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Cuproptosis, a recently found kind of programmed cell death, has been linked to tumor development, prognosis, and therapeutic
response. The roles of cuproptosis-related genes (CRG) in the tumor microenvironment (TME) are, nevertheless, unknown. We
evaluated alterations in CRG and assessed the related expression patterns in 1445 lung cancer (LC) samples from three separate
datasets, analyzing genetic, and transcriptional domains. We discovered two separate molecular subtypes of CRG and discovered
that various subtypes of CRG were connected with patient clinical features and prognosis. Furthermore, we discovered
connections between distinct CRG subtypes and TME cell infiltration features. The CRG_score was then developed and
validated for predicting overall survival (OS). Following that, we investigated the relationship between CRG_score and the
cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity. In addition, we created a very accurate nomogram to
increase the clinical usefulness of CRG_score. The potential roles of CRG in the tumor-immune-microenvironment, clinical
characteristics, and prognosis in LC are demonstrated by our multiplex study. These findings expand our understanding of
CRG in LC and may open up new options for assessing LC patients’ prognosis and generating more effective
immunotherapeutic treatments.

1. Introduction

Although lung cancer (LC) had been surpassed by breast
cancer as the second most often diagnosed cancer in 2020,
accounting for around 11.4 percent of all diagnosed cancers,
it remained the leading cause of cancer fatalities, accounting
for approximately 18.0 percent of all deaths. LC is expected
to have 2.2 million new cancer diagnoses and 1.8 million
deaths by 2020 [1]. The prognosis of LC is closely related
to disease stage, with patients in stage IA having a 5-year
survival rate of roughly 60%, whereas patients in stages II-
IV have a 5-year survival rate ranging from 40% to fewer
than 5%. Furthermore, patients with LC have a bad progno-
sis since more than 75% of them are in clinical stage III or IV
at the time of diagnosis [2, 3]. Given the high morbidity and
death rates as well as the poor prognosis of LC, the develop-

ment of more effective prognostic and diagnostic models is
critical. Copper is an essential trace element for the human
body and is involved in a variety of biological processes in
the human body [4]. According to recent research, copper
levels in cancer patient’s tumor tissue and serum are much
greater than in healthy persons [5, 6]. Changes in intracellu-
lar copper levels have a significant impact on cancer start
and progression [7]. Imbalances in copper homeostasis
produced by genetic variations have been associated with
potentially fatal disorders such as Wilson’s disease [8, 9].
In addition, some researchers found that the reduction of
serum copper concentration is related to the occurrence
and development of endometrial cancer [10] and head and
neck cancer [11]. Recently, researchers have discovered a
novel cell death pathway called cuproptosis, and their stud-
ies have demonstrated that copper can directly bind to fatty
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acylated components of the tricarboxylic acid (TCA) cycle
and cause toxic protein stress, ultimately leading to cell
death [12–14]. Following the discovery of this essential and
unique cell death mechanism, an increasing number of
researchers are striving to find and uncover cuproptosis-
related genes (CRG) implicated in copper-induced cell
death.

The tumor microenvironment (TME) has been proven
to have a significant impact on tumor genesis and develop-
ment [15–17]. The complex relationship between tumor
cells and nontumor cells in the TME influences cancer initi-
ation and progression [18]. By producing cell signaling mol-
ecules, tumor cells can interact with surrounding cells via the
circulatory and lymphatic systems, increase tumor angio-
genesis, and drive immune cells to acquire immunological
tolerance to tumor cells. Tumor-infiltrating immune cells
(TIIC) within the TME have been proven in studies to pre-
dict cancer prognosis [19]. As a result, a complete study of
CRG infiltration features in TME cells may give new possi-
bilities for the underlying processes of LC as well as novel
ways for predicting LC patients’ response and prognosis to
immunotherapy [20].

