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Background. Erythronium japonicum Decne (Liliaceae) is an early spring ephemeral with an underground initial floral
differentiation stage. The flowering mechanism is crucial in ornamental plants due to the associated economic value. Therefore,
this study is aimed at exploring the metabolic landscape during floral differentiation, including flower primordium, perianth,
stamen, and the pistil differentiation period, in E. japonicum coupled with a conjoint analysis of the metabolome and
transcriptome. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 586 metabolites from
13 major metabolite classes. Comparative metabolomics between different floral developmental stages revealed several
abundant metabolites during the respective phases. Upaccumulation of p-coumaroylputrescine, scopoletin, isorhoifolin,
cosmosiin, genistin, and LysoPC 15 : 0 emphasized the significance of these compounds during flower development.
Furthermore, previously identified DEGs, viz., EARLY FLOWERING 3, Flowering locus K, PHD finger-containing protein, and
zinc finger SWIM domain-containing protein for floral differentiation, depicted a high correlation with lipid, flavonoid, and
phenolics accumulation during floral developmental stages. Conclusions. Together, the results improve our interpretation of the
underground floral development in E. japonicum.

1. Introduction

Erythronium japonicum, native to Asia, is an early spring
ephemeral recently domesticated for its commercial use [1,
2]. Northeast China, Japan, and Korea are considered the
geographic origin of E. japonicum [1, 3]. The reproductive
phase in E. japonicum starts underground without vernaliza-
tion and photoperiod [2]. Flower bud initiation usually starts
before dormancy induction in ephemerals plants and con-
tinues afterward [4]. Several studies provided significant
insights into the growth cycle, propagation, morphological
attributes, and environmental impacts in E. japonicum [1,
5–9]. However, there is an apparent gap in research address-
ing the regulatory basis of underground floral differentiation
in E. japonicum.

Floral organ development is critical for ornamental plants
to meet commercial requirements [10, 11]. During the past

few decades, floriculture industry has been expanded with
the inclusion of wildflowers and their domestication for com-
mercial use [12]. Aside from commercial use, flower develop-
ment is also critical for plant ecology and evolution [13, 14].
The role of metabolites in pigmentation has been attributed
to the variable accumulation of flavonoids, carotenoids, beta-
lains, and chlorophylls [15]. However, metabolic changes
associated with active compounds during the floral develop-
mental stage have not been studied well. Metabolomics regu-
lated downstream of genomics and proteomics in system
biology provides tools for identifying differentially accumu-
lated metabolites during a specific developmental stage [16].
Several reports suggested distinct metabolic profiles associated
with each genotype [17, 18]. Furthermore, differential accu-
mulation of metabolites between different growth stages
coupled with transcriptome can provide potential insights into
the developmental process.
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The shift from vegetative to reproductive stage com-
prised a set of fine-tuned processes regulated through devel-
opmental signals and environmental cues such as light and
temperature [19]. The flowering originates from floral pri-
mordium followed by stamens and pistil differentiation
which are the critical phases in flowers development [20].
Therefore, understanding the regulatory mechanisms under-
lying stage-specific differentiation is essential. Floral differ-
entiation has gained much attention in plant species. For
instance, Jatropha curcas [20], Brassica napus [21], Camellia
sinensis [22], Populus [23], Dianthus caryophyllus [24],
Litsea cubeba [25], Rosa chinensis [26], Lilium [27], and
Juglans regia [28] have been well studied for molecular
mechanisms underlying reproduction phase. Previous statis-
tics suggested the regulatory role of anthocyanins, gibberellic
acid, flavonoids, vernalization, and developmental pathways
during floral differentiation [29–31]. Florigen, encoding a
conserved protein FLOWERING LOCUS T, is a systematic
switch for flowering control [32]. Moreover, FT regulation
is mediated by GIGANTEA–CONSTANS–FT complex under
strict photoperiod sensitivity [22, 32]. The complex regula-
tory network of flowering is activated by external variables,
such as day length and humidity. The environmental
variables play a crucial during floral differentiation [33].
However, an overlap between flowering and dormancy regu-
lation pathways complicates understanding specific regula-
tory pathways [33]. Studies have reported simultaneous
reduced expression of FL and FRIGIDA during vernalization
[34, 35]. Understanding the overlap between flowering and
dormancy can provide mechanistic insight into flowering
regulation during dormancy period.

