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There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients
physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based
treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several
facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as
a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability.
Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek
to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we
explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We
illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro
and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is
responsible for cartilage repair due to the application of magnetic hydrogel.

1. Introduction

Cartilage injuries occur due to degenerative disease and sur-
gical and traumatic injuries [1, 2]. The hyaline cartilage
legions account for the highest rate of world disability [3];
only in the USA, more than 250000 patients require knee
arthroplasty for articular cartilage each year [4]. Interna-
tional Cartilage Repair Society assessed that more than
60% of the patients undergoing knee arthroscopy demon-
strated cartilage damage [4, 5]. Furthermore, more than

50% of the world population older than 65 years old suffer
from osteoarthritis (OA) which is traditionally characterized
as cartilage damage [6, 7]. Articular cartilage disorder occurs
in conjunction between the bones and worsens over time by
constant mechanical degeneration and loss of cartilage tis-
sue, resulting in osteoarthritis [3]. Cartilage has a limited
ability for self-repair due to its low vascularity which con-
straints the replicative ability of the chondrocyte [8, 9]. In
contrast with the bone tissue, the cartilage has a few cells
and metabolic activity, and the limited number of these cells,
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if any, is specialized in cartilage remodeling [9]. Without
cells and mediators or the lack of accessibility to abundant
nutrients even small cartilage defect does not have the innate
ability to achieve sufficient healing [10]. Furthermore, the
lack of specific diagnostic biomarkers is another reason that
makes regeneration of the cartilage a clinical issue for
decades [11].

Traditional techniques for curing articular cartilage
defects include microfracture, osteochondral autographs,
and allographs [12]. Shortcoming reported for current treat-
ment includes the requirement of secondary surgery for
osteochondral autographs or immune rejection and trans-
mission of donor pathogen after allographs [13, 14]. Lack
of efficient regeneration technique for articular cartilage
necessitates tissue engineering approaches combining scaf-
folds, cells, and growth factors [13]. Cartilage formation is
a complex cascade that is influenced by a cocktail of cyto-
kines and growth factors that guide inflammatory cells to
the injury site [15]. Hydrogels inducing chondrogenesis via
chemical agents can be good therapeutic agents; however,
they are not still ideal for clinical application. The limitations
associated with the use of growth factors and chemical
agents for cartilage tissue regeneration include protein dena-
turation, side effects, and off-target effects. New studies
revealed that the fabrication of novel magnetic hydrogels
that ensure cell function and sufficient biomechanical prop-
erties to the regenerative environment can be useful for car-
tilage tissue regeneration [16]. The electromagnetic field
(EMF) was previously shown to promote osteogenic differ-
entiation of mesenchymal stem cells (MSC) [17]. It is
hypothesized that EMF can also trigger chondrogenic differ-
entiation of stem cells which can be used for the preparation
of novel cartilage tissue scaffolds [18–21].

The application of the magnetic hydrogel for cartilage
tissue regeneration is still at the beginning of the road and
much has not been done in this area. There is a need for a
detailed study of magnetically induced chondrogenesis and
magnetic hydrogels. In this review, a study was done on
the fabrication of magnetic hydrogels that induce chondro-
genesis. Furthermore, the influence of magnetically labeled
stem cells in enhancing the cartilage matrix synthesis was
investigated. In addition, the results of in vitro and in vivo
studies of magnetic hydrogel for articular cartilage defects
were discussed.

