One of the many recent technological
advances in artificial intelligence (AI) and its applications
are expanding rapidly, also in the area of medical manage-
ment and medical imaging [12]. AI uses computational net-
works (neural networks (NNs)) that mimic biological
nervous systems [13]. NNs were developed as one of the first
types of AI algorithms. The computing power of NNs varies
depending on the character and amount of training data.
Networks using many large layers are termed deep learning
NNs [14]. A deep convolutional neural network (D-CNN)
was used to process large and complex images [15]. Deep
learning networks, including CNNs, have displayed superior
achievement in terms of object, face, and activity recognition
[16]. Medical organ and lesion segmentation are an impor-
tant application of imaging modalities [17, 18]. The detec-
tion and classification performance of deep learning-based
CNNs concerning retinopathy caused by diabetes, skin can-
cer, and tuberculosis is very high [19, 20]. CNNs have also
been applied in dentistry for tooth detection and numbering,
as well as an assessment of periodontal bone loss and peria-
pical pathology [21–25]. U-Net and pixel-based image seg-
mentation, which is a different architecture created from
CNN layers, are more successful than classical models even
if there are few training images. The presentation of this
architecture has been realized with biomedical images. The
traditional U-Net architecture, extended to handle volumet-
ric input, has two phases: the coder portion of the network
where it learns representational features at unlikely scale-
and gather-dependent information, and the decoder portion
where the network extracts knowledge from the noticed sit-
uation and formerly learned features. The jump links used
between the corresponding encoder and decoder layers allow
deep parts of the network to be trained efficiently and com-
pare the same receiver characteristics with different receiver
areas [26].

The study is aimed at assessing the diagnostic success of
U-Net approach for the segmentation of apical lesions in
panoramic images.

2. Material and Methods

2.1. Radiographic Data Preparation. The panoramic radio-
graphs used in the study were derived from the archives of
the Faculty of Dentistry of Eskisehir Osmangazi University;
470 anonymized panoramic radiographs were applied. The
radiographs were obtained from January 2018 to January
2019 for a variety of reasons. Images with artifacts of any
type were excluded. The study design was authorized by
the Non-Interventional Clinical Research Ethics Committee
of Eskisehir Osmangazi University (decision date and num-
ber: 06.08.2019/14). The study was conducted following the
regulations of the Declaration of Helsinki. The Planmeca
Promax 2D (Planmeca, Helsinki, Finland) panoramic imag-

ing system was used to obtain panoramic radiographs with
the following parameters: 68 kVp, 16mA, and 13 s.

2.2. Image Annotation. Three dental radiologists (I.S.B. and
E. B. with 10 years of experience and F.A.K. with 3 years
of experience) annotated ground truth images with the com-
mon decision on all images using CranioCatch Annotation
software (Eskisehir, Turkey). The polygonal boxes were used
to determine the locations of the apical lesions.

2.3. Deep CNN Architecture. The deep learning was per-
formed using a U-Net implemented with the PyTorch model
(version 1.4.0). The U-Net architecture is used for semantic
segmentation assignments (Figure 1).

The U-Net architecture consists of four block levels,
including two convolutional layers with batch normalization
and a rectified linear unit activation function (ReLu). There
is a maximum pool layer in the encoding section and upcon-
volution layers in the decoding section. Each block has 32,
64, 128, or 256 convolutional filters. Besides the bottleneck,
the layer comprises 512 convolutional filters. Skip connec-
tions to the corresponding layers from the encoding layers
are present in the decoding part [26]. The Adam Optimizer
was used to train the U-Net.

2.4. Model Pipeline. PyTorch library was used for model
development on the Python open-source programming lan-
guage (v. 3.6.1; Python Software Foundation, Wilmington,
DE, USA; retrieved on August 1, 2019, from https://www
.python.org/). An AI model (CranioCatch, Eskisehir-Turkey)
was developed to automatically segment apical lesions on pan-
oramic radiographs. The training process was performed
using an individual computer implemented with 16GB
RAM and an NVIDIA GeForce GTX 1060Ti graphic card.

