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Ovarian cancer (OC) is a malignancy with poor prognosis, stubborn resistance, and frequent recurrence. Recently, it has been
widely recognized that immune-related genes (IRGs) have demonstrated their indispensable importance in the occurrence and
progression of OC. Given this, this study aimed to identify IRGs with predictive value and build a prognostic model for a
more accurate assessment. First, we obtained transcriptome and clinical information of ovarian samples from both TCGA and
GTEx databases. After integration, we figured out 10 genes as immune-related prognostic genes (IRPGs) by performing the
univariate Cox regression analysis. Subsequently, we established a TF-associated network to investigate its internal mechanism.
The prognosis model consisting of 5 IRPGs was constructed later by lasso regression analysis. The comparison of the score
with the clinical factors validated its independence and superiority in OC’s prognosis. Moreover, the association between the
signature and immune cell infiltration demonstrated its ability to image the immune situation of the tumor microenvironment.
Finally, the reliability of the risk model was confirmed by the GEO cohort. Together, our study has constructed an
independent prognostic model for OC, which may deepen the understanding of the immune microenvironment and help
present novel biomarkers or ideas for targeted therapy.

1. Introduction

Ovarian cancer (OC), as one of the three malignancies that
threatened females’ heath over the world, has also been a
hot spot in cancer research due to its highest mortality rate
among all kinds of gynecological tumors. Since its hidden
onset, 70% of women are in the advanced stage at diagnosis,
resulting in poor prognosis [1]. Therefore, finding a more
accurate early screening method is a priority for solving this
dilemma.

The tumor microenvironment (TME) which incorpo-
rates immune cells, immune factors, and immune microen-
vironment is essential in the occurrence and development
of malignancies [2]. Its effects include disrupting genomic
stability, stimulating angiogenesis, anti-apoptosis, promot-
ing cell proliferation, and shaping microenvironmental
homeostasis [3]. Besides, it has been found that dysfunction
of the immune system contributes to the destruction of

immune surveillance [4]. As a malignant solid tumor, ovar-
ian cancer possesses tumor cells, tumor-associated stromal
cells, infiltrating immune cells, and other normal epithelial
cells. Among them, emerging emphasis has been put on
the importance of stromal cells in tumor progression and
drug resistance. Meanwhile, the ability to infiltrate immune
cells to participate in tumor invasion and metastasis has
also attracted people’s attention [5–8]. Several studies have
proved the effects of targeting TME for tumor therapy [9].
Nevertheless, immunotherapies are still in the primary
period, and our understanding of the value of IRGs for OC
patients is still almost blank [10, 11]. Therefore, a cognitive
understanding of OC’s deeper genetic and immune proper-
ties is necessary to overcome this hurdle.

In this study, DEGs, which were compactly related to
overall survival (OS), were determined by obtaining a large-
scale sequencing database and using bioinformatics technol-
ogy in the TCGA and GTEx databases. Then, combining the
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Figure 1: Flow diagram for establishing an immune-related prognostic model for OC.
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Figure 2: DEGs and immune-related DEGs in OC. A heatmap (a) and a volcano plot (b) of DEGs. A heatmap (c) and a volcano plot (d) of
immune-related DEGs. The heatmap colored from green to red means the progression from low expression to high expression. The areas
below the blue band represent normal samples, and the areas below the red band represent tumor samples. Colored dots in the volcano map
on behalf of DEGs. Red stands for higher expression, blue stands for lower expression, while gray on behalf of the difference is not significant
between normal and tumor samples.
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Figure 3: Gene functional enrichment analysis of immune-related DEGs. (a) GO analysis. (b) KEGG pathways.
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clinical information, we developed an immune-related gene-
based signature. By validating it in the GEO dataset, we
demonstrate the accuracy and stability of the model to help
formulate therapeutic strategies for OC.

