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Background. Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function,
and the lack of diagnostic biomarkers makes community-based screening problematic. Methods. Three gene expression profiles
related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database.
Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential
expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as
the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO)
analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic
biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and
evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. Results. We screened out
107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO
analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis
revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway,
insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers
(ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation
AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. Conclusion. We
identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and
progression of sarcopenia in future research.

1. Introduction

The increasing growth of the aging population has caused
much discussion about the impact of aging on public health.
Sarcopenia is a common chronic disease with a significant
decrease in skeletal muscle mass due to an imbalance
between protein synthesis and protein degradation, resulting
in a tremendous public health burden. Sarcopenia was
defined by Rosenberg in 1989 as a loss of muscle mass,
derived from the Greek words Sarx (meat) and Penia (loss),
after comparing lean mass in the thighs of an older and

younger woman [1]. Although sarcopenia is not a direct
cause of death, it can have a pronounced impact on the qual-
ity of life in older adults. Loss of skeletal muscle function is
an inevitable event in the normal aging process, increasing
the risk of adverse outcomes, such as falls, fractures, physical
disability, and death [2]. A recent survey found that the
prevalence of sarcopenia was 11% and 9%, respectively,
among men and women living in the community, but as
high as 51% and 31% in nursing homes [3]. Although the
incidence of sarcopenia is high, researchers have begun to
realize its importance in recent years. In 2016, sarcopenia
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was listed as a unique disease in the International Classifica-
tion of Diseases 10, with the code M62.84, according to the
10th edition of the International Statistical Classification of
Diseases and Related Health Problems [4].

The pathogenesis of sarcopenia has not been
completely clarified, and the mechanism is relatively com-
plex. The balance between skeletal muscle protein synthe-
sis and breakdown can be influenced by age, gender,
exercise, and nutritional status [5]. In addition, a variety
of factors are known to be involved in the pathogenesis
of sarcopenia, such as systemic inflammation, excess glu-
cocorticoids, abnormally increased mitochondria, motor
neuron loss associated with accelerated aging, excessive
apoptosis, and decreased satellite cell activity [6]. However,
the molecular mechanisms of these factors in the develop-
ment and progression of sarcopenia remain unclear.
Although sarcopenia was identified as a new disease state
in 2016, the current lack of a functional “gold standard”
for sarcopenia diagnosis was not conducive to early
screening and prevention of the disease problems in the
community. Currently, various methods, including dual-
energy X-ray absorptiometry (DEXA), bioelectrical imped-
ance analysis (BIA), magnetic resonance imaging (MRI),
and computed tomography (CT), are used to assess skele-
tal muscle mass. Unfortunately, there is no consensus on
the optimal measurement of skeletal muscle mass, espe-
cially clinically. Besides, the Foundation for the National
Institutes of Health (FNIH) Sarcopenia Project proposed
new criteria for defining sarcopenia in terms of muscle
mass, strength, and performance [7].

An in-depth study of molecular pathology can better
understand the skeletal muscle aging process and contribute
to the early diagnosis and prevention of sarcopenia.
Recently, microarray technology has been widely used for
robust genetic engineering to identify potential novel bio-
markers and their roles in various diseases, leading to the
further development of potential therapeutics. Zhang and
Horvath codeveloped the technique of weighted gene coex-
pression network analysis (WGCNA) in 2005 [8]. WGCNA
can be used not only to construct coexpression networks
based on coding RNA data to associate gene modules with
clinical features for identifying critical genes but also to con-
struct noncoding RNA networks. By analyzing tens of thou-
sands of genes, WGCNA can cluster genes into coexpression
modules according to correlations among their expression
pattern and identify gene modules related to the clinical
characteristics of samples. Therefore, we utilized differential
expression analysis and WGCNA to find key genes associ-
ated with sarcopenia, which would help to elucidate the
molecular mechanism of aging-induced sarcopenia. More-
over, the diagnostic biomarkers in the key genes were
selected using the least absolute shrinkage and selection
operator (LASSO). LASSO, applied to pick out predictor
candidates, is a valuable approach for reducing and selecting
high-dimensional data [9]. Our research is aimed at identify-
ing the hub genes and functional enrichment pathways
responsible for the development and progression of sarcope-
nia and determining effective biomarkers and therapeutic
targets for sarcopenia.

2. Materials and Methods

2.1. Research Design. In order to obtain a larger sample size,
three microarray expression datasets were merged and batch
corrected, and differentially expressed genes (DEGs)
between the normal group and sarcopenia group in the
merged dataset were identified. Meanwhile, we performed
WGCNA on the merged dataset to obtain a coexpression
gene module associated with clinical characteristics. The
intersection between the DEGs and the genes in the coex-
pression gene module was defined as common genes
(CGs). Then, we performed functional enrichment analysis
and protein-protein interaction (PPI) network to explore
the role of CGs in the pathogenesis of sarcopenia. Besides,
15 hub genes were identified using LASSO logistic regres-
sion, and their diagnostic performance was assessed by
receiver operating characteristic (ROC) analysis. Subse-
quently, a novel diagnostic nomogram model based on the
hub genes with the area under the curve (AUC) values
exceeding 0.9 was constructed to screen and predict sarcope-
nia. Finally, ROC analysis was used to further assess and val-
idate the prediction capability of the hub genes and the
nomogram model in external-validation datasets.