A variety of natural and synthetic polymers have been
studied for the fabrication of hydrogels for cartilage regener-
ation. Commonly used polymers for cartilage tissue regener-
ation are summarized in Table 1. Collagen, hyaluronic acid
(HA), and chondroitin sulfate (CS) are widely used for car-
tilage regeneration since they can mimic natural cartilage
ECM and induce chondrogenesis [22, 23]. Lack of mechan-
ical properties and quick degradation are the shortcomings
of most hydrogel scaffolds [24, 25]. Insufficient mechanical
or chemical properties can be rectified by crosslinking the
polymer with other materials in order to obtain a hybrid
polymer [20]. However, a hybrid hydrogel-based scaffold
should be designed and manufactured in a way to overcome
different shortcomings other than mechanical properties.
For instance, the low number of chondrocytes in the carti-

lage is a limitation that should be addressed by a scaffold
that can enhance chondrogenic cell differentiation [26]. Lack
of chondrogenesis in the conventional hydrogel-based scaf-
folds necessitates the fabrication of smart hydrogels that
can respond to certain cues. The desire to remotely regulate
the cartilage physical and chemical microenvironment has
attracted attention to the fabrication of magnetically respon-
sive hydrogels [27]. Therefore, fabricating magnetic hydro-
gels that can create a microenvironment that ensures
chondrocyte cell viability and proliferation and enhances
chondrogenesis can be a good cartilage tissue engineering
approach.

2. Cartilage Structure

Hyaline cartilage is a nonvascularized connective tissue and
the most abundant cartilage type of the body which is found
in the costal cartilage, trachea, and articular cartilage [16,
37]. The articular cartilage has a highly organized but het-
erogeneous structure that is composed of small numbers of
chondrocytes and a multicomponent matrix [37, 38].
Between 70 and 85% of the articular cartilage is water and
30% of the dry tissue is proteoglycan [38]. As demonstrated
in Figure 1, the articular structure of the cartilage is catego-
rized into four zones the superficial, middle, deep, and calci-
fied zone [39]. The superficial zone is the thinnest layer
which is composed of ellipsoid chondrocyte and collagen
fibrils [40]. Collagen fibers are packed in a superficial layer
and are oriented parallel to the articular surface [41]. The
superficial zone has the highest water content and provides
a gliding surface to the cartilage as well as protection from
the synovial fluid immune cells [40, 41]. The middle or tran-
sitional zone has a relative proportion between 40 and 60%,
while the superficial layer is 10-20% of the articular cartilage
[42, 43]. This zone is composed of spheroid-shaped cells and
thick collagen fibers that are oriented obliquely [40]. The
middle zone induces compatibility between shear forces of
the superficial layer and compressive forces of the deeper
zone [40]. Deep or radial zone is composed of spheroidal-
shaped chondrocytes as well as the highest concentration
of proteoglycans [44]. Chondrocytes are larger and collagens
are thicker in the deep zone as compared with the other
zones [45]. Collagens are oriented perpendicularly to facili-
tate load distribution and resist compression [40]. The gly-
cosaminoglycan (GAG) amount is usually lower in the
superficial zone, enhances in the middle layer, and drops
in the deep layer towards the tidemark [42]. Extension of
collagen from deep zone to calcified zone preserves cartilage
and bone integrity [40]. The calcified zone is the boundary
between cartilage and subchondral bone and provides a bar-
rier to diffusion from blood vessels supplying the bone [40].

3. Cartilage Injuries and Repair

Several pathological conditions such as infectious disease,
osteoarthritis, cancer, or traumatic injuries can lead to carti-
lage defects. Articular cartilage has a low intrinsic capacity
for repair so treatment of defects of articular cartilage
whether from trauma or degenerative disease is a significant
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challenge for orthopedic surgeons [46, 47]. Although many
techniques have been introduced for the treatment of carti-
lage defects, not enough is known about the suitable treat-
ment modality for a particular lesion [48]. Due to the fact
that no universally accepted system is established to define
a lesion, it may be hard to decide which lesion requires treat-
ment and discuss the results of treatment of focal cartilage
impairments [48]. Two major issues when repairing the
articular cartilage are filling the defect void with the material
of similar mechanical properties with cartilage and inducing
integration between repair tissue and native cartilage [49].
Current most common strategies for healing cartilage
defects include microfracture, osteochondral transfer, autol-
ogous chondrocyte implantation (ACI), and scaffolds.