2. Materials and Methods

2.1. Data Preparation. RNA-Seq dataset of 88 normal
ovarian tissues was obtained in the GTEx dataset (https://
commonfund.nih.gov/GTEx). Transcriptome data of 379
ovarian cancer patients and clinical data were downloaded
fromTCGA (https://gdc.nci.nih.gov/). GSE49997 was adopted
from the GEO database. The GSE49997 data were based on
the GPL2986 platform and included 204 ovarian cancer
patients. The preprocessing of data was as stated below:
(1) The patients with insufficient clinical information were
deleted (2) the patients whose overall survival (OS) <90
days were deleted (3) converted the unit of OS to day. As a
result, we obtained 346 patients from the TCGA database
as the training cohort for follow-up analysis and 178
patients from the GEO database as the validation cohort.

2.2. Identification of Differently Expressed Genes. We identi-
fied the DEGs between ovarian cancers and normal tissues
by utilizing the R package limma. The thresholds were estab-
lished as FDR <0.05 and |log2 foldchange| >2. After obtain-
ing a series of identified immune-related genes (IRGs) in the
ImmPort database (http://www.immport.org), the immune-
related DEGs were screened out by conducting the correla-
tion analysis (FDR<0.05 and |log2 foldchange|>1). The
effects of immune-related DEGs were explored by the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis via the cluster profiler package
in R. The difference of TF gene between the normal
ovarian tissue and ovarian cancer tissue was determined
by logFC >2, P < 0:05.

2.3. Construction of Risk Model. To further screen immune-
related DEGs with prognosis value, the KM survival analysis
was performed using the “survival” package, P<0.05 were
considered as significance . Subsequently, LASSO regression
analysis was carried out to construct a prognostic model
through the “glmnet” package. To prevent overfitting, 1000
rounds of cross-validation were used to select the adjust-
ment parameters.

2.4. Risk Score Calculation. The coefficient value for each
gene was calculated based on the result of multivariate cox
analysis. The patients’ risk score is obtained from the follow-
ing equation: Risk score = expression of gene1 × βgene 1 +
expression of gene2 × βgene2 +⋯+expression gene x × β
gene x, wherexis the number of genes andβis the coefficient
value for each gene.

The patients in both TCGA and GEO cohorts were
divided into high-risk and low-risk groups according to the
median value.

2.5. Construction of the TF Network. To explore internal
mechanisms among 10 IRPGs, a TF-associated network was
established. We attained 318 transcription factors (TFs) from
the Cistrome Cancer (http://cistrome.org/CistromeCancer/),
which is regarded as a valuable website for biomedical and

0.004

0.011

<0.001

<0.001

0.015

0.003

0.032

0.014

0.004

0.002

0.0 0.4 0.8
Hazard ratio

1.2

1.094 (1.029 − 1.163)

0.917 (0.858 − 0.980)

0.876 (0.810 − 0.946)

0.852 (0.784 − 0.927)

1.201 (1.037 − 1.392)

0.799 (0.687 − 0.928)

1.176 (1.014 − 1.365)

0.851 (0.748 − 0.968)

1.186 (1.057 − 1.330)

1.233 (1.079 − 1.410)

pvalue Hazard ratio

PI3

CXCL10

CXCL9

CXCL11

LRP1

STAT1

PDGFRA

CXCR4

OGN

IL27RA

Figure 4: Forest plot of 10 prognostic immune-related DEGs in OC. Hazard ratios (HR) and corresponding 95% confidence intervals (CI)
were calculated by the univariate Cox regression model. The red modules are on behalf of the high-risk genes, and the green modules mean
the low-risk genes in OC.

Table 1: Risk genes’ coef in the prognostic risk model.

Gene Coef

PI3 0.104421899319749

CXCL9 -0.0584230498809408

CXCL11 -0.0160551892127128

OGN 0.164347646094798

IL27RA 0.252033958859281
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genetic-related study [12]. We picked up survival-related TFs
by univariate cox analysis (corfilter >0.3, P < 0:05). Later, the
Poisson correlation analysis was chosen to define the associ-
ation between prognosis-related TF and 10 IRPGs (|correla-
tion coefficient|>0.3 and P < 0:001); finally, we established
the regulatory network using Cytoscape software (version
3.6.0) [13].