Using two computational algorithms, CIBERSORT and
ESTIMATE, this study analyzed the expression patterns of
CRG and provided a thorough overview of the immunolog-
ical landscape within tumors. To begin, all LC samples were
divided into two distinct subtypes based on CRG expression
levels. Following that, LC patients were categorized into
three genetic subgroups based on differentially expressed
genes (DEG) discovered in the first two categories. In addi-
tion, we developed a scoring system to predict OS (OS)
and describe LC immunological state to correctly predict
patient prognosis and responsiveness to immunotherapy.

2. Materials and Methods

2.1. Data Sources. Data on gene expression (fragments per
kilobase million, (FPKM)) and clinical and pathological fea-
tures of LC patients were obtained from the gene expression
omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and
the cancer genome atlas (TCGA) (https://portal.gdc.cancer
.gov/) databases. Importantly, we incorporated patients’
prognostic data in our collection. For the following studies,
TCGA cohorts and two GEO cohorts (GSE68465 and
GSE41271) were collected. We retrieved the raw “CELL”
files and adjusted the background and quantile normaliza-
tion. The FPKM values for TCGA-lung adenocarcinoma/
lung squamous cell carcinoma (LUAD/LUSC) were trans-
lated to transcripts per kilobase million (TPM) and were
thought to be identical to transcripts from the microarrays
[21]. The three datasets used in this study were combined,
and batch effects were removed using a “Combat” method.
We eliminated patients with no or partial OS data. As a
result, 1445 LC patients were selected for further study,
using clinical data such as age, gender, T stage, N stage,
follow-up time, and survival status.

2.2. Consensus Clustering Analysis of CRG. From earlier pub-
lications [4, 6–9, 22–25], nineteen CRG (NFE2L2, NLRP3,

ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2,
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,
DBT, GCSH, and DLST) were retrieved. To categorize
patients into various molecular subtypes based on CRG
expression, a consensus unsupervised clustering analysis
was done using the R software package “ConsensusCluster-
Plus.” This clustering is done using the following criteria.
To begin, the cumulative distribution function (CDF) curve
gently and smoothly rises. Second, there was no group with
small sample size. Finally, intergroup correlations increased
while intergroup correlations declined following clustering.
To study changes in CRG in biological processes, gene set
variation analysis (GSVA) was done using the marker gene
set (c2.cp.kegg.v7.2).

2.3. The Association of Molecular Subtypes with LC Clinical
Characteristics and Prognosis. We investigated the associa-
tion between genetic subtypes, clinical data, pathological
characteristics, and prognosis to investigate the clinical use-
fulness of the two subtypes found by consensus clustering.
Age, gender, T stage, N stage, follow-up period, and survival
status were among the patient characteristics. Furthermore,
the Kaplan-Meier curves created by the R packages “sur-
vival” and “survminer” were used to analyze OS differences
across the three subtypes.

2.4. Correlations between Molecular Subtypes and TME in
LC. Each patient’s immunological and stromal scores were
calculated using the ESTIMATE algorithm. Meanwhile, the
CIBERSORT algorithm determined the scores of 22 human
immune cell types for each LC sample [26]. In addition,
the single-sample gene set enrichment analysis (ssGSEA)
technique was utilized to estimate the amount of immune
cell infiltration in LC patients’ TME [27].

2.5. DEG Identification and Functional Annotation. DEGs
between cuproptosis subtypes were found using the R pro-
gram “limma,” and functional enrichment analysis of DEGs
was done using the R tool “clusterprofiler.” The goal was to
investigate the probable activities of cuproptosis pattern-
associated DEGs further as well as to find related gene func-
tions and enrichment pathways.

