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Background. Esophageal cancer (EC) is a common malignant tumor of the digestive system with high mortality and morbidity.
Current evidence suggests that immune cells and molecules regulate the initiation and progression of EC. Accordingly, it is
necessary to identify immune-related genes (IRGs) affecting the biological behaviors and microenvironmental characteristics of
EC. Methods. Bioinformatics methods, including differential expression analysis, Cox regression, and immune infiltration
prediction, were conducted using R software to analyze the Gene Expression Omnibus (GEO) dataset. The Cancer Genome
Atlas (TCGA) cohort was used to validate the prognostic signature. Patients were stratified into high- and low-risk groups for
further analyses, including functional enrichment, immune infiltration, checkpoint relevance, clinicopathological characteristics,
and therapeutic sensitivity analyses. Results. A prognostic signature was established based on 21 IRGs (S100A7, S100A7A,
LCN1, CR2, STAT4, GAST, ANGPTL5, TRAV39, F2RL2, PGLYRP3, KLRD1, TRIM36, PDGFA, SLPI, PCSK2, APLN,
TICAM1, ITPR3, MAPK9, GATA4, and PLAU). Compared with high-risk patients, better overall survival rates and
clinicopathological characteristics were found in low-risk patients. The areas under the curve of the two cohorts were 0.885
and 0.718, respectively. Higher proportions of resting CD4+ memory T lymphocytes, M2 macrophages, and resting dendritic
cells and lower proportions of follicular helper T lymphocytes, plasma cells, and neutrophils were found in the high-risk
tumors. Moreover, the high-risk group showed higher expression of CD44 and TNFSF4, lower expression of PDCD1 and
CD40, and higher TIDE scores, suggesting they may respond poorly to immunotherapy. High-risk patients responded better to
chemotherapeutic agents such as docetaxel, doxorubicin, and gemcitabine. Furthermore, IRGs associated with tumor
progression, including PDGFA, ITPR3, SLPI, TICAM1, and GATA4, were identified. Conclusion. Our immune-related
signature yielded reliable value in evaluating the prognosis, microenvironmental characteristics, and therapeutic sensitivity of
EC and may help with the precise treatment of this patient population.

1. Introduction

According to statistics from 2020, esophageal cancer (EC)
has the seventh-highest morbidity and sixth-highest mortal-
ity among all cancers [1]. Although surgical resection
remains a mainstay of curative treatment for esophageal

cancer, the overall survival of patients is still not satisfactory
[2]. Therefore, it is imperative to identify new therapeutic
and prognostic targets.

In recent years, immunotherapy has gained plenty of
attention and is regarded as a promising treatment. Immu-
notherapy focuses on activating the sufficient response of
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the body and killing tumor cells by the immune system
[3]. Immune checkpoint blockade (ICB) therapy is one
of the most promising aspects of immunotherapy, which
has been used to treat lung cancer, malignant melanoma,
etc. [4, 5]. An increasing body of evidence suggests that
ICB drugs, such as nivolumab and pembrolizumab, are
optimal second-line treatment strategies for esophageal cancer
[6–8]. Nonetheless, only a small proportion of patients can be
effectively responsive and benefit from current immunotherapy
[9]. The role of the tumor microenvironment (TME) cannot be
ignored since multiple microenvironment components, such as
immune cells and stromal cells and their signals, reportedly
influence the efficacy of immunotherapy. For example, tumor-
associated macrophages (TAMs) and regulatory T cells (Tregs)
are involved in shaping the suppressive immune microenviron-
ment, which in turn promotes tumor immune evasion and
immunotherapeutic resistance [10–12]. The potential of eosin-
ophils as therapeutic targets for cancer has also been revealed,
with their proven direct or indirect interactions with tumor cells
and other lymphocytes [13]. Therefore, researchers seek to fully
exploit the prognostic value and therapeutic potential of
immune cells and immune-related molecules. For instance,
Xu et al. screened the molecules most associated with eosino-
phils using a weighted correlation network analysis (WGCNA)
and comprehensively investigated the value of this signature in
indicating prognosis and therapeutic preference in bladder
urothelial cancer [14]. And, immune-related biomarkers have
been reported for the prediction of survival risk and clinical
response in patients with liver, breast, and colon cancers
[15–17]. Accordingly, it is necessary to determine the character-
istics of the immune microenvironment of EC and find reliable
prognostic indicators to provide new ideas for individualized
immunotherapy.

In this study, an immune-related signature that could
be used for the prognosis assessment of patients with EC
was established and validated using two independent
cohorts obtained from public databases. Overall survival
outcomes, clinical stage, immune microenvironment, and
therapeutic sensitivity differed significantly between high-
and low-risk patients classified by this immune-related
signature. Moreover, five hub IRGs associated with the
progression of EC and their relevance to immune cell
infiltration were identified. The immune-related signature
yielded a reliable prognostic performance, providing the
foothold for individualized therapy of patients with EC.