In this study, we profiled the metabolome and tran-
scriptome of E. japonicum at four floral development stages
(flower primordium differentiation, perianth differentiation,
stamen differentiation, and the pistil differentiation period)
to understand the molecular changes underlying the under-
ground floral differentiation.

2. Materials and Methods

2.1. Plant Material and Sampling. The study area includes
the Tuodaoling region in Northeast China, with a high
occurrence of Erythronium japonicum Decne (Liliaceae)
populations. Plant samples were collected to the protocol
described in our previous study [36]. Samples were collected
in three replicates at four different stages, including flower
primordium differentiation, perianth differentiation, stamen
differentiation, and the pistil differentiation period. Cryopre-
served samples were used for further downstream analysis fol-
lowing the methods of Wang et al. [36] and Gao et al. [37].

2.2. UPLC-MS/MS Analysis. E. japonicum floral differentiation
was characterized using the widely targeted metabolomics
approach with ultraperformance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS performed by
Metware, Wuhan, China). A series of procedures for metab-
olite extraction, identification, and quantification were carried
out at Wuhan Metware Biotechnology Co., Ltd (https://
www.metware.cn), following the company’s standard proce-

dures [38, 39]. Cryo-preserved samples were weighed and
extracted with 1.0ml of 70% methanol at 4°C. Extracts were
analyzed using liquid chromatography mass-spectrometry/
M.S. analysis (LC-MS/MS, UPLC, Shim-pack UFLC SHI-
MADZU CBM30A system; MS, Applied Biosystems 6500
QTRAP). All metabolites were identified and quantified by
Metware’s own metabolite database and public metabolite
database. Differential accumulation of metabolites (DAMs)
between samples was identified using orthogonal partial
least squares discriminant analysis. Metabolites with jLog
2 Foldchangej ≥ 1 and VIP ðvariable importance in projectÞ
≥ 1 were defined as DAMs.

2.3. Quality Check. Quality check for multistage metabolome
was performed according to Fiehn et al. [40]. Descriptive
statistics for each dataset were obtained using Analyst 1.6.3
software (AB Sciex, Ontario, ON, Canada). Moreover, vari-
ability of datasets was estimated using principal component
analysis (PCA) and Pearson correlation coefficient (PCC)
with prcomp within R (http://www.r-project.org/).

2.4. Identification of Differential Metabolites. Differentially
accumulated metabolites (DAMs) between four flower
development stages were assessed by exploring the variable
importance in projection (VIP) values greater than 1 with
Log2 fold change (FC) also greater than 1. Data were trans-
formed to Log2FC, and then Orthogonal Projections to
Latent Structures-Discriminant Analysis (OPLS-DA) and
mean centering were performed. Variable importance in
projection (VIP) scores were extracted from OPLS-DA
results, with 200 permutations, using R software with Meta-
boAnalystR package.

2.5. Conjoint Analysis of Metabolome and Transcriptome.
Metabolome and transcriptome (unpublished and available
at PRJNA730644) of four floral differentiation stages were
utilized to perform conjoint analysis. Principal component
analysis (PCA), KEGG annotation, nine-quadrant, and Pear-
son correlation analysis between DEGs and DAMs were
performed.