2.6. Construction of the Cuproptosis-Related Prognostic
CRG_Score. To quantify cuproptosis patterns in individual
tumors, cuproptosis scores were generated. First, DEG was
subjected to univariate Cox regression analysis to discover
relationships with OS in LC patients. Second, it was thor-
oughly examined by employing an unsupervised clustering
technique based on the expression of prognostic CRG to cat-
egorize patients into several subtype groups (cuproptosis
gene subtype A, cuproptosis gene subtype B, and cuproptosis
gene subtype C). Finally, all LC patients were randomly
assigned to one of two groups: a training group (n = 723)
and a test group (n = 722), and a cuproptosis-related predic-
tive CRG_score was calculated. Finally, we employed the
“glmnet” R package which uses the Lasso Cox regression
technique to reduce the danger of overfitting. Simulta-
neously, the change trajectory of each independent variable
was examined, and the model was built using 10-fold cross
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validation. A prognostic CRG_score was calculated using a
multivariate Cox analysis. CRG_score was computed as fol-
lows: ðExpi∗coefiÞ = CRG score. The Coefi and Expi values
represent the risk coefficient and gene expression, respectively.
A total of 723 patients in the training set and 722 patients in
the testing set were split into low-risk (CRG_score median
value) and high-risk (CRG score > median value) groups and
then submitted to the Kaplan-Meier survival analysis based
on the median risk score. Meanwhile, all sets were separated
into low- and high-risk groups, with each group subjected to
the Kaplan-Meier survival analysis and the creation of receiver
operating characteristic (ROC) curves. The “ggplot2” R soft-
ware was then used to perform principal component analysis
(PCA). Additional CCT6A, CD19, KYNU, SLC2A1, and
ZBED1 protein levels of patients were individually detected
by IHC in the HPA database.

2.7. Evaluation of Immune Status and Cancer Stem Cell
(CSC) Index between the High- and Low-Risk Groups. We
utilized CIBERSORT to count the number of 22 infiltrating
immune cells in samples from low-risk and high-risk catego-
ries. Simultaneously, we investigated the relationship between
22 invading immune cells and prognosis-related genes in the
CRG_score. We also utilized box plots to look at the differ-
ences in immune cell expression levels between low- and
high-scoring groups. Furthermore, we investigated the link
between the two risk categories and CSC.

2.8. Mutation and Drug Susceptibility Analysis. We utilized
the R package “maftools” to build a mutation annotation
format (MAF) from the TCGA database to identify somatic
mutations in LC patients who were classified as high or low
risk. In addition, for each LC patient in both groups, we
generated tumor mutational burden (TMB) scores. To inves-
tigate the difference in the treatment impact of chemothera-
peutic medications in the two groups of patients, we utilized
the “pRRophetic” package to determine the half-inhibitory
concentration (IC50) values of chemotherapeutic agents
routinely used to treat LC.

2.9. Establishment and Validation of a Nomogram Scoring
System. Clinical characteristics and risk scores were utilized
to generate predicted nomograms based on the findings of
separate prognostic studies using the ‘rms’ software. Each
variable of each patient may be matched with a score based
on the patient’s characteristics in the nomogram scoring sys-
tem, and the scores of all variables of each sample can be
summed to create a total score to estimate the patient’s like-
lihood of survival [28]. Nomogram calibration plots are used
to describe anticipated values between 3-, 5-, and 10-year
survival events and actual observed results.

2.10. Statistical Analyses. All statistical analyses were per-
formed using R version 4.2.0. Statistical significance was set
at P < 0:05.

3. Results

A detailed flowchart of this study is shown in Figure 1.

3.1. Genetic and Transcriptional Alterations of CRG in LC.
This research includes all 19 CRG listed in the previous
study. A comprehensive examination of the occurrence of
somatic mutations in these 19 CRG found that 371 (31.96
percent) of the 1161 TCGA samples contained mutations
in CRG (Figure 2(b)). NLRP3 exhibited the greatest muta-
tion frequency (10%) followed by CDKN2A, whereas seven
CRG (LIPT1, FDX1, LIAS, SLC31A1, LIPT2, PDHB, and
GCSH) were mutation free.