2.6. Survival Analysis. The Kaplan–Meier analysis was
conducted to distinguish the survival rate among high and
low-risk score groups via R’s survival package. Besides, the
receiver operating characteristic (ROC) curves determined
by the area under the ROC curve (AUC) verified the
accuracy and sensitivity of the prognosis prediction. AUC

>0.60 was viewed as an acceptable predictive value, and
AUC >0.75 was considered a good predictive value [14].

2.7. Statistical Analyses. The Wilcox test was applied to
validate the coloration between risk score and different clin-
icopathological parameters. Univariate and multivariate Cox
regressions were performed to determine whether the model
could influence or be regarded as an independent biomarker
of OC’s clinical outcoming.

2.8. Investigation of Tumor-Infiltrating Immune Cell. The
expression of 6 infiltrating immune cells (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells) in OC was obtained in the Tumor Immune Estimator
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Figure 5: Identification of differentially expressed TFs for ovarian cancer. Heatmap (a) and a volcano plot (b) show distinctly expressed TFs
between ovarian cancer tissues and normal tissues. The color in the heatmap from green to red represents the progression from low
expression to high. The areas below the blue band represent normal samples, and the areas below the red band represent tumor samples.
Colored dots in the volcano map represent differentially expressed TFs. Red on behalf of higher expression while green means lower
expression in OC.(c) 4 important TFs involved in immune regulation and prognosis of OC: Transcription factors are represented by
triangles; high-risk immune genes are represented by deep pink; low-risk immune genes are represented by pale pink; the positive
regulation relationship is denoted by red connection. The negative control relationship is connected with the green line.
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Resource (TIMER) database (https://cistrome.shinyapps.io/
timer/) [15]. Then, the “estimate” package was chosen to
explore the association between prognostic signature with
tumor-infiltrating immune cells. P < 0:001 was set as
significance.

2.9. External Validation in the GEO Database. To testify the
risk model’s predictive value, GSE4997 from the GEO data-
base was picked as the validation queue. Risk score calcula-
tion, groups dividing, KM, and ROC curve analyses were
conducted as stated before.

2.10. Statistical Analysis. All statistical analyses were per-
formed by the R software version 4.0.3. Maps were plotted
using R-package “ggplot2.”

3. Results

3.1. Identification of IRGs in OC. The detailed workflow is
presented in Figure 1. First, by acquiring and integrating
datasets from TCGA and GTX database, 2253 DEGs that
meet the set criteria (log FC|> 2, P value < 0:05) were filtered
out in 379 OC tissues compared with 88 normal tissues,
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Figure 6: Establish the immune-related prognostic model for OC in the TCGA database. (a) The risk score distribution of OC patients in
the TCGA database. The progression from low- to high-risk scores is represented by the color from green to red. (b) Survival status and
survival time of each OC patient. (c) Heatmap of the expression of 5 prognostic immune-related genes in OC patients. The color in the
heatmap from green to red refers to the progression from low expression to high expression. The areas below the blue band stand for
patients with high-risk scores, and the areas below the red band stand for patients with low-risk scores.
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consisting of 1017 overexpressing and 1236 downexpressing
genes, (Figures 2(a) and 2(b)).

Subsequently, we intersected these DEGs with immune-
related genes detected in the ImmPort database to screen
immune-related genes (IRGs); 181 IRGs were figured out
in that way. Subsequently, in the same way, we obtained
immune genes in GSE 49997 from GEO (|log FC|>1, P <
0:05), and 84 immune-related DEGs were screened after
the intersection with the 181 IRGs for further analysis. As
depicted in the heatmap (Figure 2(c)) and a volcano plot
(Figure 2(d)).