3.1. Microfracture Technique for Cartilage Repair.Microfrac-
ture is a safe, effective, minimally invasive, and marrow-
stimulating technique that aims at triggering vascular
response to injury [50]. This technique includes abrading
the tidemark and creating small holes perpendicular to the
subchondral bone plate to allow bleeding into the defect.

In this technique, the stem cells extravasate from the sub-
chondral area to the chondral defect and they differentiate
to the fibrocartilage tissue [50]. At the same time, the body’s
own tissue healing process maintains the integrity of marrow
clot and subchondral plate, inducing durable cartilage repair
[51]. Microfractures usually result in a fibrous-fibro hyaline
unstructured repair tissue that lacks the biomechanical and
viscoelastic features of hyaline cartilage [52–54]. Of note,
collagen scaffolds are commonly inserted postmicrofracture
to augment marrow stimulation [55]. Different factors are
influential in determining the success of the microfracture
technique such as the dimension and location of the defect
as well as the age and gender of the patient [56].

3.2. Osteochondral Transfer.When the articular defect size is
bigger than 15mm, the transplantation of autogenic and
allogenic tissue is preferred over marrow-stimulating tech-
niques [57]. This technique introduces a new hyaline carti-
lage surface, while microfracture yields a fibrocartilage
repair [58]. The source of tissue for the osteochondral trans-
fer may be either autogenic or allogenic. Allogenic tissue is

Table 1: Most common polymers for cartilage hydrogel scaffolds and their biological activities.

Polymer Properties References

Collagen
It has chondro-inductive properties which lead to a suitable 3-D microenvironment for enhancing MSC

chondrogenesis. Collagen can also provide immunomodulatory properties by reducing certain
immunogenic effects.

[28–30]

Chondroitin
sulfate

It provides chondro-protective and anti-inflammatory properties to enhance cartilage tissue regeneration.
Furthermore, it increased the production of collagen type II.

[23]

Hyaluronic acid
(HA)

It improves early-stage chondrogenesis and was proved to repair osteochondral defects in vivo studies. HA
interacts with receptors such as CD44 to adjust signal transduction and stem cell differentiation.

[11, 31, 32]

Alginate
It enhances the proliferation of chondrocytes and maintains the chondrocyte phenotype. Its fast and simple

gelation makes it suitable for injection.
[33, 34]

Chitosan
The similarity of its structure with GAG leads to chondrocyte proliferation and chondrogenesis. It also

improves chondrocyte homeostasis.
[35, 36]

Collagen fibril

Ellipsoid chondrocyte

Superficial zone

Proteoglycan
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Spheroid shape cells

Middle zone

Deep zone

Calcified zone

Cancellous bone Subchondral bone

Figure 1: Schematic of the articular cartilage.
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obtained from cadaveric tissues, but the autogenic tissue can
provide better mechanical stability and biocompatibility.
Although articular cartilage is located in an immunologically
privileged position, the immune response is still a major
concern with the osteochondral transfer technique [49].
Another disadvantage of this technique is donor-site mor-
bidity after osteochondral transfer due to the cell death at
the wound margin which results in tissue degeneration over
time [27].

3.3. Autologous Chondrocyte Implantation (ACI). ACI is the
first cell-based biological approach to the treatment of grade
III and grade IV cartilage lesions [52, 59] that introduces
end-differentiated chondrocytes into the prepared defect,
resulting in the formation of a hyaline-like repair tissue
[60, 61]. ACI was initially used for the treatment of focal
chondral injury and later this technique utilized various 3D
polymeric scaffolds [62]. The ACI technique includes creat-
ing small biopsy of the hyaline cartilage, extracting chondro-
cytes from a less-weight-bearing area of articular surface,
and culturing the cells in vitro [63]. Then, chondrocyte cells
are expanded in vitro to enhance the number of cells to pro-
vide enough number to fill a focal articular defect [64]. Once
the chondrocyte cell population achieved a certain level
in vitro, they are implanted into the cartilage defect. After
chondrocytes are implanted into the articular defect, they
start to produce cartilage matrix that gradually fills out the
cartilage defect. This is similar to the mesenchymal conden-
sation that happens during the limb formation [63, 65]. The
periosteal graft may cause complications after ACI which
can be addressed to some extent by using collagen scaffolds
instead of periosteal patches [55].