Following that, we looked into somatic copy number
alterations in these CRG and discovered that copy number
changes were common in all 19 CRG. Copy number varia-
tions (CNVs) were frequently raised in NLRP3, NFE2L2,
and LIPT2 but decreased in CDKN2A (Figure 2(e)).
Figure 2(c) depicts the chromosomal location of CNV
changes in the CRG. We next analyzed the mRNA expres-
sion levels of LC patients’ tumor tissues and normal tissues
and discovered that most CRG expression levels were
inversely linked with CNV changes. CNV-depleted CRG,
such as CDKN2A, were expressed at greater levels in LC
tumor tissue samples than in normal lung samples, but
CNV-raised CRG, such as NLRP3 and NFE2L2, was consid-
erably enhanced in LC tumor tissue samples (Figure 2(d)),
indicating that CNVs may control CRG mRNA expression.
Some CRG with CNV gain, such as LIPT2, showed increased
mRNA expression; however, other CRG with high CNV gain
or loss frequencies did not differ between tumor and normal
samples. While CNVs may account for many of the
observed variations in CRG expression, they are not the sole
factors influencing mRNA expression. Other variables that
can influence gene expression include DNA methylation
and transcription factors. Our findings indicated substantial
variations in the genetic landscape and expression levels of
CRG between LC tissues and control samples, indicating
that CRG may play a role in the carcinogenesis of LC
patients.

3.2. Identification of Cuproptosis Subtypes in LC. We inte-
grated and incorporated 1445 patients from four suitable
LC cohorts (TCGA-LUAD, TCGA-LUSC, GSE41271, and
GSE68465) into our study for a higher level of analysis to
acquire a more complete knowledge of CRG expression pat-
terns in carcinogenesis. The findings of univariate Cox
regression and the Kaplan-Meier analysis indicated that nine
CRG (MTF1, CDKN2A, ATP7A, DLD, LIPT1, SLC31A1,
PDHB, DBT, and DLAT) had prognostic significance in
LC patients (MTF1, CDKN2A, ATP7A, DLD, LIPT1,
SLC31A1, PDHB, DBT, and DLAT) (Figure 2(a)). The
cuproptosis network exhibited a synthesis of CRG interac-
tions, regulator linkages, and their predictive relevance in
LC patients (Figure 2(a)).

Based on the expression characteristics of the 19 CRG,
we employed a consensus clustering technique to identify
LC patients. Our findings indicated that setting the value
of k to 2 was the optimal decision, and we divided the com-
plete LC cohort into subtypes A (n = 1016) and B (n = 429)
(Figure 3(a)), further examining the expression features of
CRG in LC tumor tissues. PCA analysis revealed substantial
heterogeneity in the transcriptional patterns of cuproptosis
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subtypes (Figure 3(e)). The Kaplan-Meier curves revealed
that individuals with subtype B had a longer OS (log-rank
test, P = 0:020; Figure 3(c)). A heatmap comparing the clin-
ical and pathological aspects of distinct subtypes found sub-
stantial variations in CRG expression as well as clinical and
pathological features (Figure 3(b)).

3.3. Characteristics of the TME in Distinct Subtypes. GSVA
enrichment analysis showed that subtype A was significantly
enriched in basal transcription factors, nucleotide excision
repair, mismatch repair, RNA degeneration, cell cycle, and
spliceosome pathways (Figure 3(d)). To investigate the role
of CRG in the TME of LC, we assessed the correlations
between the two subtypes and 22 human immune cell sub-
sets of every LC sample using the CIBERSORT algorithm.
We observed significant differences in the infiltration of
most immune cells between the two subtypes. The infiltra-
tion levels of activated B cell, activated CD8+T cell,
activated dendritic cell, CD56 dim natural killer cell, eosino-
phil, immature B cell, MDSC, macrophage, mast cell, mono-
cyte, natural killer T cell, natural killer cell, neutrophil,
regulatory T cell, T follicular helper cell, type-1T helper cell,
and type-17T helper cell were lower in the subtype A than
those in the subtype B, while resting gamma delta T cell,

immature dendritic cell, and type-2T helper cell had signif-
icantly higher infiltration in subtype A compared to those in
subtype B (Figure 3(f)).