(i) Split: 470 panoramic radiographs were divided into
train, validation, and test group

(a) Training group: 380

(b) Validation group: 43

(c) Test group: 47

(ii) Augmentation: 1140 images from the 380 original
training group images were derived using data aug-
mentation. Augmentation was applied on the train-
ing data set, and augmentations were horizontal flip
and vertical flip (total images: 1140 (=380 × 3))
(size: 2943 × 1435)

(iii) Cropping (preprocessing step): then, all images of the
train were divided into 4 parts as upper right, upper
left, lower right, and lower left (size: 1000 × 530)

(a) Training group: 1140 × 4 = 4560
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(b) Validation group: 43 × 4 = 172

(c) Test group: 47

(iv) Remove full black masks (preprocessing step): the
regions without lesions of all data set were deleted

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

(v) Contrast Limited Adaptive Histogram Equalization
(CLAHE) (preprocessing step): CLAHE has applied
all images to improve image contrast and enable
the identification of apical lesions

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

(vi) Resize (preprocessing step): the resolution of each
piece divided into 4 (1000 × 530) was resized to
512 x 256

(a) Training group: 1629

(b) Validation group: 59

(c) Test group: 47

The segmentation model with PyTorch U-Net was
trained with 95 epochs; the model based on 43 epochs
showed the best performance and was thus used in the
experiment. The model pipeline is summarized in Figure 2.

2.5. Statistical Analysis. The confusion matrix was used to
assess the achievement of the model. This matrix is a mean-
ingful table that summarizes the predicted and actual situa-
tions. The performance of model is frequently assessed
using the data in the confusion matrix [27]. The metrics
used to evaluate the success of the model were as follows:

Conv 3×3, ReLU
Copy and crop
Max pool 2×2
Up-conv 2×2
Conv 1×1 

Figure 2: The U-Net architecture for the semantic segmentation task.

Figure 1: Annotation of the apical lesion using polygonal box method.
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(1) True Positive (TP): apical lesion was segmented,
correctly

(2) False Positive (FP): apical lesions were not detected

(3) False Negative (FN): without apical lesions, lesions
were nevertheless segmented

(4) TP, FP, and FN were determined; then, the following
metrics were computed:

(i) Sensitivity (recall): TP/ðTP + FNÞ
(ii) Precision: TP/ðTP + FPÞ
(iii) F1 score: 2TP/ð2TP + FP + FNÞ

3. Results and Discussion

3.1. Results. The AI model segmented 63 apical lesions on 47
radiographs in the test data set (True Positives) (Figures 3–5).

Twelve apical lesions were not detected (False Nega-
tives). In 5 cases without apical lesions, lesions were never-
theless segmented by the AI model (False Positives)
(Table 1).

The sensitivity, precision, and F1-score values at 70%
IoU value were 0.92, 0.84, and 0.88, respectively (Table 2).

3.2. Discussion. AI has rapidly improved the interpretation
of medical and dental images, including via the application
of deep learning models and CNNs [28, 29]. Deep learning
has been developing rapidly thus recently attracting consid-
erable attention [28–34]. The deep CNN architecture
appears to be the most used deep learning approach. This
is most likely due to its effective self-learning models and
high computing capacity, which provide superior classifica-
tion, detection, and quantitative performance based on
imaging data [28–35]. CNNs have been used in dentistry
for cephalometric landmark detection, dental structure seg-
mentation, tooth classification, and apical lesion detection
[36–39].

Tuzoff et al. presented a novel CNN algorithm for auto-
matic tooth detection and numbering on panoramic radio-
graphs. They found the sensitivity and specificity value of
tooth numbering as 0.9893 and 0.9997, respectively. The
findings showed the ability of current CNN architectures
for automatic dental radiographic interpretation and diag-
nosis on panoramic radiographs [25]. Chen et al. detected
and numbered teeth in dental periapical films using faster
region proposal CNN networks (faster R-CNN). Faster R-
CNN performed unusually well for tooth detection and
localization, showing good precision and recall and overall
performance like that of a younger dentist [24]. Miki et al.
assessed the utility of deep CNN for classifying teeth based
on dental CBCT images; the accuracy was 91.0%. The system
rapidly and automatically produces diagrams for forensic
recognition [38]. Two previous studies investigated the util-
ity of AI systems for detecting periapical lesions. Ekert et al.
investigated the capability of deep CNN algorithm to detect
apical lesions on dental panoramic radiographs. CNNs

detected the lesions despite the small number of data sets
[6]. Orhan et al. [39] compared the diagnostic ability of a
deep CNN algorithm to that of volume measurements based