3.4. Scaffold. Three-dimensional scaffolds are becoming pop-
ular because they are cost-effective, time-efficient, and
require a single-stage procedure. Furthermore, they provide
a high capacity for cell attachment as well as adjustability
for having appropriate mechanical properties [66, 67]. Fur-
thermore, scaffolds have been promising in improving the
conventional cartilage repair techniques such as microfrac-
ture and ACI by promoting chondrocyte transfer and graft
incorporation to enhance hyaline cartilage [55].

Since the beforementioned treatments (microfracture,
osteochondral transfer, and ACI) have limitations, the hopes
are in scaffold tissue engineering. However, because the
chemical and mechanical properties of the cartilage tissue
are not consistent through the entire tissue, it is complicated
to create a scaffold that can fully mimic the natural cartilage
[68]. Therefore, multiphasic scaffolds are more preferred
than monophasic scaffolds since they have several layers
with controlled properties to imitate the local microenviron-
ment of cartilage tissue [69]. For example, Nguyen et al. [70]
fabricated three-layer polyethylene glycol-based scaffold
with the chemical gradient of chondroitin sulfate, matrix
metalloproteinase-sensitive peptides, and hyaluronic acid
by being inspired by the depth-dependent morphology of
the cartilage. They showed that MSCs within the scaffold
have undergone chondrogenic differentiation and also
matrix production profile was compatible with the specific

zone of the articular cartilage [70]. Similarly, Liu et al. [71]
developed BMDS-laden 3D-bioprinted multilayer scaffold
and studied its effect on the animal model of osteochondral
defect repair. They observed enhanced collagen type II pro-
duction as well as decreased inflammatory cytokines in the
injury site which has resulted in increased chondrogene-
sis [71].

Different materials have been suggested for cartilage
regeneration purposes (synthetic or natural) and they can
be used in various physical forms of fibers, meshes, and
hydrogels. Hyaluronan and collagen-based scaffolds are
polymers widely used for the fabrication of cartilage scaf-
folds due to their similarity to the natural cartilage tissue
[49, 64]. Scaffolds are designed to be chondro-conductive
and they can be used with or without cells. Although chon-
drocytes are the most commonly used cells for tissue engi-
neering purposes, the potential of MSCs for cartilage
regeneration is being investigated [72].

Recently, multidisciplinary effort has been put into the
fabrication of scaffolds that can specifically and molecularly
interact with the cartilage microenvironment. Biological sig-
nals such as growth factors and signals are often incorpo-
rated into the hydrogels to enhance chondrogenesis in
large cartilage defects [73]. For example, Zhou et al. [74]
synthesized gelatin methacrylate (GelMA) and poly(ethylene
glycol) diacrylate (PEGDA) and added DNA-based analogs
to improve chondrogenesis of adipose-derived stem cells
(ADSC). As shown in Figure 2, they printed a three-
gradient scaffold, cultured ADSCs on it, and observed chon-
drogenic differentiation of ADSCs as well as ECM formation
[74]. As another example, Kisiday et al. [75] devised a self-
assemble peptide hydrogel scaffold to encapsulate chondro-
cytes. The molecularly engineered peptide used in their
study provides tailored degradation rate and induced accu-
mulation of cartilage-like ECM. Moreover, the manufac-
tured hydrogel peptide provided the potential for tethering
of growth factors and targeted delivery of growth factors to
the chondrocytes [75].