3.4. Identification of Gene Subtypes Based on DEGs. We dis-
covered 377 DEGs linked with the cuproptosis subtype using
the R package “limma” and performed a functional enrich-
ment analysis (Figures 4(c)–4(f)). These DEGs associated
with cuproptosis subtypes were considerably enriched in bio-
logical processes linked to cellular metabolism (Figure 4(c)).
KEGG analysis revealed an enrichment of pathways asso-
ciated with cell proliferation and cellular metabolism
(Figure 4(f)), indicating that cuproptosis is important in
TME cellular metabolism. These findings contribute to
our understanding of the underlying biological activity of
each cuproptosis type.

We used a consensus clustering technique to divide
patients into three genomic categories based on prognostic
genes to further confirm this regulatory mechanism
(Figure 4(a)). Similarly, we created the Kaplan-Meier curves
to assess survival disparities between different genomic sub-
types, and the findings revealed that geneCluster C patients
had the lowest OS (log-rank test, P = 0:001; Figure 4(b)).
Furthermore, the data revealed that distinct genetic subtypes
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Figure 1: Flowchart of this study.
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were linked to TN stage in LC patients (Figure 4(e)). Unsur-
prisingly, there were considerable disparities in CRG expres-
sion among the three genetic subtypes (Figure 4(d)).

3.5. The Development of a Nomogram to Predict Survival and
the Construction and Validation of the Prognostic CRG_
Score. The CRG_score was calculated using the subtype-
related DEGs. First, we utilized R’s “caret package” to ran-
domly divide the patients into two groups: training
(n = 723) and testing (n = 722). To choose the best prognos-
tic characteristics, LASSO and multivariate Cox analyses
were performed on 242 cuproptosis subtype-related prog-
nostic DEGs. Following LASSO regression analysis, it was
discovered that there were still 9 OS-related genes based on
the least partial likelihood of deviation (Figures 5(d) and
5(h)). Based on the Akaike information criterion (AIC)
values, we ran multivariate Cox regression analysis on the
9 OS-related genes, resulting in 5 (CCT6A, CD19, KYNU,
SLC2A1, and ZBED1), including three high-risk genes
(CCT6A, KYNU, and SLC2A1) and two low-risk genes
(CD19 and ZBED1). The CRG_score was calculated using
the findings of the multivariate Cox regression analysis as
follows:

Risk score = 0:1622∗expression of CCT6Að Þ
+ −0:0780∗expression of CD19ð Þ
+ 0:1285∗expression of KYNUð Þ
+ 0:1003∗expression of SLC2A1ð Þ
+ 0:1778∗expression of ZBED1ð Þ:

ð1Þ

Figure 5(a) depicts the patient distribution in two
cuproptosis subtypes, three gene subtypes, and two CRG_
score groups. CRG_score differed significantly between
cuproptosis gene subtypes. Subtype A had the lowest CRG_
score, whereas subtype C had the highest (Figure 5(b)). We
then split the 1445 LC patients into two groups: high risk

and low risk. Patients with a CRG_score less than the median
risk score were classified as low risk (n = 716), whereas those
with a CRG_score more than the median risk score were clas-
sified as high risk (n = 729). Figure 5(f) depicts the distribution
of risk ratings for the two subgroups. In the HPA database,
CCT6A, CD19, KYNU, SLC2A1, and ZBED1 protein levels
of patients individually detected by IHC were presented in
Supplementary Figure 2.

To further validate the CRG_score capacity to predict
LC patient prognosis, we separated the training group
(n = 723), testing group (n = 722), and all patients
(n = 1445) into high-risk and low-risk groups based on
CRG_score and generated their respective survival curves
(Figure 6). Survival analysis revealed that the prognosis of
the low-risk group was considerably better than that of the
high-risk group in the training group (n = 722), testing group
(n = 723), and all patients (n = 1445) (Figures 6(a)–6(c)).