2.2. Data Acquisition and Preprocessing. Firstly, four micro-
array expression datasets (GSE38718, GSE8479, GSE9103,
and GSE28422) and one RNA sequencing dataset
(GSE111016) from the National Center for Biotechnology
Information Gene Expression Omnibus database (NCBI-
GEO; https://www.ncbi.nlm.nih.gov/geo/) were obtained
with the keywords “sarcopenia”. GSE38718 consisted of
eight sarcopenia samples and fourteen normal samples;
GSE8479 consisted of 51 skeletal muscle tissue samples,
including 25 sarcopenic samples and 26 normal samples;
GSE9103 consisted of 20 skeletal muscle tissue samples of
ten patients with sarcopenia and ten normal samples. A total
of 12 sarcopenic samples and 15 normal samples were
included in GSE28422; GSE111016 consisted of 20 sarcope-
nia samples and 20 normal samples (see Table 1 for details).
Secondly, three of the GEO datasets (GSE38718, GSE8479,
and GSE9103) were merged into one gene expression matrix
file as the training dataset, which was batch normalized by
using the “sva” package of the R software [10]. Finally, a nor-
malized gene expression matrix file was obtained for differ-
ential gene expression analysis and weighted gene
correlation network analysis. Additionally, GSE28422 and
GSE111016 served as the validation datasets to test the diag-
nostic performance of hub genes and the nomogram model.

2.3. DEG Analysis. The merged dataset consisted of 50 nor-
mal samples (24 males and 26 females) and 43 senile sarco-
penia samples (21 males and 22 females). Besides, all muscle
biopsy samples were obtained from the vastus lateralis mus-
cle. The “limma” package of the R software was used to ana-
lyze DEGs in the merged dataset [11]. In this study, genes
that met double filtering criteria were considered DEGs:
absolute log 2 − fold change > 0:5 and Benjamini-Hochberg
false discovery rate (FDR), adjusted P value ≤ 0.05. The
DEGs were visualized using the R packages “ggplot2” and
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“pheatmap” [12, 13] to generate volcano distribution maps
and heatmaps, respectively.

2.4. WGCNA Construction and Module Identification.
WGCNA builds gene coexpression networks by correlating
gene expression levels with clinical features and is widely
used to study potential interactions between genes. The
study applied the R package “WGCNA” [8] to construct a
coexpression network between sarcopenia and normal sam-
ples. First, genes exceeding 25% intersample variation in the
merged dataset were imported into the WGCNA package.
We removed outlier samples from the training dataset to
obtain accurate and reliable results. Then, an adjacency
value was calculated by using the pick-Soft-Threshold func-
tion, which preserved soft-threshold power based on coex-
pression similarity. Subsequently, adjacency values were
converted to topological overlap matrices (TOM), and the
corresponding dissimilarity (1-TOM) was figured out.
Third, the topological overlap matrix was hierarchically clus-
tered using the average algorithm, and the gene modules
were detected using dynamic tree cutting. Fourth, we limited
the minimum number of genes per module to 50 and
merged strongly correlated modules with a threshold of 0.4
to obtain correlated modules. Next, the correlations between
genes and clinical features in each module were determined
by calculating gene significance and module membership
(MM). In the end, the distinct gene network was visualized.
Meanwhile, the intersection of the DEGs and the genes from
the module most significantly correlated with clinical fea-
tures was defined as CGs.

2.5. Functional Enrichment Analysis. To further reveal the
characteristic biological properties of CGs, we used the
“clusterProfiler” package in R software [14] and Metascape
(http://metascape.org) to perform functional enrichment
analysis, including gene ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis. GO terms were grouped into major categories, includ-
ing molecular function (MF), biological process (BP), and
cellular component (CC). Terms with the corrected thresh-
old of P < 0:05 were considered significantly enriched by
CGs. Multiseries chord graphs for the top ten GO terms of
CGs were created using the “ggplot2” and “GOplot” pack-
ages in R [15]. Bubble and bar charts were generated using
the “ggplot2” and “clusterProfiler” packages of R to visualize
the KEGG enrichment analysis of CGs.

2.6. LASSO Regression Analysis and Assessment of the ROC
Curve. As a machine learning technique, LASSO regression
analysis was used to identify a variable by detecting the opti-
mal λ value with the lowest classification error. LASSO anal-
ysis was performed to screen the CGs using the R package
“glmnet” [16] with a response type of binomial and an alpha
of 1. Then, the hub genes of sarcopenia were identified using
LASSO regression analysis, and 10-fold cross-validation was
applied to choose the optimal value of penalty parameter λ.
Moreover, ROC curves were plotted for hub genes of sarco-
penia by using the “pROC” package of R [17]. The diagnos-
tic power of the hub genes was evaluated by the AUC of the
ROC curve. AUC values lower than 0.7 were defined as the
discriminant value of the difference; AUC values of 0.7 to
0.8 were the lower limit of accuracy; AUC values of 0.8 to
0.9 indicated excellent discrimination. The hub genes with
the AUC values exceeding 0.9 were considered as diagnostic
biomarkers of sarcopenia due of their outstanding discrimi-
nation. The optimal cut-off point for this ratio was chosen
based on the Youden index and the confidence interval esti-
mated at its 95% confidence limit (CI).