The mechanical properties of hydrogels are considered
their main limitation for load-bearing tissues [76]. Different
methods have been used to address the poor mechanical
properties of hydrogels. For example, Mohabatpour et al.
[77] produced electrospun fiber polylactic acid (PLA) and
grafted hyaluronic acid and alginate to enhance weight ratio
nanofibers in composite to promote mechanical properties
[77]. Similarly, Fenbo et al. [78] synthesized strontium algi-
nate/chondroitin sulfate (Alg/CS-Sr) hydrogel with tunable
stiffness by changing the concentration of strontium chlo-
ride. They inserted the hydrogel in the rabbit cartilage defect
model and confirmed cartilage regeneration [78].

4. Hydrogel for Cartilage Tissue Regeneration

Hydrogels are good candidates for the construction of three-
dimensional structures due to their tunable biomechanical
properties and biocompatibility. Hydrogel scaffolds can reg-
ulate different materials to promote cartilage repair [11]. The
hydrogel can be modified with cell adhesion ligands and its
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internal aqueous environment protects the cell and allows
nutrient transportation [13].

Hydrogels can be used as filling agents, a delivery vehicle
for bioactive molecules, and a three-dimensional structure

for organizing cells [13, 88]. Different synthetic and natural
polymers have been used for the fabrication of scaffold
hydrogel for bone tissue engineering [89]. Although cartilage
tissue is not successful in self-repair, recent hydrogel
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with lysine (RNTK)

Stereolithography 3D printer

Different ratios of
GeIMA: PEGDA

Polyethylene (glycol)
diacrylate (PEGDA)

+

Gelatin methacrylate
(GeIMA)

Chondrogenesis ADSCs grow on the scaffold GeIMA-PEGDA-NRT scaffold

Adipose-derived stem
cells (ADSCs)

Chondrogenic
differentation

15%:10%

15%:15%
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Figure 2: 3D-printing hydrogel coated by DNA-based nanotubes [74].

Self-healing system

3D printing of dynamic
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Tissue engineering application

Self-healing
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Self-healing
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Figure 3: 3D printing of scaffold including self-healing hydrogel and ferrogel [109].
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fabrication techniques are promising. For example, PLGA-
gelatin/chondroitin/hyaluronate hydrogel scaffold was
seeded with MSC, enhancing the MSC proliferation and
GAG synthesis [90, 91]. Then, autologous differentiated
MSC/PLGA-GCH was implanted in rabbit contralateral car-
tilage defect and it demonstrated better chondrocyte mor-
phology and integration of continuous subchondral
bone [13].

In order to generate MSC-based functional hyaline carti-
lage, MSCs should be directed to chondrogenic lineage and
initiate the formation of cartilage matrix including collagen
type II and glycosaminoglycan (GAGs) [90]. Although
chondrogenic chemicals or growth factors have been used
for chondrogenic differentiation of MSCs, protein denatur-
ation, probability of carrying a pathogen, and undesired side
effects limit their application [67, 92].

There have been several types of research to expand and
improve the hydrogel that induces chondrogenesis; however,
researchers are looking for physical cues that can promote
cartilage regeneration after hydrogel is added [64]. The elec-
tromagnetic hydrogels are the new generation of hydrogel
for cartilage tissue generation that is shown to be successful
in in vitro and in vivo studies. These hydrogels have not still
reached clinical practice and their long-term results have not
been investigated yet. This review is focused on the hydro-
gels that induce cartilage regeneration through electromag-
netic properties.