We use a permuted dot plot to illustrate the CRG_score
distribution and a scatter plot to show the patient’s survival
status (Figures 6(d)–6(i)). Meanwhile, our investigation of
1-, 3-, and 5-year prognostic prediction classification effi-
ciency revealed that CRG_score retained a very high
AUC value (Figures 6(j)–6(l)), showing that the CRG_
score had an exceptional capacity to predict LC patient
survival.

Clinically, CRG_score alone cannot predict OS in LC
patients. We created a nomogram including CRG_score
and clinical and pathological characteristics to predict 1-,
3-, and 5-year OS rates to make clinical use of CRG_score
easier (Figure 5(i)). Predictors included the patient’s CRG_
score as well as age, gender, and TN stage. Supplementary
Figure 3 showed the K-M of lung cancer patients with
clinical characteristics such as age (a), gender (b), T (c),
and N (d) with prognosis. The calibration plots reveal that
our built nomograms can predict survival well (Figure 5(c)).

3.6. Evaluation of TME between the High- and Low-Risk
Groups. We used the CIBERSORT method to examine the

25

GAIN
LOSS

20

15

CN
V.

 fr
eq

ue
nc

y 
(%

)

10

5

0
N

LR
P3

N
FE

2L
2

LI
PT

2
G

LS
D

LD
M

TF
1

LI
PT

1
LI

A
S

SL
C3

1A
1

FD
X1

AT
P7

B
D

LA
T

PD
H

A
1

D
LS

T
D

BT
G

CS
H

AT
P7

A
CD

KN
2A

PD
H

B

(e)

Figure 2: Genetic and transcriptional alterations of CRGs in LC.
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relationship between CRG_score and immune cell abun-
dance. Furthermore, our findings revealed that a low
CRG_score was highly related to a low immunological score,
stromal score, and projected score (Figure 5(g)). We also
looked at the link between five genes in the suggested model

and the number of immune cells. We discovered that the five
genes were highly connected with the majority of immune
cells (Figure 5(k)). Figure 5(e) showed that 14 genes were
differentially expressed in the two groups. The CRG_score
was associated with neutrophils, activated mast cells, resting
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Figure 3: CRG subtypes and clinicopathological and biological characteristics of two distinct subtypes of samples divided by consistent
clustering.
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mast cells, resting dendritic cells, M1 macrophages, M0 mac-
rophages, monocytes, memory B cells, plasma cells, follicular
helper T cells, activated memory CD4+T cells, resting

memory CD4+T cells, Tregs, resting NK cells, and activated
NK cells, as shown in the scatter diagrams (Supplementary
Figure 1).
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3.7. Relationship of CRG_Score with CSC Index. Further-
more, we investigated the possible relationship between
CRG_score and CSC in LC patients. Our findings revealed
a significant relationship between CRG_score and CSC
index (R = 0:19), and this linear analysis revealed that LC
cells with higher CRG_score had less cellular differentiation
and more prominent stem cell traits (Figure 5(j)).

3.8. Mutation and Drug Susceptibility Analysis. TMB was
higher in the high group than in the low group, according
to our analysis of mutational data from the TCGA LUAD/
LUSC cohort (Figure 7(d)), suggesting that immunotherapy
may help the high-risk group. We then looked at how the
distribution of somatic mutations differed between the two
CRG_score groups. TP53, TTN, MUC16, CSMD3, RYR2,
LRP1B, ZFHX4, USH2A, and XIRP2 were the top 10 mutant
genes in both the high-risk and low-risk groups (Figures 7(a)
and 7(b)). When compared to patients with low CRG_score,
individuals with high CRG_score showed considerably
greater mutation rates in these genes (Figures 7(a) and
7(b)). The Spearman correlation analysis demonstrated that