2. Materials and Methods

2.1. Data Sources. We obtained the microarray profiling
dataset GSE53624 from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), which
includes data from 119 pairs of EC tissues and matching
nontumor tissues and their corresponding clinical data.
The list of IRGs was obtained from the Immunology Data-
base and Analysis Portal (ImmPort) database [18]. The val-
idation cohort of EC was downloaded from The Cancer
Genome Atlas database (TCGA, https://portal.gdc.cancer
.gov). After excluding patients lacking clinical information
or with inadequate follow-up time (less than 180 days),

111 patients from the GEO cohort and 99 patients from
the TCGA cohort were finally included in the study.

2.2. Identification of Differentially Expressed Prognostic IRGs.
“Limma” (R software package) was used to identify the
differentially expressed genes and IRGs [19]. The cutoff
values applied were as follows: adj. P value <0.05 and
log 2 jFCj > 1. Volcano plots and heatmaps were generated
to visualize the expression of DEGs using the R packages
“ggplot2” and “pheatmap.” For functional analysis, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were con-
ducted using the R package “clusterProfiler” [20, 21]. After
merging the expression data with corresponding clinical
information, prognosis-related IRGs were obtained by per-
forming univariate and multivariate Cox regression
analyses.

2.3. Establishment of the Prognostic Risk Signature. The
prognostic signature of the patient cohort was constructed
according to risk scores calculated using this formula:

Risk score = 〠
n

i=1
coef IRGið Þ ∗ expr IRGið Þ: ð1Þ

The “coef ðIRGiÞ” represents the regression coefficient of
the IRG, which was obtained from Cox analysis. The
“expr ðIRGiÞ” is the expression level of prognosis-related
IRG [22]. Using this risk signature, patients were stratified
into two groups (low- and high-risk groups) with the
median value of the risk scores as the cutoff.

2.4. Prognostic Performance Evaluation of the Immune-
Related Signature. To evaluate the reliability and the predic-
tive effect of the signature, Kaplan-Meier (K-M) analysis was
adopted to assess the survival status using the R package
“Survival.” The ROC curve was generated to assess the accu-
racy of the signature using “survivalROC.” The indepen-
dence of the risk signature from other clinical variables
was assessed by univariate and multivariate independent
prognostic analyses. To dissect the correlation of the
immune-related signature with clinicopathological charac-
teristics, the AJCC (American Joint Committee on Cancer)
tumor stage of patients in different risk groups was analyzed
and compared.

2.5. Construction of the Predictive Nomogram. To predict the
1-, 3-, and 5-year overall survival of patients more quantita-
tively, we included clinical factors with independent prog-
nostic effects along with risk scores to construct the
nomogram using the “rms” package.

2.6. Gene Set Enrichment Analysis (GSEA). To distinguish
the functional phenotypes between groups, GSEA was con-
ducted [23]. The “gmt” files for KEGG and GO gene sets
were downloaded from the GSEA website (http://www
.gsea-msigdb.org/). The top 5 enriched terms or pathways
in each group were selected and visualized.
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2.7. Correlation of the Signature with Tumor Immune
Microenvironment. Immune infiltration between groups
with different risks was analyzed by running the algorithm
“CIBERSORT,” which could show the abundance of 22 dif-
ferent types of immune cells distributed in each sample
[24]. Correlations between the risk score and the abundance
of immune cells were investigated. We further explored the
difference in checkpoint expression between the two risk
groups and the correlation of risk scores with the expression
of immune checkpoints using the R package “corrplot.” In
addition, patients were grouped according to differential
immune checkpoint expression and risk scores to further
demonstrate survival differences.

2.8. Exploration of IRGs Associated with Tumor Progression.
The expression of IRGs in different clinicopathological sub-
groups was also shown to discover IRGs associated with
tumor progression. And, we used the Tumor IMmune Esti-
mation Resource (TIMER) database, an online tool for ana-
lyzing tumor-infiltrating immune cells based on TCGA
datasets, to visualize the effect of key IRG expression and
its copy number variation (CNV) on 6 tumor-infiltrating
immune cell types [25]. The copy number variation data of
ESCA samples were retrieved from the UCSC Xena database
(http://xena.ucsc.edu/). The “RCircos” package was applied
to visualize the figure [26].