5. Magnetic Hydrogels for Cartilage
Tissue Regeneration

The electromagnetic field (EMF) and pulsed electromagnetic
field (PEMF) are FDA-approved techniques that are previ-
ously shown to promote osteogenic differentiation of MSC
[17]. Human mesenchymal stem cells are widely accepted
seeding cells and control of them by physical cues is of great
interest in regenerative medicine [93]. Jiang et al. studied the
uptake of magnetic nanoparticles by MSCs under the mag-
netic field. Iron-oxide nanoparticles-loaded bovine serum
albumin (BSA) internalized by MSCs increased osteogenic
differentiation and expression of collagen type I and osteo-

calcin significantly [94]. Several groups have reported that
electromagnetic field promotes cartilage formation in vitro
and in vivo. For example, adipose-derived stem cells were
cultured in a hyaluronan microenvironment and treated
with a pulsed electromagnetic field (PEMF) [95]. It was
shown that under chondrogenic induction, PEMF stimula-
tion promoted the expression of main chondrogenic genes
such as SOX-9, collagen II, and aggrecan [92]. Similarly,
Hou et al. [11] incorporated SPIONs into hyaluronic acid-
graft-amphiphilic gelatin hydrogel and injected it into the
rabbit’s knee to study chondrogenic commitment. "They
observed magnetic field upregulated Col II and SOX9 gene
expression"" and magnetic derived" should be omitted. [11].

Therapeutic applications of the magnetic field keep
expanding because magnetic nanoparticles can apply remote
magnetic-induced physical stimulation which enables target-
ing of the specific site as well [11]. Mesenchymal stem cells
labeled with magnetic nanoparticles were shown to induce
higher differentiation [96]. In one study, human bone
marrow-derived MSC was under static magnetic field and
magnetic-derived shear stress via magnetic nanoparticles. It
was demonstrated that biophysical stimulation resulted in
higher chondrogenic differentiation efficiency [11].

It is shown that an early essential step for initiating the
chondrogenic differentiation of the stem cell is its condensa-
tion [97]. For example, a decrease in intercellular spaces in
the area of the cartilage and bone formation precedes carti-
lage differentiation during limb skeletogenesis [98]. In one
study, magnetic labeling of the stem cell with the maghemite
citrate-coated iron oxide resulted in cell condensation into
aggregates. The magnetically cellularized scaffolds were
exposed to transduction and shear stress stimuli produced
high collagen type II [97]. The combination of magnetic cell
seeding with dynamic differentiation induces chondrogenic
differentiation as well as the creation of a millimeter-sized
cartilage cellular construct [88]. Similarly, in another study
[14, 99], Maghemite nanoparticles were used for labeling
MSCs, and magnetic cells were suspended in chondrogenesis
culture medium. Gene expression and histological studies
proved that major cartilage matrix proteins (collagen II
and aggrecan) were elevated [67, 88].

Table 2: Advantages and disadvantages of different cartilage repair strategies.

Technique Advantages Disadvantages References

Microfracture
technique

It is minimally invasive and there is no need for a
tissue graft.

It does not restore normal hyaline cartilage and leads
to losing undamaged cartilage.

This technique is just applied for the lesion size less
than 2.5 cm2.

[53, 55,
79]

Osteochondral
transfer

Autograft provides a fresh viable cartilage tissue from
the patient.

Allograft is a useful technique for different defect
sizes and locations. Also, it decreases the operation

time compared with autograft.

Autograft may lead to donor-site morbidity. Also,
some patients do not have proper donor tissue.

Moreover, the autograft cannot be normally used for
repairing large defects.

Allograft may lead to graft host reaction.

[80–84]

ACI
Can repair large cartilage defects with minimum

donor-site morbidity
It leads to periosteal hypertrophy and graft

delamination
[55, 85]

Scaffold
High biocompatibility, incorporating growth factors

and tunable properties
[86, 87]
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Magnetic nanoparticles can induce chondrogenic differ-
entiation under the magnetic field when they bind to the cell
surface. For example, Pulse electromagnetic fields (PEMFs)
was applied to bone marrow mesenchymal stem cell (BMSC)
cultured on the electromagnetic hydrogel. The hydrogel
composed of gelatin, beta-cyclodextrin (beta-CD), and mag-
netic iron oxide (Fe3O4) induced the expression of late chon-
drogenic differentiation markers including COL2 and
aggrecan [9]. In addition, the hydrogel was implanted in rab-
bit knee cartilage defect revealing regenerative tissue that has
completely filled the gap, and the histology staining was sim-
ilar to that of natural cartilage.