2.7. Verification of Diagnostic Biomarkers. To judge the
accuracy of the diagnostic biomarkers, we used an external
dataset (GSE28422) as a testing dataset to validate the diag-
nostic and predictive performance. The ROC curve of
GSE28422 was generated using the “pROC” package of R,
and the AUC and 95% CI were used to validate the model
efficiency. Furthermore, the Wilcoxon rank-sum test was
used to compare the differences in the gene expression level
of diagnostic biomarkers between sarcopenia and normal
muscle samples. Ultimately, a violin plot was generated for
visualization by the “vioplot” package in R.

2.8. Evaluation and Verification of the Nomogram Model.
Based on the selected diagnostic biomarkers of sarcopenia,
a novel diagnostic nomogram model was constructed using
the R package “rms” to predict the prevalence of sarcopenia
patients. ROC curve of the model on the training dataset and
the RNA sequencing dataset (GSE111016) were drawn by
using the “pROC” package of R to calculate the AUC for
judging the accuracy of the model.

2.9. Statistical Analysis. All statistical analyses were applied
using R software (R version 4.1.3). The Wilcoxon rank-
sum test compared the differences between sarcopenia and
the normal group. Corresponding 95% CIs were reckoned
with confidence interval estimation, and P < 0:05 was statis-
tically significant.

3. Results

3.1. Screening of DEGs. Using the “limma” package of the R
software, 107 DEGs were screened in a combined dataset of
43 elderly patients with sarcopenia and 50 normal controls.
DEGs included 46 low-expressed genes and 61 highly
expressed genes, including SLPI and MYH8 with log FC >
1. The results of DEGs were visualized in the volcano map
and heatmap (Figure 1). The top five most significantly
upregulated genes were SLPI, MYH8, ADIRF, MT1X, and

Table 1: Source of GEO datasets.

GEO datasets Platform Sarcopenia samples Normal samples

Train group

GSE38718 GPL570 8 14

GSE8479 GPL2700 25 26

GSE9103 GPL570 10 10

Test group

GSE28422 GPL570 12 15

GSE111016 GPL16791 20 20
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LRP1B, while the top five most significantly downregulated
genes were RXRG, GADD45G, SLC38A1, SCN4B, and
KLHL34. The abundance of DEGs have been provided in
the supplementary material (Supplementary Table 1).

3.2. Identification of Sarcopenia-Related Modules and Genes.
First, the genes were sorted based on the variance from large to
minor, and the top 25% of genes were selected for subsequent
analysis. A total of 3859 genes were obtained in the first step.
Second, we clustered the samples using the flashClust module,
and one outlier sample was discovered from our analysis by set-
ting the threshold value to 45 (Figure 2(a)). Third, the power
parameter values ranging from 1 to 20 were filtered out using
the pick-Soft-Threshold function. The soft-threshold power
value of 4 was determined according to the scale-free topology
criterion for network construction (Figure 2(b)). By setting the
threshold to 0.4 to merge similar modules in the hierarchical
cluster tree, 11 gene modules (marked with different colors)
were finally identified (Figure 3(a)).

Coexpression network analysis revealed that the module
eigengenes in the turquoise module (r = −0:81, P = 2e − 22)
exhibited the highest negative correlation with sarcopenia
(Figure 3(b)). Therefore, the turquoise module was defined
as the sarcopenia-related module, and 788 genes in this mod-
ule were defined as sarcopenia-related genes (Figure 3(c)).
After overlapping sarcopenia-related genes and DEGs, 72
genes were selected as CGs of sarcopenia for further analysis.

3.3. Functional Enrichment Analysis and PPI Network of
CGs. GO enrichment analysis of CGs yielded 269 enriched
annotations, including 260 BPs and 9 CCs. The details of 269
enriched annotations are provided in supplementary material

(Supplementary Table 2). The top five most significant GO
terms of BP and CC were shown in the circle and chord plots
(Figures 4(a) and 4(b)). BP analysis revealed that CGs were
mainly enriched in the animal organ regeneration, the
detoxification of copper ions and inorganic compounds, and
stress response to metal ions. Among the CC category, CGs
are mainly involved in mitochondria’s inner and part
membrane, the protein complex in mitochondria and inner
mitochondrial membrane, and myosin filament (see Table 2
for details). We also performed the KEGG pathway
enrichment analysis on CGs. The results showed that CGs
were mainly enriched in the mineral absorption, glucagon
signaling pathway, FoxO signaling pathway, insulin signaling
pathway, AMPK signaling pathway, and estrogen signaling
pathway. The top 11 most significant KEGG pathways
involved by the CGs are shown in Figures 4(c) and 4(d).

3.4. Evaluation of Diagnostic Value of Hub Genes by LASSO
Analysis. The expression profiles of 72 CGs were extracted
for building the LASSO model. As shown in Figure 5(a),
the optimal λ (λ = 15), which produced the minimum classi-
fication errors, was determined in the LASSO model. Based
on the λ value of 15, the LASSO coefficient spectrum of
CGs was screened out (Figure 5(b)). Subsequently, 15 hub
genes with nonzero coefficients were identified, including
FAM171A1, ZNF415, MT1X, C6orf136, GPCPD1, RXRG,
ARHGAP36, SCN4B, HOXB2, ATP1B4, NEDD1, TGFBR3,
MT2A, KLF5, and TXNIP. Moreover, the ROC curves and
AUC values were generated to evaluate the diagnostic per-
formance of 15 hub genes. Finally, six hub genes with
AUC exceeding 0.9, including GPCPD1, MT1X, ARH-
GAP36, FAM171A1, ZNF415, and RXRG, were defined as
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Figure 1: (a) Volcano plot of DEGs. The red dots in the upper right part represent upregulated DEGs. The blue dots in the upper left part
represent downregulated DEGs. The middle black dots represent the remaining stable genes. (b) Heatmap of the top 60 DEGs. The colors
from red to green in the figure represent the expression of DEGs from high to low.
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diagnostic biomarkers of sarcopenia (Figure 6). The specific
information on the diagnostic efficacy of 15 hub genes is
shown in Table 3.