2.9. Therapeutic Response Prediction. The Tumor Immune
Dysfunction and Exclusion (TIDE) scores were adopted to
quantify the potential benefit of immunotherapy, and lower
TIDE scores are associated with a better response to immu-
notherapy [27]. Moreover, eight chemotherapeutic drugs
(docetaxel, doxorubicin, gemcitabine, imatinib, sorafenib,
roscovitine, lenalidomide, and rapamycin) were selected for
the chemotherapeutic response prediction. Half-maximal
inhibitory concentration (IC50) of these drugs was calcu-
lated by “pRRophetic” to compare the differences between
risk groups [28, 29].

2.10. Statistical Analysis.We used R software, a practical tool
that contains multiple packages, to perform statistical analy-
sis. Student’s t-test or Wilcoxon’s test was applied to evalu-
ate between-group comparisons of continuous variables.
Group comparisons of categorical variables were performed
using χ2 or Fisher’s exact tests. P < 0:05 was regarded as sta-
tistically significant if not specifically stated. After the statis-
tical analysis, multiple R packages, including “ggplot2,”
“ggpubr,” “pheatmap,” “survival,” and “ggExtra” were used
to visualize the results.

3. Results

3.1. Identification of Differentially Expressed IRGs (DEIRGs)
and Prognosis-Related IRGs. We obtained 4059 differentially
expressed genes (DEGs) in EC tissues compared to nontu-
mor tissues. The intersection of DEGs with immune-
related genes yielded differentially expressed immune-
related genes (DEIRGs) consisting of 150 upregulated
and 209 downregulated genes (Figures 1(a) and 1(b)).
Then, the GO and KEGG pathway enrichment analyses

were conducted. Significant GO modules, including molec-
ular function (MF), biological processes (BP), and cellular
components (CC), are shown in Figures 1(c)–1(e). The
receptor-ligand activity, the regulation of immune effector
response, and the external side of the plasma membrane
were the top enriched terms in MF, BP, and CC, respec-
tively (Figures 1(c)–1(e)). Moreover, cytokine-cytokine
receptor interactions and other inflammatory processes
were the most significantly enriched KEGG pathways
(Figure 1(f)).

Based on 359 DEIRGs, we performed univariate and
multivariate Cox regression analyses to screen IRGs associ-
ated with survival outcomes. Then, a list of 21 prognosis-
related DEIRGs for subsequent signature construction was
obtained (Table 1).

3.2. Construction and Verification of the Prognostic
Signature. Twenty-one prognostic IRGs and their coefficients
were screened and calculated for subsequent signature con-
struction. The individual risk scores were determined using
the formula: Risk score = ð0:2107 × S100A7 levelÞ − ð0:2760
× S100A7A levelÞ + ð0:5854 × LCN1 levelÞ − ð0:3311 × CR2
levelÞ + ð1:0717 × STAT1 levelÞ − ð0:3989 × GAST levelÞ + ð
0:4201 × ANGPTL5 levelÞ − ð1:4978 × TRAV39 levelÞ + ð
0:7696 × F2RL2 levelÞ + ð0:3421 × PGLYRP3 levelÞ − ð
0:8977 × KLRD1 levelÞ + ð0:7635 × TRIM36 levelÞ − ð
0:5720 × PDGFA levelÞ − ð0:4375 × SLPI levelÞ + ð0:3789 ×
PCSK2Þ + ð0:3202 × APLN levelÞ − ð1:2788 × TICAM1 levelÞ
+ ð0:7387 × ITPR3 levelÞ + ð1:0494 ×MAPK9 levelÞ + ð
0:4076 × GATA4 levelÞ + ð0:8366 × PLAU levelÞ.

High-risk and low-risk groups of patients were then
determined based on the median risk score (Figures 2(a)
and 2(b)). Figure 2(c) shows the survival status of patients
in the GEO cohort, while the survival status of patients
TCGA cohort was shown in Figure 2(d). The differential
expression of prognostic genes between groups was shown
in heatmaps (Figures 2(e) and 2(f)). As time went on, the
survival rate of high-risk patients in the GEO cohort
(Figure 3(a)) and the TCGA cohort (Figure 3(b)) was
markedly lower than that of the low-risk patients
(P < 0:001).

3.3. Evaluation of the Signature and Construction of the
Predictive Nomogram. To assess the predictive efficacy of
the immune-related signature, time-dependent ROC curves
and multi-indicator ROC curves were plotted. We then
calculated the AUC of the ROC curve of the GEO cohort
(0.885) and the TCGA cohort (0.718) (Figures 3(c) and
3(d)). The 1-, 3- and 5-year ROC curves also indicated a
satisfactory performance of the signature (Figures 3(e)
and 3(f)). As indicated by the Cox regression analyses
(Figures 3(g) and 3(h)), the risk score could act as an
independent prognostic factor (HR = 1:066, 95% CI
1.056–1.116, P < 0:001). Overall, these results indicated
the reliability of our risk signature for suggesting patient
prognosis. Therefore, a nomogram was constructed incor-
porating the risk score and another independent prognos-
tic factor, tumor stage (Figure 3(i)).
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3.4. Gene Set Enrichment Analysis (GSEA).Moreover, GSEA
showed that genes were significantly enriched in GO
terms such as external encapsulation structure organiza-
tion and cell-substrate function in the high-risk group
(Figure 4(a)). Significantly enriched pathways in high-