3.2. Gene Ontology (GO) Term and Kyoto Encyclopedia
Genes and Genomes (KEGG) Analyses for IRGs. First, we
conducted the GO analysis on 84 immunr-related DEGs.
As shown in Figure 3(a), the results were presented in three
aspects: (1) biological processes (BP); (2) cellular compo-

nents (CC); and (3) molecular functions (MF). For BP,
DEGs were mainly enriched in the humoral immune
response, extracellular matrix organization, and extracellular
structure organization. About CC, DEGs were primarily
clustered in the cell−cell junction, collagen−containing, and
extracellular matrix. Concerning MF, DEGs were mainly
associated with actin binding, sulfur compound binding,
and glycosaminoglycan binding. Subsequently, the KEGG
pathway enrichment analysis was conducted (Figure 3(b)).
Their participation in the Human T−cell leukemia virus 1
infection, or in the Epstein−Barr virus infection also sug-
gested that these genes were critical in the inflammatory
response.

3.3. Construction of the Immune-Related Prognostic
Signature. We utilized the TCGA-OC dataset (n = 346) as a
training cohort for the prognostic formulation construction.
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OS for the prognostic model.
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Univariate Cox regression analysis was conducted to figure
out 10 IRPGs which were related with OS at a 0.05 signif-
icance threshold (Figure 4), among which PI3, LRP1,
PDGFRA, OGN, and IL27RA were the risk factors for
OC with HRs of >1, while CXCL10, CXCL9, CXCL11,
STAT1, and CXCR4 were the protective factors for OC
with HRs of <1. We also investigated the protein expres-
sion level of some of these genes by immunohistochemical
staining in normal and ovarian cancer tissues by searching
in the HPA database (Supplementary Figure 1>).

These 10 IRPGs were later subjected to lasso cox analy-
sis, and 5 IRPGs were finally chosen to be included in the

risk model. And their coef was calculated in this way
(Table 1). The specific risk-value calculation formula is as
follows: Risk score = 0:104 ∗ Exp of PI3 − 0:058 ∗ Exp of
CXCL9 − 0:161 ∗ Exp of CXCL11 + 0:164 ∗ Exp of OGN +
0:252 ∗ Exp IL27RA.

Based on the risk score estimated, the patients were sep-
arated into high- or low-risk groups based on the median
value.

3.4. TF Regulatory Network. After comparing DEG with TFs
from the Cistrome database, we found that 38 TFs were
diversely expressed in OC and normal ovarian tissues (log
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Figure 8: Validation of the immune-related prognostic model for OC in GEO database. (a) The risk score distribution of OC patients in the
GEO database. The transition from low-to high-risk scores is presented by the color from green to red. (b) Survival status and survival time
of each OC patient. (c) Heatmap of the expression of 5 prognostic immune-related genes in OC patients. The color in the heatmap from
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FC|>1, P value < 0:05), including 18 overexpressing and 20
downexpressing TFs. The results are as demonstrated in
the volcano plot and heatmap (Figures 5(a) and 5(b)). By
performing univariate Cox analysis, 4 prognosis TFs were
filtered. Subsequently, we conducted the correlation analysis
to further investigate the regulatory relationship between 4
TF and 10 IRPGs (correlation coefficient >0.3, P < 0:05).
After obtaining the correlation and node attribute table, we
used the Cytoscape software to get the TF and immune gene
regulatory network diagram.

As shown in Figure 5(c), there were mainly four tran-
scription factors, among which NR2F1 could positively reg-
ulate high-risk immune genes LRP1, PDGFRA, and OGN
and negatively regulated with two low-risk immune genes,
CXCL10 and CXCL11. The other three TF genes, NR4A1,
EHF, and GATA4, were involved in the positive regulation
of LRP1, STAT1, and OGN, respectively.