the CRG_score was positively associated with the TMB
(P < 0:001; Figure 7(e)). We next chose other commonly
used chemotherapeutic medicines to test the sensitivity of
low-risk and high-risk patients to these medications.
Patients with a low CRG_score exhibited significantly higher
IC50 values for chemotherapeutic medicines such as erlo-
tinib, gefitinib, sorafenib, and paclitaxel. Interestingly, in
addition to chemotherapeutic medications, we discovered
that CRG_score was linked with metformin IC50 value,
and metformin IC50 value was considerably greater in
patients with high CRG_score. Taken together, these find-
ings indicate that CRG are linked to drug sensitivity
(Figures 7(c) and 7(f)–7(i)).

4. Discussion

Lots of research had revealed that copper is intimately linked
to the incidence and development of different malignancies
and that cytotoxicity generated by copper ion imbalance is
linked to cancer cell proliferation and dissemination [29].
Further research into the mechanism of enhanced
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Figure 5: Correlations of tumor immune cell microenvironments and two LC subtypes.
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intracellular toxicity produced by copper ion imbalance
might provide fresh insight into the efficient destruction of
cancer cells in immunotherapy [30]. Tsvetkov et al., Tang
et al., and Wang et al. found an altogether new process of cell
death dubbed cuproptosis in a newly published study that is
completely distinct from recognized types of cell death (ther-
mal apoptosis, apoptosis, ferroptosis, and necroptosis) [12,
31, 32]. Currently, no research has been conducted to deter-
mine the function of copper death in innate immunity and
antitumor effects. Meanwhile, the combined action of CRG
has not completely revealed the overall consequences and
TME infiltration features. Given this, the development of
copper ion treatment regimens targeting cancers with this
metabolic profile appears promising. Finding biomarkers
that can identify cuproptosis in human tumor tissue is thus
a novel method of cancer treatment with far-reaching impli-
cations. The findings of this study show that CRG is altered
at the transcriptional and genomic levels in LC. We detected
two different molecular subtypes and evaluated clinicopath-

ological abnormalities and OS differences between the two
subtypes as well as substantial variations in TME features.
Significant immunological activity is another feature of the
LC subtype. Furthermore, based on the DEG between the
two copper death isoforms, we found three genotypes. We
developed a reliable and effective prognostic CRG_score
and proved its predictive ability. Then, our research found
that individuals with low-risk and high-risk CRG_score
had substantial differences in clinicopathological character-
istics, prognosis, mutations, TME, CSC index, and medica-
tion sensitivity. Finally, by combining the clinical and
pathological characteristics of the CRG_score and LC sam-
ples, we created a nomogram that is easy to utilize in clinical
settings, significantly boosting the performance and clinical
value of the CRG_score. Our work is the first to use CRG
to predict LC prognosis, which aids in understanding the
molecular mechanism of CRC and gives new ideas for tar-
geted therapy. The predictive model we developed can also
be utilized clinically to stratify LC patients’ prognosis.
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Figure 6: Construction of the CRG_score.
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Despite recent breakthroughs in immunotherapy, the
prognosis of LC patients remains variable, emphasizing the
importance of TME in the development and progression of
LC tumors. The TME is made up of immune cells (granulo-
cytes, lymphocytes, and macrophages) and is engaged in a
variety of immunological responses and activities as well as
having a substantial influence on tumor growth, progression,
and treatment resistance [33–35]. We discovered that the
features of TME differed considerably across the two molec-
ular subtypes and distinct CRG_score in this investigation.
This data implies that CRG plays an important role in the
evolution of LC. Subtype B, which had a better prognosis
and a lower CRG_score, had more activated B cells and
CD8+ T cells infiltrate, suggesting that they play an essential
role in the development of LC. Tregs’ primary function is to
inhibit the anticancer immune response, which is linked to a
poor prognosis. This is consistent with our observation that
patients with subtype B and a low CRG_score had more

Tregs in the TME than patients with a low CRG_score.
Recent research has demonstrated that B cells have a role
in the immunological response [36, 37]. We also found sig-
nificant variations in memory B cell infiltration between
the two subtypes and the CRG_score group in our
investigation.