risk patients included adherens junction, pathways in
cancer, and TGF-β signaling pathways (Figure 4(c)). In
low-risk patients, B cell-mediated immunity, activation
of immune response, and B cell receptor signaling were
significantly enriched, suggesting a stronger correlation
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Figure 1: Identification of DEIRGs and functional enrichment analysis. Heatmap (a) and volcano map (b) of DEIRGs. The blue-to-red
spectrum in the heatmap indicates the low to high expression of genes. In the volcano map, upregulated genes and downregulated genes
are indicated by red and blue dots, respectively. Significant GO terms of molecular function (c), biological processes (d), and cellular
components (e). (f) The top 8 enriched KEGG pathways.
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between the risk signature and immune bioprocess, espe-
cially B cell immunity (Figures 4(b) and 4(d)).

3.5. Characteristics of Tumor Immune Microenvironment.
Next, we sought to explore the immune infiltration in
tumors with different risks via analysis of immune cell sub-
type abundance by CIBERSORT (Figure 5(a)). The fraction
of subtypes showed significant differences between groups,
including follicular helper T cells, CD4+ memory resting T
cells, M2 macrophages, neutrophils, resting dendritic cells,
and plasma cells (Figure 5(b)). The infiltration of M2 macro-
phages and CD4+ memory resting T cells positively corre-
lated with the risk scores (Figures 5(c) and 5(d)). The
infiltration of follicular helper T cells and plasma cells corre-
lated negatively with the risk scores (Figures 5(c) and 5(d)).

Immune checkpoints play essential roles in regulating
the immune response and TME. Accordingly, we assessed
the correlation between the risk score and the expression
of 22 common immune checkpoint molecules; TNFRSF4,
PDCD1, PDCD1LG2, HAVCR2, CTLA4, and CD40
strongly correlated with the risk score (Figure 6(a)). Four
checkpoints, TNFSF4, PDCD1, CD40, and CD44, were dif-
ferentially expressed between groups (Figure 6(b)). In the
high-risk group, the expression levels of CD44 (P < 0:05)
and TNFSF4 (P < 0:01) were higher. In contrast, the expres-
sion levels of CD40 and PDCD1 were downregulated
(P < 0:05). With increased risk scores, the expression levels
of TNFSF4 and CD44 were upregulated (Figures 6(c) and
6(d)). Lower levels of CD40 and PDCD1 were associated
with higher risk scores (Figures 6(e) and 6(f)).

We also explored the effect of risk scores and check-
point expression on patient survival. Patients with higher
expression of TNFSF4 (P = 0:001) or CD44 (P = 0:002)
had poor survival (Figures 6(g) and 6(i)). Among high-
risk patients, high TNFSF4 or CD44 was associated with
the worst overall survival, while low-risk patients with
low TNFSF4 or CD44 experienced the best survival
(P < 0:001; Figures 6(h) and 6(j)). On the contrary, higher
expression of CD40 or PDCD1 correlated with a favorable
survival (P < 0:001; Figures 6(k) and 6(m)). We also found
that low-risk patients with elevated expression of CD40 or
PDCD1 experienced the best overall survival (P < 0:001;
Figures 6(l) and 6(n)).

3.6. Clinical Relevance of the Signature and Exploration of
IRGs Associated with Tumor Progression. The correlation
between risk scores and clinicopathological parameters
(i.e., age, gender, tumor grade, and TNM stage) was ana-
lyzed. The differences in tumor stage (P = 0:041) and N-
stage (P = 0:014) in different groups were statistically signif-
icant (Figures 7(a) and 7(b)).

In addition, the gene expression levels of patients with
different clinicopathological features were compared. With
increased clinical grade, stage, and N-stage of the tumor,
ITPR3 expression decreased (P < 0:05, Figures 7(c)–7(e)).
In contrast, no significant difference in ITPR3 expression
in patients with different T stages was observed
(Figure 7(f)). Expression levels of SLP1 and TICAM1 also
decreased with advanced clinical grade and tumor stage
(P < 0:05, Figures 7(g)–7(j)). Notably, the expression of

Table 1: Prognosis-related IRGs.