3. Results

3.1. Metabolic Profiling.Metabolites are generally considered
as the bridge between molecular mechanisms and pheno-
type. Therefore, to understand the molecular characteristics
underlying flowering in E. japonicum, we performed system-
atic metabolic profiling based on widely targeted metabolo-
mics (UPLC-MS/MS) at four floral differentiation stages,
including flower primordium differentiation (Az), perianth
differentiation (Bz), stamen differentiation (Cz), and the pis-
til differentiation period (Dz). The quality was confirmed by
monitoring the instrument’s accuracy following quality-
control measures, as formerly described by Fiehn et al.
[40]. Superimposed display analysis of mass spectrometry
total ion current (TIC) and extracted-ion chromatogram
(XIC) of samples which were run at a different time
(Figure S1). The overlapped TIC suggested the stability of
the instrument as a quality check.
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We identified 586 metabolites (Table S1 and Figure 1) and
further categorized these metabolites based on their primary
structures into thirteen major classes (Figure 1(b)), including
lipids (19.97%), organic acids (13.31%), phenolics (13.31%),
amino acids and derivatives (12.29%), flavonoids (8.19%),
alkaloids (7.51%), nucleotides and derivatives (6.14%),
terpenoids (2.22%), lignans and coumarins (2.05%), steroids
(1.88%), tannins (0.51%), quinones (0.51%), and others
(12.97%). Complete annotation information concerning
identified metabolites has been listed in Table S1.

The results were further verified using PCC and PCA for
all the samples (Figures 1(c) and 1(d)). A strong correlation
within replicates of each sample was observed, conferring
the consistency of metabolome datasets used in the study.
Metabolome from different tissues depicted a relatively weak
correlation between different samples. Moreover, a scatter
plot based on the first two PCs clustered samples into four
groups consisting of replicates from each sample. PCA

results, depicting 58.41 variations with PC1 (37.75%) and
PC2 (20.66%), also verified the reliability of the metabolome
dataset.

We compared the metabolic profiles to clarify the differ-
entially regulated metabolite accumulation between four
floral developmental stages (Figure 2). The comparative
metabolic profile suggested differential regulation of metab-
olites between different developmental stages. One hundred
sixty-two metabolites were found with differential regulation
between primordium differentiation (Az) and perianth
differentiation (Bz). Among 160 DAMs, 119 were upaccu-
mulated, and 41 depicted downaccumulation (Table S2).
Similarly, 162 (34D and 128U), 137 (29D and 108U), 84
(40D and 44U), 70 (42D and 28U), and 57 (41D and
16U) DAMs resulted from the comparison of primordium
differentiation (Az) vs. stamen differentiation (Cz),
primordium differentiation (Az) vs. pistil differentiation
period (Dz), perianth differentiation (Bz) vs. stamen
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Figure 1: Metabolome quality control and description. (a) Pictorial description of E. japonicum plant. (b) Proportion of major identified
metabolite classes. (c) Correlation matrix for metabolites identified in flower primordium differentiation (Az), perianth differentiation
(Bz), stamen differentiation (Cz), and the pistil differentiation period (Dz). While mix sample was used as a quality check. (d) Principal
component analysis for metabolites identified at flower primordium differentiation (Az), perianth differentiation (Bz), stamen
differentiation (Cz), and the pistil differentiation period (Dz) in E. japonicum.
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differentiation (Cz), perianth differentiation (Bz) vs. pistil
differentiation period (Dz), and stamen differentiation (Cz)
vs. pistil differentiation period (Dz), respectively
(Figure 2(b), Table S3-S7). The results suggested a
significantly higher number of DAMs when the primordium
differentiation stage was compared with later stages.
However, the number of DAMs reduced when later stages
were compared. Furthermore, we identified 100 conserved
DAMs when the flower primordium differentiation (Az)
stage was compared with perianth differentiation (Bz),
stamen differentiation (Cz), and the pistil differentiation
period (Dz). KEGG enrichment analysis showed that these
pathways are related to the cellular differentiation and
transition from vegetative to reproductive stage, suggesting a
significant role of DAMs in floral differentiation concerning
E. japonicum.