3.5. Validation of the Diagnostic Biomarkers. An external
dataset (GSE28422) was used to validate the six diagnostic bio-
markers to judge whether the biomarkers could distinguish
sarcopenia samples from normal samples. As shown in
Figure 7, we found the AUC values of GPCPD1, MT1X, ARH-
GAP36, FAM171A1, ZNF415, and RXRG on the validation
dataset were 0.928, 0.75, 0.978, 0.961, 0.811, and 0.906, indi-
cating that the six biomarkers had high diagnostic accuracy
for sarcopenia. Besides, to further validate the gene expression
levels of the six diagnostic biomarkers, we performed the dif-

ferential expression analysis in the training and validation
datasets, respectively (Figure 8). Compared to normal sam-
ples, the expression levels of both MT1X and ARHGAP36
were upregulated in sarcopenia samples, while GPCPD1,
FAM171A1, ZNF415, and RXRG showed lower expression
in sarcopenia samples. Consistent with our predictions, the
gene expression differences of the six diagnostic biomarkers
between sarcopenia and normal samples were statistically sig-
nificant, both in the training and validation datasets.

3.6. Construction and Verification of the Diagnostic
Nomogram Model. Based on the six diagnostic biomarkers,
we established a nomogram model to predict the onset of
sarcopenia (Figure 9). The nomogram model predicted an
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Figure 2: (a) Sample cluster analysis was applied to detect outliers. The threshold value was set to 45, removing 1 outlier sample. (b)
Analysis of network topology was used to acquire the scale-free fit index.
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AUC of 1 on the training dataset (Figure 10(a)) and an AUC
of 0.9 on the test dataset (GSE111016) (Figure 10(b)),
indicating that the nomogram model had high classification
performance. The results showed that we successfully
constructed a diagnostic model for sarcopenia from the dif-
ferential gene expression of the six diagnostic biomarkers.

4. Discussion

Loss of muscle mass and function in the elderly is a growing
public health problem with increasing longevity. Therefore,
early prediction and diagnosis of sarcopenia increase the
possibility of intervention. Unluckily, there are no
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internationally accepted criteria for diagnosing sarcopenia.
Hence, searching for potential diagnostic biomarkers is cru-
cial for the early diagnosis and screening of sarcopenia in the
community population. Instead of focusing on the pheno-
typic diagnosis, we used WGCNA and LASSO analysis to
further identify novel diagnostic biomarkers of sarcopenia
that showed significant advantages in gene selection and
classification. To our knowledge, our research is the first
reported in the literature combining WGNCA and LASSO
analysis to identify potential diagnostic biomarkers for
sarcopenia.

In recent years, the availability of gene expression data
in public databases has created new diagnostic and predic-
tive options for sarcopenia. Thus, we performed a compre-
hensive analysis of sarcopenia using various GEO datasets
and applied bioinformatics to obtain potential diagnostic
biomarkers. Firstly, 107 DEGs were identified in the

merged dataset through differential expression analysis.
Among them, the expression levels of SLPI and MYH8
in the sarcopenia group were significantly higher than
those in the normal group (log2 FC > 1). Secretory leuko-
cyte peptidase inhibitor (SLPI), encoded by the SLPI gene,
acts as an inhibitor of nuclear factor-κB (NF-κB), binding
to IL-8 and tumor necrosis factor-α (TNF-α) sites on the
promoter [18]. In recent years, the notion that inflamma-
tion is involved in the pathogenesis of age-related sarcope-
nia has gained increasing acceptance in the scientific
community. The primary effect of inflammation on sarco-
penia is achieved by activating the NF-κB pathway. As the
most potent activator of the NF-κB pathway, TNF-α pro-
motes positive feedback by activating NF-κB, which in
turn induces TNFα and leads to NF-κB-mediated muscle
atrophy [19]. Therefore, the high gene expression of SLPI
in the sarcopenia group might indicate the importance of

Table 2: The top five of each biological process and cellular component by fold enrichment and significance from GO-term analysis of CGs.