ID Full name HR P value

S100A7 S100 calcium binding protein A7 0.906290 0.020418

S100A7A S100 calcium binding protein A7A 0.918288 0.048764

LCN1 Lipocalin 1 1.594471 0.006260

CR2 Complement C3d receptor 2 0.809305 0.025273

STAT4 Signal transducer and activator of transcription 4 0.637901 0.006343

GAST Gastrin 0.795518 0.048965

ANGPTL5 Angiopoietin like 5 1.510337 0.029443

TRAV39 T cell receptor alpha variable 39 0.548446 0.001660

F2RL2 Coagulation factor II thrombin receptor like 2 1.513455 0.000262

PGLYRP3 Peptidoglycan recognition protein 3 0.834100 0.004133

KLRD1 Killer cell lectin like receptor D1 0.505434 0.005050

TRIM36 Tripartite motif containing 36 0.658894 0.033293

PDGFA Platelet derived growth factor subunit A 1.387502 0.048138

SLPI Secretory leukocyte peptidase inhibitor 0.835041 0.012096

PCSK2 Proprotein convertase subtilisin/kexin type 2 1.297815 0.034134

APLN Apelin 1.264952 0.043527

TICAM1 TIR domain containing adaptor molecule 1 0.621796 0.010537

ITPR3 Inositol 1,4,5-trisphosphate receptor type 3 0.560138 0.004937

MAPK9 Mitogen-activated protein kinase 9 3.783973 0.014732

GATA4 GATA binding protein 4 0.839807 0.047590

PLAU Plasminogen activator, urokinase 1.529887 0.003680
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PDGFA in groups with advanced clinical stage and T stage
was higher than those with moderate-stage disease
(P < 0:05, Figures 7(k) and 7(l)). In addition, the decrease

of GATA4 expression with more advanced disease stage
and T stage of the tumor was statistically significant
(P < 0:05, Figures 7(m) and 7(n)).
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Figure 3: Continued.
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Correlation analysis between 5 IRGs associated with
tumor progression and 6 types of immune cells in EC
was conducted using the online tool TIMER. The expres-
sion of ITPR3 and SLPI had a positive and negative corre-
lation with tumor purity, respectively (Figures 8(a) and
8(b)). Moreover, the expression of SLPI and TICAM1
showed negative correlations with B cell and macrophage
infiltrations (Figures 8(b) and 8(c)). We also observed a
negative correlation between the SLPI expression and
CD4+ T cell infiltration and a positive correlation between
the TICAM1 expression and dendritic cell (DC) infiltra-
tion (Figures 8(b) and 8(c)). Unlike SLPI and TICAM1,
PDGFA was positively associated with the proportion of
macrophages (Figure 8(d)). Apart from B cells, GATA4
expression exhibited a positive correlation with the infiltra-
tion of CD8+ T cells and a negative correlation with den-
dritic cell infiltration, respectively (Figure 8(e)).

In addition, we investigated the effect of copy number
variation in these progression-related IRGs on immune
cell infiltration. CNV information was available for 20
of these 21 prognostic IRGs (Figure 9(a)). The circus plot
shows the chromosomal localization and CNV of these
IRGs (Figure 9(b)). We found that copies of 4 key IRGs
(PDGFA, GATA4, ITPR3, and SLPI) were predominantly
increased, while the copy number deletion of TICAM1
was more significant (Figure 9(a)). The arm-level gain

copies of ITPR3 could influence the infiltration of den-
dritic cells (Figure 9(c)). The CNV of SLPI could influ-
ence the infiltration of B cells, CD8+ T cells, CD4+ T
cells, and macrophages (Figure 9(d)). The arm-level
CNV of TICAM1 and PDGFA could significantly influ-
ence dendritic cell and CD4+ T cell infiltration
(Figures 9(e) and 9(f)). The deep deletion of GATA4
copies could affect B cell, CD8+ T cell, and dendritic cell
infiltration (Figure 9(g)).

3.7. Therapeutic Response Prediction. To assess the clinical
application of this signature, we further evaluated the dif-
ferential response to immunotherapy and chemotherapy
in patients with different risks. High-risk patients had
higher CAF (Cancer-associated fibroblast) scores, immune
exclusion scores, and TIDE scores, suggesting that they
were less likely to benefit from immunotherapy than
low-risk patients (Figures 10(b)–10(d)). However, there
was no difference in CD8+ T cell scores between the
two groups, which is consistent to some extent with the
results of CIBERSORT (Figure 10(a)). The results of che-
motherapeutic effect prediction showed that high-risk
patients had lower IC50 scores for docetaxel, doxorubicin,
gemcitabine, imatinib, and sorafenib, meaning they were
more sensitive to them (Figures 10(e)–10(i)). In contrast,
the low-risk group showed higher sensitivity to
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Figure 3: Evaluating the prognostic signature. (a, b) Kaplan–Meier analysis of the two cohorts showed that high-risk patients exhibited a
shorter overall survival time (P < 0:001). ROC curves of the signature in the GEO (c, e) and TCGA cohorts (d, f). (g, h) The signature
was an independent indicator of patient prognosis. (i) The prognostic nomogram for predicting survival outcomes.
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roscovitine, lenalidomide, and rapamycin (Figures 10(j)–
10(l)). These data suggested that high-risk patients exhib-
ited poorer overall survival outcomes and derived limited
benefit from immunotherapy. Interestingly, this patient
population was more likely to benefit from conventional
chemotherapeutic agents such as docetaxel, doxorubicin,
and gemcitabine.