Mixed size
Panoramic images

Train: 380
Validation: 43

Test: 47

Augmentation on train data

n = 1140

Split 4 area
Training: 4560
Validation: 172

Test: 47

Shape = 2943×1435
No

No Remove empty images in all
dataset

Train: 1629
Val: 59
Test: 47

Image lighting
with CLAHE

method

Create dataset images
(n = 1735)

Train set
(n = 1629)

Train set
(n = 47)

Validation set
(n = 59)

Train set
(n = 47)

Validation set
(n = 59)

Training lesion
segmentation model
with PyTorch U-net

Epoch = 95

Model evaluation

Generate blank images
and paint labeled

coordinates of lesion
and save same name

Train mask
(n = 1629)

Yes

Yes

Lesion in
dataset ?

Delete different shape
images

Figure 3: Model pipeline for apical lesion segmentation
(CranioCatch, Eskisehir, Turkey).
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on CBCT images in the context of periapical pathology. The
rate of detection of periapical lesions of the CNN model was
92.8%, and the volumetric and manual segmentation mea-
surements were similar [39]. Endres et al. [40] created a
model using 2902 deidentified panoramic radiographs. The
presence of periapical radiolucencies on panoramic radio-
graphs was evaluated by 24 oral and maxillofacial surgeons.
They show that the deep learning algorithm has better suc-
cess than 14 of 24 oral and maxillofacial surgeons. The suc-
cess metrics for this model were as follows: the precision of
0.60 and an F1 score of 0.58 corresponding to a positive pre-
dictive value of 0.67 and True Positive rate of 0.51. Setzer

et al. performed a study to use a deep learning proposal
using U-Net architecture for the automatic segmentation
of periapical lesions on CBCT images [41]. Segmentation
of lesion accuracy was found as 0.93 with a specificity of
0.88, a positive predictive value of 0.87, and a negative pre-
dictive value of 0.93. They concluded that the DL algorithm
trained in a limited CBCT images presented wonderful
results in lesion detection accuracy. In the presented study,
we created a segmentation model with PyTorch U-Net AI
architecture on panoramic radiograph. It segmented 63 api-
cal lesions on 47 radiographs in the test data set. Twelve api-
cal lesions were not detected. In 5 cases without apical
lesions, lesions were nevertheless segmented by the AI
model. The sensitivity, precision, and F1-score values at
70% IoU value were 0.92, 0.84, and 0.88, respectively. Our
results showed that AI deep learning algorithms can have
service ability in the clinical dental setting. However, the
present study had some limitations. Only one radiography
machine and standard parameters were used to image acqui-
sitions. Besides, study groups included all size of periapical
images. The external test group was not used to assess the
model’s success. We used the U-Net algorithm to model
development, only. Future studies should be used using
larger study samples and images taken from different radiog-
raphy equipment. Comparative experiments should be
planned to use different CNN algorithms, and AI model per-
formance should be compared to different human observers
which have different level professional experiences.

4. Conclusions

Deep learning AI models enable the evaluation of periapical
pathology based on panoramic radiographs. The application

Figure 4: Automatically apical lesion segmentation using AI model (CranioCatch, Eskisehir, Turkey).

Figure 5: An example real-prediction image comparison.

Table 1: The number of segmented apical lesions with AI model
(CranioCatch, Eskisehir, Turkey).

Metrics Number

True Positives (TP) 63

False Negatives (FN) 12

False Positives (FP) 5

Table 2: The prediction performance measurement of the AI
model (CranioCatch, Eskisehir, Turkey).

Measure Value Derivations

Sensitivity (recall) 0.92 TP/ TP + FNð Þ
Precision 0.84 TP/ TP + FPð Þ
F1 score 0.88 2TP/ 2TP + FP + FNð Þ
IoU value 0.79 TP/ TP + FP + FNð Þ
Dice coefficient 0.88 2TP/ 2TP + FP + FNð Þ
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of AI for apical lesion detection and segmentation can
reduce the burden on clinicians.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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