ID GO terms Gene symbol involved in the pathway P.adjust

Biological process

GO:0031100 Animal organ regeneration CEBPB/TGFBR3/NNMT/PKM/CDKN1A 4.33E-06

GO:0010273 Detoxification of copper ion MT1X/MT1H/MT2A 1.54E-05

GO:1990169 Stress response to copper ion MT1X/MT1H/MT2A 1.54E-05

GO:0061687 Detoxification of inorganic compound MT1X/MT1H/MT2A 2.29E-05

GO:0097501 Stress response to metal ion MT1X/MT1H/MT2A 2.29E-05

Cellular component

GO:0044455 Mitochondrial membrane part PPIF/APOO/TOMM40L/CISD1/IMMT/NDUFA3/COX7A2 1.13E-05

GO:0005743 Mitochondrial inner membrane PPIF/APOO/CKMT2/COQ10A/IMMT/NDUFA3/COX7A2 0.001005

GO:0098800 Inner mitochondrial membrane protein complex PPIF/APOO/IMMT/NDUFA3 0.001091

GO:0098798 Mitochondrial protein complex PPIF/APOO/TOMM40L/IMMT/NDUFA3 0.001841

GO:0032982 Myosin filament MYH8/MYOM2 0.002441
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inflammation in the pathogenesis of sarcopenia. Increased
expression of myosin heavy chain 8 (MYH8) is a hallmark
of muscle recovery [20]. MYH8, a component of myosin,
is mainly expressed in neonatal skeletal muscle [21]. In
certain pathological conditions, progenitor cells can prolif-
erate and differentiate into muscle cells during skeletal
muscle regeneration but do not develop during fiber mat-
uration [22].

In addition to the difference analysis, we also performed
WGCNA in the merged dataset to select the gene module
that closely corresponded to the occurrence of sarcopenia.
Furthermore, 72 CGs were identified by overlapping the
genes obtained by the WGCNA and differential expression
analysis. BP analysis showed that these CGs were mainly
involved in the stress response and detoxification of metal
ions (especially copper ions). These results led us to
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Figure 6: ROC curves of diagnostic biomarkers with AUC exceeding 0.9 on the training dataset. (a–f) ROC curves for GPCPD1, MT1X,
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Table 3: Evaluation of hub gene diagnostic capabilities.

Gene symbol Sensitivity (%) Specificity (%) AUC 95% CI Youden index

FAM171A1 0.837 0.94 0.929 0.874-0.985 0.777

ZNF415 1 0.66 0.925 0.875-0.974 0.66

MT1X 0.93 0.84 0.932 0.880-0.983 0.77

C6orf136 0.767 0.82 0.83 0.743-0.917 0.587

GPCPD1 0.86 0.84 0.912 0.856-0.968 0.7

RXRG 0.907 0.76 0.92 0.868-0.972 0.667

ARHGAP36 0.791 0.96 0.91 0.851-0.969 0.751

SCN4B 0.814 0.8 0.865 0.793-0.938 0.614

HOXB2 0.837 0.9 0.888 0.812-0.964 0.737

ATP1B4 0.86 0.76 0.87 0.796-0.943 0.62

NEDD1 0.721 0.86 0.833 0.750-0.917 0.581

TGFBR3 0.814 0.72 0.833 0.749-0.918 0.534

MT2A 0.814 0.68 0.799 0.711-0.888 0.494

KLF5 0.791 0.8 0.847 0.765-0.928 0.591

TXNIP 0.674 0.68 0.712 0.608-0.816 0.354
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Figure 7: ROC curves of diagnostic biomarkers on the validation dataset (GSE28422). (a–f) ROC curves for GPCPD1, MT1X, ARHGAP36,
FAM171A1, ZNF415, and RXRG, respectively.
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hypothesize that copper ions may accumulate in the skeletal
muscle cells of sarcopenia patients. Tsvetkov et al. [23] have
found that copper ions are directly bound to fatty acid acylated
components in the tricarboxylic acid cycle, resulting in the
abnormal aggregation of fatty acid acylated proteins and loss
of iron-sulfur cluster proteins. Thence, copper-induced cell
death may be an essential mechanism for developing sarcope-
nia and requires further investigation. On the other hand, CC
analysis revealed that CGs were mainly involved in mitochon-
drial structure and the composition of the mitochondrial-
associated protein complex. It is well-known that mitochon-
dria, as an organelle, have various biological functions in cells.
Given that mitochondria are the most important organelles in
the regulation of energy generation and that skeletal muscle
is the main energy-generating organ of the body, mitochon-
dria are the key organelles for oxidative metabolism in the

skeletal muscle [24]. Therefore, mitochondrial dysfunction
is believed to play a central role in the underlying mecha-
nism behind sarcopenia [25]. Based on the results of CC
analysis in this study, we believed that mitochondrial struc-
ture disruption and impairment of mitochondrial protein
complex synthesis, inducing mitochondrial dysfunction,
might exist in the skeletal muscle of sarcopenia patients.

Through the KEGG pathway enrichment analysis, these
CGs were mainly involved in AMPK and FoxO signaling
pathways closely associated with the pathogenesis of sarco-
penia. AMP-activated protein kinase (AMPK) is an essential
regulator of mitochondrial skeletal muscle function and oxi-
dative stress and is involved in regulating multiple cellular
functions [26]. Activation of AMPK modulates signaling
pathways related to energy metabolism, promotes mito-
chondrial biosynthesis, and improves skeletal muscle

6

FAM171A1

Va
lu

e

8

10

12

ZNF415 MT1X

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

Normal
Sarcopenia

(a)

4

5

GPCPD1

Va
lu

e

6

7

9

8

RXRG ARHGAP36

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

Normal
Sarcopenia

(b)

8

FAM171A1

Va
lu

e

10

12

14

ZNF415 MT1X

⁎⁎⁎

⁎⁎

⁎

Normal
Sarcopenia

(c)

4

6

GPCPD1

8Va
lu

e

10

14

12

RXRG ARHGAP36

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

Normal
Sarcopenia

(d)

Figure 8: Violin plots showed gene expression differences of the six diagnostic biomarkers between normal and sarcopenia groups in the
training dataset (a, b) and validation dataset (c, d). The red box reflected the sarcopenia group, and the green box reflected the normal
group. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.