4. Discussion

Esophageal cancer is a common gastrointestinal tumor with
a high degree of malignancy. Immunotherapy is widely
thought to have great clinical potential, given its ability to
activate the body’s immune response [30]. However, immu-
notherapy has been associated with a low response rate, with
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only a small percentage of patients exhibiting good immune
response and therapeutic effects [31]. The immune cells,
such as tumor-infiltrating macrophages, Treg cells, and cyto-
toxic T cells, regulate the biological behaviors of the tumor
and then influence the effect of immunotherapy [32]. There-
fore, it is necessary to develop a reliable prognostic signature
emphasizing immune-related genes and explore the immune
microenvironment characteristics to provide novel insights
for individualized immunotherapy of EC patients.

In this research, we introduced a risk-scoring system
based on 21 immune-related genes to predict the prognosis
of patients with EC. The differentially expressed IRGs were
mainly enriched in GO terms such as receptor-ligand activ-
ity, regulation of immune effector process, and KEGG path-
ways such as cytokine interaction and inflammatory
signaling processes, showing that immune-related processes
and molecules were active in EC. Forty-eight DEIRGs were
associated with patient prognosis, 21 of which (S100A7,
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Figure 5: Immune cell infiltration. (a) Immune cell infiltration status in tumors. (b) The difference in tumor-infiltrating immune cells
between groups. (c) Correlation of the risk scores with immune cell infiltration. In the heatmap, the blue-to-red spectrum indicates
negative to positive correlation. (d) Scatter plots showed the correlation of risk scores with four different immune cell subtypes. ∗P < 0:05
; ∗∗P < 0:01.
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Figure 6: Continued.
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S100A7A, LCN1, CR2, STAT4, GAST, ANGPTL5, TRAV39,
F2RL2, PGLYRP3, KLRD1, TRIM36, PDGFA, SLPI, PCSK2,
APLN, TICAM1, ITPR3, MAPK9, GATA4, and PLAU)
were further screened to establish the risk signature. Worse
survival outcomes and clinicopathological features were
found in high-risk patients, indicating the reliable perfor-
mance of the prognostic signature. Moreover, this immune
signature was an independent prognosis indicator. The
adherens junction and TGF-β signaling pathways were sig-
nificantly enriched in the high-risk group. In contrast, B
cell-mediated immunity and immune activation pathways
were enriched in the low-risk group.

We analyzed the characteristics of the tumor microenvi-
ronment in patients with different risks. The fractions of
CD4+ memory resting T lymphocytes and M2 macrophages
were significantly higher in the high-risk patients and posi-
tively correlated with the risk scores. Memory CD4+ T cells
play essential roles in rapid immune responses when reexpo-
sure to one specific antigen occurs [33]. Lu et al. reported
that the proportion of CD4+ memory resting T cells
increased in EC tissues compared to normal tissues [34].
According to the prognostic model of EC and head and neck
squamous cell carcinoma (HNSCC) established by other
researchers, tumors in high-risk patients were characterized
by a higher proportion of CD4+ memory resting T lympho-
cytes [35, 36]. Researchers also found that in non-small cell
lung cancer, EGFR-mutant and ALK-rearranged tumors
responded poorly to anti-PD-1/PD-L1 treatment and exhib-
ited higher infiltrations of CD4+ memory resting T cells [37].
An increasing body of evidence suggests that tumor-
infiltrating M2 macrophage is a suppressive macrophage
phenotype in TME, which could induce angiogenesis, sup-
press the immune response, and affect the efficacy of immu-
notherapy [11, 38]. It has also been shown that higher M2
macrophage infiltration is associated with unfavorable sur-
vival in EC patients [39]. Accordingly, we hypothesized that
low-risk patients could respond better to ICB therapy.

T follicular helper (Tfh) cells may play important roles in
supporting B cells, recruiting CD8+ T cells and natural kill-
ing (NK) to facilitate antitumor immunity [40]. Current evi-
dence suggests that Tfh cells produce IL-21, crucial for B cell
activation and tumor-infiltrating CD8+ T cell effector func-
tion, enhancing antitumor immunity and ICB response
[41, 42]. A higher percentage of follicular helper T lympho-
cytes were present in normal esophagus tissues compared to
ESCC tissues [34]. Tumor-infiltrating plasma cells in esoph-
ageal cancer correlated with positive regulation of adaptive
immunity, antitumor activity, and favorable survival [43].
In this study, we found that the proportion of Tfh cells
and plasma cells negatively correlated with risk scores, sug-
gesting that low-risk patients with a higher abundance of
tumor-infiltrating Tfh cells may be more responsive to ICB
therapy.