3.5. Evaluation in the Training Cohort. According to their
risk score, TCGA patients were separated into high and
low-risk groups (Figure 6(a)). Subsequently, a survival status
overview and 5 prognosis genes expression heatmap were
drawn (Figures 6(b) and 6(c)). The survival curve was then
conducted by K-M survival analysis in the training cohort,
which confirmed that the patients with high-risk scores
had a significantly shorter OS than those with low scores
(P < 0:001, Figure 7(a)). Time-dependent ROC curve was
also depicted to show the prognostic accuracy, which
showed that the AUCs at 2, 4, 6, and 8 years were 0.69,
0.69, 0.72, 0.79, and 0.79, respectively (Figure 7(b)), proving
that the prognosis model possessed high sensitivity and
specificity, especially in proposing long-term survival
probability.

3.6. Validation with the Validation Dataset. The GEO data-
set was utilized for further validation analysis to reconfirm

the immune prognostic model’s reliability. As same as we
did in the previous steps, we divided patients into high-risk
and low-risk sets. The distribution of risk scores and survival
status for each patient in different groups of the validation
dataset demonstrated consistent results to the training
cohort (Figure 8). Although P values in GEO’s comprehen-
sive validation database (n = 178) were not satisfactory
enough (P = 0:15, Supplementary Figure 2), we found that
it was still of fair value for predicting the prognosis of
people with OS >1 year (n = 170, P = 0:037, Figure 9(a)).
Consistent with the training dataset results, AUC reached
0.62 and 0.64 at 2 and 4 years, respectively, which affirm
the stability of the model again (Figure 9(b)).

3.7. Verification of the Independent Prognostic Value of the
Risk Model. Given the importance of clinical application,
we examined the association between the risk value and clin-
ical parameters in TCGA. However, a significant correlation
was only detected between risk scores and age, but not grade,
pharmaceutical, or radiation (Figure 10).

Subsequently, we conducted univariate and multivariate
Cox regression tests to prove the independent prognostic
value of the model with different clinical parameters, includ-
ing age, stage, pharmaceutical, race, radiation, grade, and
histology. The statistical summary results are demonstrated
in forest plots. The univariate analysis revealed that the
high-risk score, the aged, and white people were high-risk
factors (P < 0:05). Subsequently, the multivariate analyses
further confirmed the risk score, age, and race as indepen-
dent prognostic factors (P < 0:001) (Figure 11). To verify
its stability, we performed a secondary validation with
GEO. Univariate and multivariate Cox regression analysis
confirmed that the risk score was still an independent stim-
ulate for prognosis (univariate: P = 0:05; multivariate: P =
0:03) (Figure 12). These outcomes further confirmed that
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the 5 IRPGs still have a prognostic value under the influence
of other clinical parameters.

3.8. Evaluation of Infiltrating Immune Cells of OC. Infiltra-
tion of immune cells in TME is an indispensable step both
in the initiation and progression of the tumor, and they have
been used as biomarkers for immunotherapeutic response
[16]. In this step, we investigated the correlation between
the signature with the content of 6 types of immune cells
from the TIMER database. It revealed that B cells
(P = 0:019), dendritic cells (P = 5:58e − 05), CD8+ T cells
(P = 1:426e − 10), CD4+ T cells (P = 0:018), and neutrophils
(P = 0:001) had a prognostic value for OC patients, and as
the curves depicted, they were all negatively correlated
(Cor <0). The above results confirmed that the prognostic
model could inflect the infiltrating immune cells in the
tumor microenvironment (Figure 13).

4. Discussion

OC remains a headache for physicians and females over the
world due to its high rate of recurrence and resistance
caused by hidden precursors. Given the importance of
TME in OC, this study aims to identify IRGs with predictive
value and to establish a more accurate prognostic model.
First, transcriptome and clinical data of OC and normal
ovarian tissue were downloaded from the TCGA database
and GTEx database, respectively. After integration, the
obtained 84 immune-related DEGs were verified to partici-
pate in multiple immune-related pathways by the KEGG
and GO analysis. Subsequently, univariate Cox regression
analysis was conducted to determine prognostic-related
DEGs. A total of 10 IRGs were identified as IRPGs. Subse-
quently, we constructed a TF-mediated network to explore
its internal mechanism. Then, lasso regression analysis was