11BioMed Research International



dysfunction during aging [27]. Therefore, activating the
AMPK pathway may maintain skeletal muscle mass by
affecting mitochondrial biogenesis and mitochondrial struc-
tural protein synthesis. Forkhead box transcription factors
(FoxO) are widely distributed in several eukaryotes, includ-
ing FoxO1 and FoxO3a in the skeletal muscle [28]. FoxO1
and FoxO3a proteins transcriptionally upregulate the
expression of the muscle-enriched E3 ubiquitin ligase associ-
ated with sarcopenia, including muscle RING finger 1 and
muscle atrophy F-box [29].

In this research, 15 CGs were identified as hub genes for
sarcopenia via LASSO analysis (see Table 3). Moreover, six
hub genes with AUC exceeding 0.9, including ARHGAP36,
FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG, were

confirmed as diagnostic biomarkers for sarcopenia. ARH-
GAP36 (RhoGTPase Activating Protein 36) encodes a protein
belonging to the Rho-GAP family and acts as a positive regu-
lator of sonic hedgehog (SHH) signaling by activating Gli pro-
tein [30]. As a critical transcriptional regulator of SHH
signaling, Gli protein directly controls the expression of myo-
genic regulatory factor 5 (Myf5) in muscle progenitors, which
promotes the differentiation of mesoderm cells into distinct
myogenic lineages [31]. We speculated that ARHGAP36
might be involved in skeletal muscle differentiation bymediat-
ing SHH signaling in skeletal muscle progenitor cells.
FAM171A1 (family sequence similarity 171, member protein
A1) is an 890 amino acid glycoprotein expressed in placental
trophoblasts, skeletal muscle, kidneys, and pancreas [32].
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Since FAM171A1 was discovered recently, there is little exist-
ing information about FAM171A1 in the literature. The
research conducted by Rasila et al. [32] was the first to report
the functional properties of FAM171A1 in regulating tumor
cell morphology and aggressive growth potential of tumor
cells by modulating actin cytoskeleton dynamics. Further
investigations are needed to reveal other functional character-
izations of FAM171A1, and the role of FAM171A1 in the
pathogenesis of sarcopenia would be an important future
research direction.

GPCPD1 encodes glycerophosphodiester phosphodiester-
ase 5 (GDE5), a key enzyme in choline phospholipid metabo-
lism, highly expressed in fast skeletal muscle fibers [33].
Hashimoto et al. [34] found that transgenic mice overexpres-
sing GDE5dC471, a truncated mutant of GDE5 without phos-
phodiesterase activity, displayed less skeletal muscle mass than
control mice. However, Okazaki et al. pointed out that GDE5
inhibited skeletal muscle differentiation [35]. In the present
study, we found that the gene expression of GPCPD1 in mus-
cle samples from patients with sarcopenia was significantly
lower than that in normal samples (Figure 8), indicating that
GPCPD1 might have the effect of inhibiting muscle atrophy.
The mechanism by which GPCPD1 regulates skeletal muscle
development requires further investigation. MT1X encodes
metallothionein-1X, a functional (sub)isoform of MT1 [36].
Metallothionein proteins are small, cysteine-rich metal-
binding proteins that play important roles in maintaining cel-
lular homeostasis and detoxifying transition metals [37].
Overexpression of MX1X in aged skeletal muscle suggests that
the presence ofmetal ion overload deposits may be involved in
the development of sarcopenia. Zinc finger protein 415
encoded by ZNF415, a novel protein with p53 inhibitory activ-
ity, was first discovered in the human fetal cDNA library in
2006 [38]. As a central regulator of the cell cycle and apoptosis,
p53 is considered to regulate skeletal muscle homeostasis and
atrophy during aging [39]. Therefore, ZNF415 may reduce
myocyte apoptosis by inhibiting the P53 pathway, thereby
delaying the occurrence and development of muscle atrophy.

Despite many revolutionary discoveries, there are still
some limitations. First, all muscle samples were sourced
from the GEO database. Although we performed external
validation to support the diagnostic efficacy of six identified
diagnostic biomarkers, no proprietary experimental data
were available for validation. Second, the merged dataset
was a combination of three small sample size datasets.
Although the batch effect has been removed, it is still not
the most suitable dataset. Nevertheless, our discovery of pro-
teins encoded by these crucial genes may serve as character-
istic biomarkers and provide specific insights for future
diagnosis and screening of sarcopenia.

5. Conclusion

In this research, six genetic biomarkers closely associated with
sarcopenia, including ARHGAP36, FAM171A1, GPCPD1,
MT1X, ZNF415, and RXRG, were identified by WGNCA
and LASSO analysis, which were used to future diagnose and
screen for sarcopenia.

Data Availability

Data supporting the findings of this research are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest in this work.

Authors’ Contributions

YQF and FJY designed the research and revised the manu-
script. SJL and ML contributed to analysis and drafting the
manuscript. CC, XXC, and FJY participated in data analysis
and interpretation. All authors read and approved the final
manuscript. Shangjin Lin and Ming Ling are co-first authors
of this article.