To further understand the differential metabolic landscape
at the floral developmental stages, we identified the top 10
metabolites for each extreme (upaccumulated and downac-
cumulated metabolites; Figure 3, Table S2). Primordium
differentiation (Az) and perianth differentiation (Bz) (Az vs.
Bz) depicted upaccumulation of p-coumaroylputrescine,
apigenin-5-O-glucoside4-aminoindole, scopoletin, isorhoifolin,
cosmosiin, genistin, apigenin-7-O-(6”-p-coumaryl)glucoside,
2,5-dihydroxybenzaldehyde, and LysoPC 15 : 0 at perianth
differentiation stage. While 1-(sn-glycero-3-phospho)-
1D-myo-inositol, 2,4,2’,4’-tetrahydroxy-3’-prenylchalcone,
cinnamic acid, L-asparagine, N-acetyl-L-glutamic acid,
syringic acid, 1-O-caffeoylglycerol, dihydrocharcone-4’-O-
glucoside, 2,3-dihydroxybenzoic acid, and protocatechuic
acid were downaccumulated at the perianth differentiation
stage. Significant enriched KEGG pathways associated with
these metabolites included purine metabolism and
phenylpropanoid biosynthesis (Figure S2), suggesting
significance of these pathways in the early floral
differentiation stages.

Comparison of primordium differentiation (Az) and
stamen differentiation (Cz) identified kaempferol-3-O-(6”-
malonyl)galactoside, isorhamnetin-3-O-rutinoside (narcis-
sin), L-cysteinyl-L-glycine, 1-O-feruloyl-3-O-caffeoylgly-

cerol, N-acetyl-L-tryptophan, cinnamic acid, glutathione
reduced form, sarcaglaboside A, cholesterol, and succinylade-
nosine as significantly upaccumulated at stamen differentia-
tion stage (Figure 3(b)). Similarly, a comparison of
primordium differentiation (Az) and pistil differentiation
(Dz) suggested significant upaccumulation of p-coumar-
oylputrescine, 2,3,5,4’-tetrahydroxystilbene-2-O-glucoside,
4-aminoindole, LysoPC 15 : 0, 2,5-dihydroxybenzaldehyde,
apigenin-5-O-glucoside, N-feruloylagmatine, apigenin-7-
O-(6”-p-coumaryl)glucoside, apigenin-7-O-rutinoside (iso-
rhoifolin), and 1-methoxyphaseollin (Figure 3(c)). KEGG
enrichment analysis for the identified DAMs suggested
an association with purine metabolism, phenylalanine
metabolism, propanoate metabolism, and photosynthesis
(Figure S3). Comparisons of later stages (Bz vs. Cz
(Figure 3(d)), Bz vs. Dz (Figure 3(e)), and Cz vs. Dz
(Figure 3(f))) showed significant differential regulation of
flavonoids, lignans, coumarins, phenolics, and alkaloids.
KEGG enrichment analysis illustrated a significant
association of DAMs with phenylalanine biosynthesis,
glutathione biosynthesis, and glucosinolate biosynthesis.

3.2. Conjoint Analysis of Metabolome and Transcriptome.
Metabolome data sets of E. japonicum were further exploited
using conjoint analysis of metabolic and transcriptomic
profiles of multistage floral development, including flower
primordium differentiation (AZ), perianth differentiation
(BZ), stamen differentiation (CZ), and the pistil differentia-
tion period (DZ). The transcriptome data sets used in this
study resulted in the identification of 9,383, 6,979, 16,758,
9,522, 7,387, and 12,502 DEGs in Az vs. Bz, Az vs. Cz, Az
vs. Dz, Bz vs. Cz, Bz vs. Dz, and Cz vs. Dz, respectively
[36]. Furthermore, 48, 33, 59, 42, 34, and 54 DEGs were
identified related to floral differentiation in Az vs. Bz, Az
vs. Cz, Az vs. Dz, Bz vs. Cz, Bz vs. Dz, and Cz vs. Dz, respec-
tively. To further confirm the relationship between tran-
scriptome and metabolome of respective tissue, conjoint
analysis was performed. The KEGG enrichment analysis
for all DEGs and DAMs was performed for each
comparison.