used to construct a vigorous risk model based on 5 IRPGs
and their coef value, which can mirror prognosis of patients
with OC , in particular, long-term survival. Compared with
other clinical factors, we demonstrated its superior predic-
tive ability. Due to GSE49997 containing sufficient tumor
samples with completed clinical information, it was chosen
to validate its reliability, and the model has proven to with-
stand external databases. In addition, we found that the
model can also well reflect the tumor immune microenvi-
ronment by exploring it in the TIMER database.

Cancer immunotherapy has become the focus of cancer
research because of its unique long-term responses in refrac-
tory patients. Nevertheless, the immunotherapy response
rates in OC remain low [17]. At present, two factors, TILs
and PD-1 ligand (PD-L1), were recognized as biomarkers
to preview patients’ response to immune checkpoint inhibi-
tors (ICIs) [18]. Given this, more than half of high-grade
serous ovarian cancers were proposed to exhibit resistance
to immune therapy. In comparison, other histological types
show low resistance [19]. Several ICIs have been used in
early clinical trials of OC therapy in combination, for exam-
ple, anti-PD-1 antibodies including pembrolizumab, nivolu-
mab, durvalumab, and avelumab, and also antibodies
targeting CTLA-4 including ipilimumab and atezolizumab
[20, 21]. However, preliminary clinical data suggest that
these drugs have limited efficacy against OC, with an objec-
tive response percentage of 10-15% [21]. Thus, it remains to
be figured out why the therapeutic response of ICIs is not
satisfactory. We also need to find high-efficiency biomarkers
and determine the best combination of strategies. While
early screenings are beneficial for cancer detection and treat-
ment, most of the patients are not willing to cooperate [22].
The patients prefer reliable prognostic models to guard their
health situation. Thanks to the easy access to the well-
developed databases of genetic and clinical information,
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Figure 10: Association between clinical features: age (a), grade (b), pharmaceutical (c), radiation (d), and risk score based on the immune-
related prognostic signature.
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Figure 11: Univariate (a) and multivariate (b) analyses of prognostic factors in the TCGA training cohort identified the signature as an
independent prognostic factor.
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statistical predictive models have been improved for various
malignancies, for instance, colorectal cancer, hepatocellular
carcinoma, gastric cancer, and esophageal cancer [23–26]).

Our study still has some drawbacks. Although we have
the advantage of using multiple databases to construct and
validate the risk model, it is still characterized by a retrospec-
tive design. Therefore, prospective cohort studies are needed.
What’s more, the association between IRGs and clinical
parameters was not strongly sufficient. But fortunately, mul-

tivariate Cox analysis has demonstrated its independent
prognostic value after adjustment for other factors. Given
this, for the clinical application of this model, we still need
more databases and clinical data, and we should better com-
bine them with clinical features for more individualized
combination therapy. Moreover, we also welcome exploring
the applicability of our model to other female reproductive
diseases, such as cervical cancer, endometrial carcinoma,
and pelvic inflammation disease.
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In summary, we have constructed a prognosis model
consisting of 5 IRPGs for OC, which may also serve as a
novel reference parameter for identifying patients who will
benefit from immunotherapy.

Data Availability

The data that support the findings of this study are openly
available in TCGA (https://portal.gdc.cancer.gov) GEO
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE49997), GTEx database (https://commonfund.nih.gov/
GTEx), TIMER database (https://cistrome.shinyapps.io/
timer/), and ImmPort (http://www.immport.org).

Additional Points

Impact statement. The immune-related genes (IRGs) have
demonstrated their indispensable importance in the occur-
rence and progression of OC. Therefore, this study aimed
to figure out IRGs with predictive value and build a prognos-
tic model for a more accurate assessment, as well as help
present novel ideas for targeted therapy for OC.
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