High-risk patients showed higher expression of
TNFSF4 and CD44 and lower expression of CD40 and
PDCD1. A negative correlation between risk scores and
PDCD1 expression was observed. These four molecules
have been reported as targets for immunotherapy [6, 44,
45]. TNFSF4, a member of the tumor necrosis factor
ligand family, also known as OX40L, was found to be
closely associated with antitumor immunity [46]. Its com-
bination with OX40 could regulate T cell proliferation,
activation, and cytokine production [47]. Overwhelming
evidence indicates that CD44 could regulate tumor biolog-
ical characteristics such as initiation, metastasis, and drug
resistance [48]. Through downregulation of the Fas-FasL
pathway via CD44, cancer cells can reportedly escape the
killing of cytotoxic T lymphocytes (CTLs) [49]. Further-
more, it has been shown that CD44+ tumor-infiltrating
cells could selectively express PD-L1 to evade immune sur-
veillance compared with CD44- cells [50]. CD40, one of
the most important stimulatory immune checkpoints,
plays an essential role in activating innate and adaptive
immune responses [51]. Using CD40 agonists to enhance
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Figure 6: Immune checkpoint expression. (a) Correlation of risk scores with the expression of 22 immune checkpoints. (b) Differential
immune checkpoints between groups. (c–f) Scatter plots show the correlation of risk scores with the expression of TNFSF4 (c), CD44
(d), CD40 (e), and PDCD1 (f). Survival analysis based on the signature combined with the expression of TNFSF4 (g, h), CD44 (i, j),
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the CD40-mediated stimulatory signal, activate APCs and
other immune cells, and then enhance antitumor immu-
nity has been proven effective against different malignan-
cies [52–55]. In this study, increased expression of CD44
and TNFSF4 and decreased expression of CD40 and
PDCD1 were found in patients with higher risk scores.

After analysis of IRG expression characteristics in
patients with different clinical features, we mainly focused
on 5 IRGs (ITPR3, PDGFA, SLPI, TICAM1, and GATA4)
that were associated with the grade, stage, and lymph node
metastasis of the tumor, implying that they may exert
important roles in EC progression. Downregulation of
IP3R3 (inositol 1,4,5-trisphosphate receptor type 3) has
been proposed to be oncogenic by promoting proapoptotic
mitochondrial Ca2+ transfer in breast and prostate cancer

[56, 57]. Moreover, the high ITPR3 expression in lung
cancer was associated with a better prognosis [58]. In
our study, ITPR3 expression declined with a more
advanced tumor grade and stage. A positive correlation
of ITPR3 expression with tumor purity was observed.

SLPI, known as a secretory leukocyte protease inhibi-
tor, is a serine protease inhibitor and its biological func-
tions include inducing cell proliferation/differentiation
and anti-inflammatory, antiviral, and antibacterial func-
tions. There is a rich literature available substantiating that
SLPI is overexpressed in diverse cancers, including gastric
cancer, ovarian cancer, and pancreatic cancer [59–61].
However, SLPI exhibits low expression in head and neck
squamous cell carcinoma compared to other carcinomas
and is associated with a better prognosis [62]. In this
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study, moderate or early-stage tumors exhibited higher
expression of SLPI, similar to the results found in HNSCC.
Interestingly, researchers found that genetically modified
tumor cells with SLPI overexpressing did not exhibit
tumorigenesis in immunocompetent mice and may act as
a vaccine that partially restrains tumor growth and stimu-
late the adaptive immune response [63].

GATA4 is a zinc finger transcription factor that belongs
to the GATA family. It can regulate specific gene transcrip-
tion upon binding to GATA elements. Previous studies indi-
cated that GATA4 might act as a putative tumor suppressor
gene. Growing evidence suggests the presence of methyla-
tion in GATA4 gene promoter regions in gastric, esophageal,
and ovarian cancers [64–66]. Interestingly, GATA4
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Figure 8: Correlation of IRG expression with the abundance of tumor-infiltrating immune cells. (a) ITPR3; (b) SLPI; (c) TICAM1; (d)
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Figure 9: Continued.
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overexpression showed antitumor effects, with inhibited
colorectal cancer cell proliferation, migration, and invasion
in vitro [67]. In our study, higher expression of GATA4
was observed in early-stage EC. Moreover, the expression
of GATA4 positively correlated with CD8+ T cell and B cell
infiltrations in EC.