Az vs. Bz
(160)

Bz vs. Cz
(84)

Cz vs. Dz
(57)

Bz vs. Dz
(70)

Az vs. Dz
(137)

5

5

5
8 6

11

11

9
3

17 4 0

20

2
2

0
0

0
0

0

0
2

2

2

2

2

22
4

635

6

3

3
15

16

8

3

3

3

3
6

0

0

0

0
0

0
0

0

0
0

00

11

1

1

1 1
1

1

(a)

150

100

50

0

Az v
s. B

z

Az v
s. C

z

Az v
s. D

z

Bz v
s. C

z

Bz v
s. D

z

Cz v
s. D

z

Down-accumulated
Up-accumulated

(b)

Figure 2: Comparative metabolic profile. (a) Venn diagram representing shared DAMs between different groups. (b) Number of DAMs as
upaccumulated and downaccumulated between different floral development stages including flower primordium differentiation (Az),
perianth differentiation (Bz), stamen differentiation (Cz), and the pistil differentiation period (Dz) in E. japonicum.
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As presented in Figure 4, comparative transcriptome and
metabolome between flower primordium differentiation
(AZ) and perianth differentiation (BZ) stage suggested
KEGG enrichment of DEGs and DAMs in multiple regu-
latory pathways, including flavonoid biosynthesis, photo-
synthesis, and lipid metabolism (Figure 4(a)). The PCC
for DAMs and DEGs was calculated using R and PCC
with values higher than 0.8 are presented as a nine-
quadrant diagram (Figure 4(b)). Quadrants 3 and 7 repre-

sented the DEGs and DAMs with consistent regulation
(positively correlated). In contrast, quadrants 1, 2, 4, 6,
8, and 9 represented DEGs and DAMs with negative cor-
relations. DEGs and DAMs with PCC greater than 0.8 were
selected, and their expression pattern was presented as a
heat map (Figure 4(c)). The clustered heat map depicted
DAMs highly correlated with DEGs into 12 major classes,
with the most abundant classes as flavonoids, lipids, and
phenolics.
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Figure 3: Top fold change (FC) metabolites in comparison of floral developmental stages. (a) Top FC metabolites from flower primordium
differentiation (Az) vs. perianth differentiation (Bz). (b) Top FC metabolites from flower primordium differentiation (Az) vs. stamen
differentiation (Cz). (c) Top FC metabolites from flower primordium differentiation (Az) vs. pistil differentiation period (Dz). (d) Top
FC metabolites from perianth differentiation (Bz) vs. stamen differentiation (Cz). (e) Top FC metabolites from perianth differentiation
(Bz) vs. pistil differentiation period (Dz). (f) Top FC metabolites from stamen differentiation (Cz) vs. pistil differentiation period (Dz).
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Figure 4: Continued.
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Correlation analysis of Cluster-35905.71088; EARLY
FLOWERING 3 (ELF 3) with DAMs identified at the peri-
anth differentiation stage suggested a significantly higher
correlation between ELF 3 and DAMs (Figure 5). Lipids
were among the most abundant metabolite class significantly
correlated with ELF3, suggesting a substantial role of lipids
in flower morphogenesis. All lipids showed a positive corre-
lation with ELF3 except 1-O-caffeoylglycerol and choline
alfoscerate, which showed a significant negative correlation
with ELF 3. Three flavonoids, including apigenin-7-O-(6”-
p-coumaryl)glucoside, apigenin-7-O-rutinoside (isorhoifo-
lin), and apigenin-5-O-glucoside depicted a positive correla-
tion with ELF 3, while dihydrocharcone-4’-O-glucoside was
found with a significant negative correlation. Among 15
phenolics, 13 expressed a positive correlation with ELF 3.
Flowering locus K, cullin-1, PHD finger-containing protein,
and ZSWIM3 (zinc finger SWIM domain-containing
protein 3) also positively correlated with lipid accumulation.

4. Discussion

Flower development is a systematic process under strict
genetic control in higher plants. It can be divided into major

phases: floral induction, meristem formation, and floral
organ development [41]. The complex flowering mechanism
is controlled by highly conserved genes regulating transcrip-
tion factors and their protein products composing a gene
regulatory network (GRN). Flowering-time genes are at the
top of GRN hierarchy and play a crucial role in the develop-
mental shift. Flowering control genes are generally triggered
by external factors such as photoperiod, temperature, and
humidity [42, 43]. However, the initial flowering phase in
E. japonicum starts underground in the absence of light
and vernalization [2]. Therefore, it is valuable to explore
and identify the genetic regulators of floral differentiation
in E. japonicum. The present study aimed at providing a sys-
tematic metabolic insight coupled with a conjoint analysis of
the metabolome and transcriptome at four floral develop-
mental stages in E. japonicum viz., primordium differentia-
tion, perianth differentiation, stamen differentiation, and
pistil differentiation stage.