Superparamagnetic iron oxide nanoparticles (SPIONs)
can guide cells and serve as physical stimulation. In one
study, SPIONs were encapsulated in a hydrophobic shell of
hyaluronic acid-graft-amphiphilic gelatin (HA-AGMCs)
microsphere. Hyaluronic acid is one of the major compo-
nents of the chondrocyte extracellular matrix (ECM) which
provides a backbone for aggrecan aggregation [11]. Further-
more, it interacts with the CD44 receptor to regulate signal
transduction, cell migration, and differentiation [11]. Apply-
ing a magnetic field to the SPIONs incorporated into the
(HA-AGMC) microsphere led to the expression of CoI II
and SOX9 which are cartilage tissue-specific genes. In addi-
tion, this novel platform initiated chondrogenesis and sGAG
synthesis [11].

In another study, magnetic nanoparticle-vesicle
(MNVP) was assembled by cross-linking of phospholipid
vesicles and magnetite nanoparticles. Chondrocytes and
nanoparticle-vesicle assemblies were coimmobilized within
a calcium alginate hydrogel. This smart biomaterial
responds to the alternating magnetic field by translating
noninvasive magnetic signals into cellular responses [13].
Their research proved that the chondrocyte in the gel
responded to the magnetic release of ascorbic acid-2-
phosphate (AAP) which was applied as an additive by pro-
ducing a high level of collagen [13]. Similarly, in another
study, dextran-coated magnetic nanoparticles were inte-
grated into the distinct layer of agarose construct to create
trilayered ferrogel [100]. An external magnetic field of the
0.5T was applied to the bovine chondrocytes seeded in fer-
rogels demonstrating that sGAG content increased over
time [100].

The other advantage provided by the incorporation of
magnetic nanoparticles into the hydrogel is they can serve
as a contrast agent for imaging [101]. Magnetic resonance
imaging (MRI) is a noninvasive technique that enables lon-
gitudinal imaging at successive time points and can be used
to visualize the molecular changes and remodeling of the
repairing tissue [101, 102]. Yang et al. [101] incorporated
SPIONs-Kartogenin into cellulose nanocrystal/dextran
hydrogel. The SPION-labeled hydrogel not only induced
chondrogenesis both in vitro and in vivo but also demon-
strated magnetic resonance contrast enhancement [101].
Similarly, Chen et al. [103] fabricated USPIO-labeled cellu-
lose nanocrystal (CNC)/silk fibroin (SF) composite hydrogel
which enhanced chondrogenic gene upregulation in vitro as
well as provided a mean for measuring hydrogel degradation
through MRI imaging [103].

5.1. Methods for Synthesizing and Characterizing Magnetic
Hydrogels. The cartilage microenvironment can be triggered
by magnetic stimuli through being exposed to the external
magnetic field or magnetic scaffolding [104]. Approaches
used in order to synthesize the magnetic scaffolds include
both conventional and modern techniques [105]. The con-
ventional method of fabrication of magnetic hydrogel
includes mixing nanoparticles with hydrogel, precipitation,
blending, and grafting method [105], while the recent
research has focused on additive manufacturing. Farzaneh
et al. [104] mixed cobalt ferrite nanoparticles (CFNs) with
hydrogel precursors to produce magnetic hydrogel. The
magnetic properties of a synthesized hydrogel such as hys-
teresis curve were studied by vibrating sample magnetome-
ter (VSM) instrument [104]. Furthermore, Huang et al.
[106] added the iron oxide magnetic nanoparticles as
embedment to the gelatin and β-cyclodextrin and inserted
them into the rabbit cartilage defect. MSCs seeded in hydro-
gel exposed to the PEMF promoted the differentiation of the
stem cells by promoting COL2 and aggrecan [106]. Simi-
larly, Zhang et al. [107] first coprecipitated the iron oxide
nanoparticles with polyvinyl alcohol and then synthesized
it with the combination of collagen II, polyethylene glycol,
and hyaluronic acid to fabricate magnetic hybrid gel which
mimics the natural cartilage ECM [107].