The CRG_score developed in this work was made up of
five cuproptosis-related genes (CCT6A, CD19, KYNU,
SLC2A1, and ZBED1). Chaperonin-containing tailless com-
plex polypeptide 1 (CCT) is a protein complex that folds
actin and tubulin. It is made up of eight different subunits
(designated CCT1 to CCT8) [38]. CCT6A was discovered
to be an inhibitor and direct binding protein of SMAD2,
and it was shown that CCT6A may block the function of
SMAD2 in NSCLC cells and enhance cancer cell metastasis
[39]. CD19+ B cells are the second most common immune
cell type in NSCLC tumors (16%) [40]. In addition, CD19
is the main target molecule of chimeric antigen receptor
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Figure 7: Comprehensive analysis of the CRG_score in LC.
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(CAR) T cells [41]. Studies have shown that absolute CD19+
counts in NSCLC patients are significantly lower than in
age-matched controls [42]. Kynureninase (KYNU), a trypto-
phan metabolism hydrolase, contributes to the production of
NAD+cofactors via the kynurenine pathway, and KYNU is
implicated in the formation and spread of breast cancers
[43]. The research of Fahrmann et al. discovered that
NRF2 can inhibit tumor immunosuppression in LC by
upregulating KYNU. Furthermore, higher KYNU is linked
to immunosuppression and worse survival [44]. Many stud-
ies have discovered a link between SLC2A1 and the clinical
features and prognosis of LC patients. The majority of
research has shown that SLC2A1 downregulation is related
to a better prognosis for LC patients [45–47]. The zinc-fin-
ger, BED-type (ZBED) gene family is a closely related
genome that encodes regulatory proteins to help regulate
various functions, widespread in vertebrate tissues [48].
Studies have shown that ZBED1 is highly expressed in gas-
tric cancer, and higher ZBED1 levels predict poor outcomes.
[49]. However, no research has been conducted to investi-
gate the association between ZBED1 and LC as well as its
relationship with LC prognosis and clinicopathological fea-
tures. According to our findings, low ZBED1 expression is
related to a decreased risk of LC. CCT6A, KYNU, and
SLC2A1 were shown to be high-risk genes for LC prognosis,
while CD19 and ZBED1 were found to be low-risk genes.
This demonstrates the great accuracy and clinical applicabil-
ity of our scoring method, which is consistent with the pre-
vious findings.

There are several limitations to this study. First, all anal-
yses were conducted using data from public sources, and
large-scale prospective studies as well as further in vivo
and in vitro experimental research are needed to corroborate
our findings. Second, although the predictive effect of the
nomogram model developed in this study was more favor-
able (Figure 5(c)). However, as shown in Supplementary
Figure 3 and Figure 5(i), the risk score of lung cancer
patient in this study had a smaller score weight in the
nomogram compared with the classical TNM staging,
which may lead to a smaller predictive power of the risk
score in this study, and the inclusion of more patients may
be needed in the future to assess the weight of the risk
score in the nomogram. Nevertheless, the risk score
established in this study remains an important predictor of
patient prognosis. Furthermore, data on several essential
clinical variables, including surgery, radiation, and
chemotherapy, are not captured in most datasets, which
may have an impact on our study of prognostic factors and
the development of prognostic models. Prospective studies
are also required to improve these findings.

5. Conclusions

Our thorough analysis of CRG showed a complex regulatory
system by which they influence the tumor-immune-stromal
microenvironment, clinical and pathological characteristics,
and prognosis. We also investigated CRG’s therapeutic
potential in targeted treatment and immunotherapy. These
findings emphasize CRG’s critical therapeutic relevance

and offer fresh ideas for steering individualized immuno-
therapy efforts for LC patients.
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