The results suggested significant differences in metabo-
lite accumulation at different developmental stages identify-
ing 586 differentially accumulated metabolites (DAM). The
specified DAMs were classified into thirteen major classes.
A similar approach has been adapted in multiple species to
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Figure 4: Conjoint analysis of DAMs and DEGs in flower primordium differentiation (Az) vs. perianth differentiation (Bz). (a) KEGG
enrichment for DEGs and DAMs. (b) 9-Quadrant graph representing DAMs and DEGs with correlation (PCC) higher than 0.8. (c)
Heatmap representing DMAs with PCC higher than 0.8.
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utilize omics-approach in identifying regulatory mecha-
nisms of flowering such as Cannabis sativa [44], Lonicera
japonica [45], Brassica juncea [46], Ranunculus glacialis
[47], Chrysanthemum morifolium [48], Chrysanthemum
lavandulifolium [49], Staphisagria Ranunculaceae [50], and
Delphinieae [51].

Flowering time is important in securing seed production
and, therefore, ensuring species survival. In addition to the

gene regulatory network controlling floral differentiation,
there is a significant lack of studies concerning the role of
metabolites during flower development stages. Multistage
metabolome comparison yielded significant variation in
metabolite accumulation. For instance, a comparison of pri-
mordium differentiation (Az) and perianth differentiation
(Bz) stages identified upaccumulation of p-coumaroylputres-
cine, scopoletin, isorhoifolin, cosmosiin, genistin, and LysoPC

ELF3

Floweri
ng lo

cu
s K

 homology 
domain

-lik
e is

oform
 X1

Cullin
-1(

A)

PHD finger
-co

ntai
ning p

rotei
n 1

zin
c fi

nger
 SW

IM
 domain

-co
ntai

ning p
rotei

n 3

p-Coumaroylputrescine
L-Asparagine

Apigenin-7-O-(6''-p-Coumaryl)glucoside
Apigenin-7-O-rutinoside (Isorhoifolin)

Apigenin-5-O-glucoside
Dihydrocharcone-4'-O-glucoside

Syringaresinol-4'-O-(6''-acetyl)glucoside
1-Methoxyphaseollin

LysoPC 19:2(2n isomer)
LysoPE 18:2
LysoPC 18:4

LysoPE 18:2(2n isomer)
LysoPC 20:1
LysoPE 18:3

LysoPE 20:2(2n isomer)
LysoPC 17:2
LysoPC 18:2

LysoPE 18:3(2n isomer)
LysoPC 19:2

LysoPC 18:2(2n isomer)
LysoPE 20:4
LysoPC 15:0

1-Linoleoylglycerol-2,3-di-O-glucoside
LysoPC 16:1(2n isomer)

LysoPC 19:0
1-Linoleoylglycerol-3-O-glucoside

LysoPE 16:1(2n isomer)
2-Linoleoylglycerol-1-O-glucoside

LysoPC 16:2(2n isomer)
LysoPC 16:1

2-Linoleoylglycerol-1,3-di-O-glucoside
LysoPC 18:3

2-α-Linolenoyl-glycerol-1,3-di-O-glucoside
LysoPC 16:2

1-Linoleoyl-sn-glycerol-diglucoside
LysoPC 19:1
LysoPC 20:3

LysoPC 16:0(2n isomer)
LysoPC 17:1
LysoPG 16:0

LysoPC 18:3(2n isomer)
LysoPE 17:1
LysoPE 16:1

2-α-Linolenoyl-glycerol-1-O-glucoside
LysoPE 18:1(2n isomer)
LysoPC 15:0(2n isomer)

1-α-Linolenoyl-glycerol-3-O-glucoside
LysoPC 18:1(2n isomer)
LysoPC 18:0(2n isomer)