The additive manufacturing technique is promising for
the fabrication of magnetic hydrogels due to their potential
to be customized and be reproduced [108]. De Santis et al.
[108] synthesized polycaprolactone-polyethylene glycol-
based magnetic scaffold by stereolithography approaches
for articular cartilage tissue regeneration [108]. Also, Choi
et al. [109] fabricated a scaffold composed of self-healing
hydrogel combined with ferrogel via extrusion 3D printing
technique as demonstrated in Figure 3. The ferrogel demon-
strated superparamagnetic properties due to containing
SPIONs. They conducted in vitro study by exposing the cells
encapsulated in hydrogel to the external magnetic field. They
showed that the magnetic stimulation upregulates the SOX-
9 and COL-2 which indicates the potential of fabricated
magnetic hydrogel for cartilage tissue regeneration [109].

5.2. Underlying Biological Mechanism of Enhanced
Chondrogenesis Dependent on Magnetic Stimuli. Magnetic
hydrogels can be used to influence cellular mechanotrans-
duction and translational and paracrine responses of the
cells to encourage cartilage repair through different cellular
and molecular mechanisms [19]. The mechanisms by which
magnetic signals promote cartilage include enhancing cell-
cell interaction, MSC adherence to the defect area, and acti-
vating mechanosensitive channels [110]. For instance,
Kamei et al. [111] proved that cell adhesion molecules such
as integrin α2 (ITG α2), integrin α6 (ITG α6), integrin β3-
binding protein (ITG β3BP), intercellular adhesion mole-
cule–2 (ICAM-2), and platelet/endothelial cell adhesion
molecule–1 (PECAM-1) have been upregulated in magneti-
cally labeled MSCs. Increased adhesion rate of MSCs can
make them engraft to the defect area biologically [111].

Also, the electromagnetic field can induce cartilage tissue
regeneration by stimulating chondrocyte maturation
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[112–115]. For instance, Yi et al. reported that magnetic field
upregulates the chondrogenic genes in stem cells and also
enhances the synthesis of proteoglycans. They suggested that
this might be due to increased expression of transforming
growth factor beta in presence of magnetic field. Yan et al.
[117] showed that increased cartilage regeneration under
EMF is associated with enhanced (TGF-β) and it results
from the activation of the Wnt1/LRP6/β-catenin signaling
pathway [117]. Moreover, magnetic signals have been shown
to contribute to chondrogenesis by activating calcium-
permeable transient receptor potential (TRP) channels
[19]. Parate et al. [19] have demonstrated that paracrine
activity of MSC secretome provides the potential for chon-
drogenic differentiation of MSCs when they are exposed to
the magnetic signal [19]. Table 2 summarizes the advantages
and disadvantages of different cartilage repair strategies.

6. Future Directions and Limitations

Magnetic hydrogels have been shown to be promising for
the treatment of cartilage lesions due to their influence on
the stem cell fate as well as chondrocyte behavior [14]. Mag-
netic hydrogels can provide other advantages such as being
used for delivery and timely release of the growth factors.
In addition, magnetic strength in tissue formation controls
the processes influencing interface regeneration and the
homeostasis [118]. Recent research proved the application
of electromagnetic field promotes progress of the fascinating
line in the field of regenerative medicine for cartilage tissue
regeneration. Moreover, magnetic nanoparticles can manip-
ulate the microstructure by noncontact magnetic forces or
inducing mechanical stresses at the microscopic level
through applied magnetic field which may result in cell pro-
liferation and differentiation [16]. However, these hydrogels
still struggle with cell differentiation [11] and they need
improvements to generate a more biomimetic and func-
tional cartilage substitute for future preclinical applica-
tions [16].

Data Availability
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