Acknowledgments

This research work was financially sponsored by the Shang-
hai Municipal Health and Family Planning Commission
(No. 202040297), the National Key Research and Develop-
ment Program of China (No. 2020YFC2008700), Huadong
Hospital Clinical Research Foundation (No. H1308), and
Shanghai Clinical Research Center for Rehabilitation Medi-
cine (No. 21MC1930200).

Supplementary Materials

Table S1: the details of 107 DEGs. Table S2: the details of 269
GO enrichment analysis of CGs. (Supplementary Materials)

References

[1] I. H. Rosenberg, “Sarcopenia: origins and clinical relevance,”
The Journal of Nutrition, vol. 127, no. 5, pp. 990S-991S, 1997.

[2] J. M. Argiles, S. Busquets, B. Stemmler, and F. J. Lopez-Sor-
iano, “Cachexia and sarcopenia: mechanisms and potential
targets for intervention,” Current Opinion in Pharmacology,
vol. 22, pp. 100–106, 2015.

[3] S. K. Papadopoulou, P. Tsintavis, P. Potsaki, and
D. Papandreou, “Differences in the prevalence of sarcopenia
in community-dwelling, nursing home and hospitalized indi-
viduals. A systematic review and meta-analysis,” The Journal
of Nutrition, Health & Aging, vol. 24, no. 1, pp. 83–90, 2020.

[4] L. J. Falcon and M. O. Harris-Love, “Sarcopenia and the new
ICD-10-CM code: screening, staging, and diagnosis consider-
ations,” Federal Practitioner, vol. 34, no. 7, pp. 24–32, 2017.

[5] E. H. Jang, Y. J. Han, S. E. Jang, and S. Lee, “Association
between diet quality and sarcopenia in older adults: systematic
review of prospective cohort studies,” Systematic Review of
Prospective Cohort Studies. Life (Basel), vol. 11, no. 8, p. 811,
2021.

[6] J. E. Morley, S. D. Anker, and S. von Haehling, “Prevalence,
incidence, and clinical impact of sarcopenia: facts, numbers,
and epidemiology-update 2014,” Journal of Cachexia, Sarcope-
nia and Muscle, vol. 5, no. 4, pp. 253–259, 2014.

[7] S. A. Studenski, K. W. Peters, D. E. Alley et al., “The FNIH sar-
copenia project: rationale, study description, conference rec-
ommendations, and final estimates,” The Journals of

13BioMed Research International

https://downloads.hindawi.com/journals/bmri/2022/7483911.f1.zip


Gerontology. Series A, Biological Sciences and Medical Sciences,
vol. 69, no. 5, pp. 547–558, 2014.

[8] B. Zhang and S. Horvath, “A general framework for weighted
gene co-expression network analysis,” Statistical Applications
in Genetics and Molecular Biology, vol. 4, 2005.

[9] L. F. Dalla, L. V. Madden, and P. A. Paul, “Logistic models
derived via LASSO methods for quantifying the risk of natural
contamination of maize grain with deoxynivalenol,” Phytopa-
thology, vol. 111, no. 12, pp. 2250–2267, 2021.

[10] J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Sto-
rey, “The sva package for removing batch effects and other
unwanted variation in high-throughput experiments,” Bioin-
formatics, vol. 28, no. 6, pp. 882-883, 2012.

[11] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[12] J. Maag, “gganatogram: an R package for modular visualisation
of anatograms and tissues based on ggplot2,” F1000Research,
vol. 7, p. 1576, 2018.

[13] B. Yu and D. Tao, “Heatmap regression via randomized
rounding,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, p. 1, 2021.

[14] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[15] W. Walter, F. Sanchez-Cabo, and M. Ricote, “GOplot: an R
package for visually combining expression data with func-
tional analysis,” Bioinformatics, vol. 31, no. 17, pp. 2912–
2914, 2015.

[16] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[17] X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source
package for R and S+ to analyze and compare ROC curves,”
BMC Bioinformatics, vol. 12, no. 1, p. 77, 2011.

[18] C. C. Taggart, S. A. Cryan, S. Weldon et al., “Secretory leuco-
protease inhibitor binds to NF-kappaB binding sites in mono-
cytes and inhibits p65 binding,” The Journal of Experimental
Medicine, vol. 202, no. 12, pp. 1659–1668, 2005.

[19] N. A. Foreman, A. S. Hesse, and L. L. Ji, “Redox signaling and
sarcopenia: searching for the primary suspect,” International
Journal of Molecular Sciences, vol. 22, no. 16, p. 9045, 2021.

[20] C. W. Li, K. Yu, N. Shyh-Chang et al., “Circulating factors
associated with sarcopenia during ageing and after intensive
lifestyle intervention,” Journal of Cachexia, Sarcopenia and
Muscle, vol. 10, no. 3, pp. 586–600, 2019.

[21] S. Schiaffino, A. C. Rossi, V. Smerdu, L. A. Leinwand, and
C. Reggiani, “Developmental myosins: expression patterns
and functional significance,” Skeletal Muscle, vol. 5, no. 1,
p. 22, 2015.

[22] R. I. Dmitrieva, T. A. Lelyavina, M. Y. Komarova et al., “Skel-
etal muscle resident progenitor cells coexpress mesenchymal
and myogenic markers and are not affected by chronic heart
failure-induced dysregulations,” Stem Cells International,
vol. 2019, Article ID 5690345, 11 pages, 2019.