1-Oleoyl-Sn-Glycerol
1-α-Linolenoyl-glycerol-2,3-di-O-glucoside

1-O-Caffeoylglycerol
Choline Alfoscerate

2-(Dimethylamino)guanosine
Adenosine 5'-diphosphate

3-Methylmalic acid
2-Hydroxyglutaric Acid

L-Tartaric acid
2-Hydroxy-3-phenylpropanoic acid

Succinic anhydride
2,3-Dihydroxybenzoic Acid

γ-Aminobutyric acid
Succinic acid

Aminomalonic acid
Methylmalonic acid

Benzyl-(2''-O-xylosyl)glucoside
Benzyl-(2''-O-glucosyl)glucoside

Di-O-Glucosylquinic acid
Sinapinaldehyde

2,5-Dihydroxybenzaldehyde
1-O-Feruloyl-3-O-p-Coumaroylglycerol

Methyl ferulate
1-O-Sinapoyl-D-glucose

2,6-Dimethoxybenzaldehyde
1,3-O-Di-p-Coumaroylglycerol

1,2-O-Diferuloylglycerol
1,3-O-Diferuloylglycerol

Salicin
Protocatechuic acid-4-O-glucoside

1-O-Gentisoyl-D-glucoside
30-Norhederagenin

2α-Hydroxyursolic acid
Betulin

3-O-(2-O-Acetyl-glucosyl)oleanolic acid

–0.5

0

0.5

Figure 5: Correlation of five selected DEGs with DAMs identified from comparison Az vs. Bz.

8 BioMed Research International



15 : 0. p-Coumaroylputrescine has been previously identified
with a substantial role during flower development in tobacco
[52–54]. Scopoletin plays a significant role in physiological
activities [55]. Therefore upaccumulation of scopoletin and
its glycosides during the perianth differentiation suggested a
considerable role of scopoletin in transition from primordium
differentiation to perianth differentiation. Although cosmo-
siin, genistin, and LysoPC 15 : 0 have been identified at the
flowering stage in multiple species, their roles during the floral
differentiation stages are still unknown. Furthermore, gene
ontology annotation for the DMAs during the perianth differ-
entiation stage suggested enrichment of purine metabolism
and phenylpropanoid biosynthesis. The phenylpropanoid bio-
synthetic pathway is crucial for flavonoid pigments synthesis
during flower development [56, 57].

A multifaceted gene regulatory network constituting a
hierarchy of coordinated gene functions is crucial for flower
development. Most of the genes involved in the floral gene
regulatory network encode transcription factors, such as
MADS-domain, LEAFY- (LFY-) like, and APETALA2-
(AP2-) like proteins [41]. Transcriptome analysis of four flo-
ral differentiation stages of E. japonicum suggested a differ-
ential expression of ELF3 and FT, cullin 1, GLP1, and
CONSTANS [36]. We performed the conjoint analysis of
metabolome and transcriptome to understand the coregula-
tion of DEGs and DAMs. ELF3 expression was significantly
correlated with lipids and flavonoids. The ELF3 gene, also
known as the clock gene, regulates the evening complex
(EC) with ELF4 and LUX leading to flowering [58, 59]. Fur-
thermore, Deng et al. characterized CONSTANS gene-
regulating lipid biosynthesis during flower development in
Chlamydomonas reinhardtii [60]. Flowering locus K, cullin-
1, PHD finger-containing protein, and ZSWIM3 (zinc finger
SWIM domain-containing protein 3) also depicted a positive
correlation with lipid accumulation. Further molecular char-
acterization of identified DEGs and DAMs can yield poten-
tial insights into gene regulatory network of flowering and
metabolite regulation during floral development.

In sum, this study utilized the metabolome and tran-
scriptome of E. japonicum at four underground flower devel-
opmental stages. Comparative metabolomics suggested a
differential accumulation of 586 metabolites during floral
differentiation. The identified DAMs were further narrowed
down based on their accumulation pattern. A conjoint anal-
ysis of metabolome and transcriptome yielded insight into
coregulation of DEGs and DAMs, suggesting a close link
between regulation of flowering-related genes and metabo-
lite accumulation. Further molecular insights can potentially
highlight the role of metabolites during floral differentiation
in E. japonicum.
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