Platelet-derived growth factor subunit A (PDGFA), a
member of the platelet-derived growth factor (PDGFs) fam-
ily, plays an essential role in regulating angiogenesis, cell
proliferation, migration, and differentiation by binding to
PDGFα- or β-receptors [68]. Moreover, high expression of
PDGFs has been associated with poor prognosis and tumor
progression in oral squamous cell carcinoma, liver cancer,
and colorectal cancer [69–71]. Han et al. reported that a high
level of PDGFA was strongly associated with advanced T
stage and poor survival of EC patients, consistent with our
findings [72]. In addition, our study showed a positive corre-
lation between PDGFA expression and tumor-infiltrating
macrophages.

TICAM1 (Toll-interleukin 1 receptor domain (TIR)-
containing adaptor molecule) is an adaptor molecule in
TLR3-dependent induction of interferon-β. TICAM1 and
its signaling pathway involve biological processes such as
activating antitumor NK (natural killer cell), CTL induction,
and DC maturation [73]. The TLR3/TICAM1 pathway has
been reported to inhibit polyposis by suppressing the c-
Myc expression, leading to longer mice survival [74]. In
the present study, we found that the expression of TICAM1
in advanced tumors was lower than in low-grade tumors.
The expression of TICAM1 was negatively correlated with
tumor-infiltrating macrophages and B cells and positively
correlated with DC infiltration. The TLR3-TICAM1-IRF3-
IFN-β axis activated by a TLR3-specific agonist in DCs has
been reported to participate in CD8+ T cell cross-priming
and relieve innate resistance to ICB therapy without cyto-
kine toxicity [75].

The prognostic and functional regulatory value of other
IRGs of this signature in esophageal cancer has also been
investigated. For example, TRIM36 expression has been
reported to correlate with the size, stage, lymph node metas-
tasis, and β-catenin expression of esophageal cancer [76].
Overexpression of TRIM36 inhibited ESCC growth and pro-
moted apoptosis [77]. The proproliferative role of F2RL2 in
EC has also been reported [78]. Dysregulation of the miR-
204-5p/APLN axis was involved in mediating malignant
behaviors such as proliferation, invasion, and stemness in
EC [79]. Fang et al. found that tumor-derived PLAU facili-
tated the inflammatory phenotype conversion of CAFs (can-
cer-associated fibroblasts), while IL-8 secreted by CAFs
promoted PLAU expression in tumor cells, forming a loop
to promote ESCC progression [80].

Herein, we also explored differences in predictive
responses to immunotherapy and chemotherapy between
groups. Of note, high-risk patients exhibited a poor progno-
sis but showed higher sensitivity to chemotherapeutic drugs
such as docetaxel, doxorubicin, gemcitabine, imatinib, and
sorafenib, meaning that high-risk patients may benefit from
conventional chemotherapy. In contrast, according to the
TIDE results, low-risk patients responded better to ICB
treatments. Taken together, these results allow us to specu-
late that high-risk patients may be more suitable for conven-
tional chemotherapy regimens, while low-risk patients can
respond better to immunotherapy.

In summary, we developed a reliable prognostic signa-
ture emphasizing immune-related genes, which could effec-
tively and independently predict the overall survival of EC
patients. The clinical characteristics, the proportion of
tumor-infiltrating immune cells, immune checkpoint
expression, and sensitivity to chemotherapy and immuno-
therapy varied between different risk groups. Additionally,
five IRGs (ITPR3, SLPI, GATA4, TICAM1, and PDGFA)
associated with clinical features and immune cell
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Figure 9: Copy number variations of IRGs. (a, b) Copy number variation and chromosomal position of IRGs in the signature. (c–g) Effect of
copy number variation of five key IRGs on immune cell infiltration; (c) ITPR3; (d) SLPI; (e) TICAM1; (f) PDGFA; (g) GATA4. ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001.
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infiltrations were identified, suggesting their potential as
therapeutic targets. However, there are also limitations in
our study. Firstly, this was a nonexperimental study that
relied heavily on bioinformatics, thus its conclusions need

to be validated by subsequent experiments. In addition, the
mechanisms by which these IRGs affect the tumor microen-
vironment and antitumor immunity are still not fully clari-
fied and need further elucidation.
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Figure 10: Therapeutic sensitivity analyses. TIDE results revealed differences in CD8+ T cell scores (a), CAF scores (b), T cell exclusion
scores (c), and TIDE scores (d) between the two groups. High-risk patients sustained a better response to docetaxel (e), doxorubicin (f),
gemcitabine (g), imatinib (h), and sorafenib (i). Low-risk patients experienced better responses to roscovitine (j), lenalidomide (k), and
rapamycin (l). ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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