[23] P. Tsvetkov, S. Coy, B. Petrova et al., “Copper induces cell
death by targeting lipoylated TCA cycle proteins,” Science,
vol. 375, no. 6586, pp. 1254–1261, 2022.

[24] K. Vargas-Ortiz, V. Perez-Vazquez, and M. H. Macias-Cer-
vantes, “Exercise and sirtuins: a way to mitochondrial health

in skeletal muscle,” International Journal of Molecular Sci-
ences, vol. 20, no. 11, p. 2717, 2019.

[25] K. A. Rygiel, M. Picard, and D. M. Turnbull, “The ageing neu-
romuscular system and sarcopenia: a mitochondrial perspec-
tive,” The Journal of Physiology, vol. 594, no. 16, pp. 4499–
4512, 2016.

[26] R. G. Kurumbail and M. F. Calabrese, “Structure and regula-
tion of AMPK,” AMP-activated Protein Kinase, vol. 107,
pp. 3–22, 2016.

[27] J. Liang, H. Zhang, Z. Zeng et al., “Lifelong aerobic exercise
alleviates sarcopenia by activating autophagy and inhibiting
protein degradation via the AMPK/PGC-1α signaling path-
way,” Metabolites, vol. 11, no. 5, p. 323, 2021.

[28] L. Zheng, C. Z. Mao, Y. Q. Bi et al., “Differential expression of
foxo genes during embryonic development and in adult tissues
of Xenopus tropicalis,”Gene Expression Patterns, vol. 35, article
119091, 2020.

[29] M. Sandri, C. Sandri, A. Gilbert et al., “Foxo transcription fac-
tors induce the atrophy-related ubiquitin ligase atrogin-1 and
cause skeletal muscle atrophy,” Cell, vol. 117, no. 3, pp. 399–
412, 2004.

[30] P. G. Rack, J. Ni, A. Y. Payumo et al., “Arhgap36-dependent
activation of Gli transcription factors,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 111, no. 30, pp. 11061–11066, 2014.

[31] C. Anderson, V. C. Williams, B. Moyon et al., “Sonic hedgehog
acts cell-autonomously on muscle precursor cells to generate
limb muscle diversity,” Genes & Development, vol. 26, no. 18,
pp. 2103–2117, 2012.

[32] T. Rasila, O. Saavalainen, H. Attalla et al., “Astroprincin
(FAM171A1, C10orf38): a regulator of human cell shape and
invasive growth,” The American Journal of Pathology,
vol. 189, no. 1, pp. 177–189, 2019.

[33] J. D. Stewart, R. Marchan, M. S. Lesjak et al., “Choline-releas-
ing glycerophosphodiesterase EDI3 drives tumor cell migra-
tion and metastasis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 109, no. 21,
pp. 8155–8160, 2012.

[34] T. Hashimoto, B. Yang, Y. Okazaki et al., “Time course analy-
sis of skeletal muscle pathology of GDE5 transgenic mouse,”
PLoS One, vol. 11, no. 9, article e163299, 2016.

[35] Y. Okazaki, N. Ohshima, I. Yoshizawa et al., “A novel glycero-
phosphodiester phosphodiesterase, GDE5, controls skeletal
muscle development via a non-enzymatic mechanism,” The
Journal of Biological Chemistry, vol. 285, no. 36, pp. 27652–
27663, 2010.

[36] K. Shibuya, N. Nishimura, J. S. Suzuki, C. Tohyama,
A. Naganuma, and M. Satoh, “Role of metallothionein as a
protective factor against radiation carcinogenesis,” The Journal
of Toxicological Sciences, vol. 33, no. 5, pp. 651–655, 2008.

[37] P. Coyle, J. C. Philcox, L. C. Carey, and A. M. Rofe, “Metallo-
thionein: the multipurpose protein,” Cellular and Molecular
Life Sciences, vol. 59, no. 4, pp. 627–647, 2002.

[38] Y. Cheng, Y. Wang, Y. Li et al., “A novel human gene ZNF415
with five isoforms inhibits AP-1- and p53-mediated transcrip-
tional activity,” Biochemical and Biophysical Research Commu-
nications, vol. 351, no. 1, pp. 33–39, 2006.

[39] S. Baldelli and M. R. Ciriolo, “Altered S-nitrosylation of p53 is
responsible for impaired antioxidant response in skeletal mus-
cle during aging,” Aging (Albany NY), vol. 8, no. 12, pp. 3450–
3467, 2016.

14 BioMed Research International


	Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
	1. Introduction
	2. Materials and Methods
	2.1. Research Design
	2.2. Data Acquisition and Preprocessing
	2.3. DEG Analysis
	2.4. WGCNA Construction and Module Identification
	2.5. Functional Enrichment Analysis
	2.6. LASSO Regression Analysis and Assessment of the ROC Curve
	2.7. Verification of Diagnostic Biomarkers
	2.8. Evaluation and Verification of the Nomogram Model
	2.9. Statistical Analysis

	3. Results
	3.1. Screening of DEGs
	3.2. Identification of Sarcopenia-Related Modules and Genes
	3.3. Functional Enrichment Analysis and PPI Network of CGs
	3.4. Evaluation of Diagnostic Value of Hub Genes by LASSO Analysis
	3.5. Validation of the Diagnostic Biomarkers
	3.6. Construction and Verification of the Diagnostic Nomogram Model

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

