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We aim to identify the common genes, biological pathways, and treatment targets for primary Sjögren’s syndrome patients with
varying degrees of fatigue features. We select datasets about transcriptomic analyses of primary Sjögren’s syndrome (pSS) patients
with different degrees of fatigue features and normal controls in peripheral blood. We identify common differentially expressed
genes (DEGs) to find shared pathways and treatment targets for pSS patients with fatigue and design a protein-protein
interaction (PPI) network by some practical bioinformatic tools. And hub genes are detected based on the PPI network. We
perform biological pathway analysis of common genes by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway. Lastly, potential treatment targets for pSS patients with fatigue are found by the Enrichr platform.
We discovered that 27 DEGs are identified in pSS patients with fatigue features and the severe fatigued pSS-specific gene is
RTP4. DEGs are mainly localized in the mitochondria, endosomes, endoplasmic reticulum, and cytoplasm and are involved in
the biological process by which interferon acts on cells and cells defend themselves against viruses. Molecular functions mainly
involve the process of RNA synthesis. The DEGs of pSS are involved in the signaling pathways of viruses such as hepatitis C,
influenza A, measles, and EBV. Acetohexamide PC3 UP, suloctidil HL60 UP, prenylamine HL60 UP, and chlorophyllin CTD
00000324 are the four most polygenic drug molecules. PSS patients with fatigue features have specific gene regulation, and
chlorophyllin may alleviate fatigue symptoms in pSS patients.

1. Introduction

Primary Sjögren’s syndrome (pSS) is an all-body autoim-
mune disease that mainly affects middle-aged women [1].
The main clinical feature of the disease is dryness of the
mouth and eyes, and the pathophysiology is characterized
by focal lymphocyte infiltration in exocrine glands [2, 3].
Fatigue is commonly seen in pSS patients as an extraglan-
dular manifestation and closely links with poor life qual-
ity [4–6]. Fatigue affects approximately 70% of pSS
patients [7, 8]. Normally, fatigue and depression are con-
sidered manifestations of psychological disorders and
interact with physical pain and discomfort, which creates
a vicious cycle. Fatigue in pSS is induced and regulated
by genetic and molecular mechanisms, with the innate
immune system playing an important role in the produc-

tion of fatigue [9–11]. Although pSS always comes with
fatigue, not all patients exhibit fatigue, which provides a
good model for exploring the underlying biological
mechanisms.

High-throughput methods play an increasingly essential
role in biology spheres, and microarray data analysis high-
lights its advantage in large-scale analysis of gene expression
among high-throughput applications [12, 13]. Former stud-
ies [14, 15] have shown the high-throughput sequencing
analysis result for pSS patients with fatigue features but do
not offer further analysis based on varying degrees of fatigue.
This study tries to present characteristic genes and biological
pathways in pSS patients with manifestations of fatigue, as
well as drugs of potential benefit.

The GSE66795 dataset from the GPL10558 platform on
the GEO database is selected for gene expression of pSS with
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fatigue. The GSE66795 dataset was first identified for differ-
entially expressed genes (DEGs) in pSS patients with differ-
ent levels of fatigue, and based on the coexpressed genes,
further analyses including Gene Ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way are performed to understand the biological process.
The top ten target genes from the protein-protein interac-
tion (PPI) network will be obtained to identify potential
drugs that may alleviate fatigue in pSS patients.

2. Materials and Methods

2.1. Dataset Collection. We search “Primary Sjögren’s syn-
drome” and “fatigue” in the GEO database [16] and select
the dataset (GSE66795) demonstrating gene expression in
pSS patients with varying degrees of fatigue characteristics
and normal controls. The GSE66795 dataset is extracted
from the GPL10558 platform (Illumina HumanHT-12
V4.0 expression microbead chip) for RNA sequence analysis.
The data of GSE66795 is obtained from the UK registry of
primary Sjögren’s syndrome. It includes whole genome
microarray profiles of pSS patients with varying degrees of
fatigue characteristics and normal controls in peripheral
blood. One hundred and thirty-one patients with pSS are
involved, including 21 patients with mild fatigue, 74 patients
with moderate fatigue, 36 patients with severe fatigue, and
29 normal controls.

2.2. Differential Expression Analysis. Differential expression
analysis is performed using the online analysis tool
GEO2R; gene expression profiles of pSS patients with
mild, moderate, and severe fatigue were compared with
normal controls separately to identify DEGs. P values
and adjusted P values are calculated using t-tests. Genes
with the following criteria were retained for each sample:
(1) log2-fold change (log2FC) absolute value greater than
1 and (2) adjusted P value less than 0.05. After identifying
DEGs in pSS patients with varying degrees of fatigue, the
online website (https://www.xiantao.love/gds) is used to
plot a Venn diagram.

2.3. Gene Ontology and Pathway Discovery in Gene Set
Enrichment Analysis. Gene set enrichment analysis is used
to understand the general biological function and the chro-
mosomal location of a gene [17]. For gene product annota-
tion, the terms of Gene Ontology (GO) are used, including
biological process (BP), molecular function (MF), and cellu-
lar component (CC) [18]. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways are commonly used to
describe metabolic pathways [19]. GO terms and KEGG
pathways were gotten through the platform Enrichr
(https://amp.pharm.mssm.edu/Enrichr/) based on the
DEGs [20].

2.4. Protein-Protein Interaction (PPI) Network. The informa-
tion generated from the PPI network improves the under-
standing of protein function [21]. PPI networks are made
by STRING (https://string-db.org/) after inputting the com-
mon DEGs. We analyze PPIs through Cytoscape (https://

cytoscape.org/) to further present the network and identify
target genes.

2.5. Transcription Factor- (TF-) Gene Interactions. We use
NetworkAnalyst (https://www.networkanalyst.ca/) to iden-
tify interactions of TF-genes with DEGs [22]. NetworkAna-
lyst plays a comprehensive network platform for gene
expression across a wide range of species and enables them
to be subjected to a meta-analysis [23].

2.6. Identification of Potential Treatment Targets. Identifica-
tion of drug molecules is a vital component of genomics
research. We input the DEGs in the Drug Signature Data-
base (DSigDB). Then, we get the designed drug mole-
cules, which may have promising clinical application.
DSigDB is obtained through the Enrichr (https://amp
.pharm.mssm.edu/Enrichr/) platform. Enrichr is primarily
used as an enrichment analysis platform, providing exten-
sive visual details of the common functions of inputted
genes [24].

3. Results

3.1. DEG Identifications. We use the GSE66795 dataset to
identify the DEGs of pSS with fatigue. 37, 29, and 33
DEGs are obtained for pSS with mild, moderate, and
severe fatigue, respectively. The collected DEGs are further
compared by using the online website (https://www
.xiantao.love/gds) for gathering common genes in pSS with
varying degrees of fatigue. And 27 (OAS1, OAS2, GBP1,
IRF7, EIF2AK2, IFIT2, USP18, SAMD9L, HES4, IFI44L,
SERPING1, IFIT3, IFITM3, IFI6, XAF1, MX1, OASL,
OTOF, HERC5, LY6E, EPSTI1, OAS3, ISG15, IFIT1,
RSAD2, IFI44, and IFI27) common DEGs are identified.
The specific genes to pSS with mild fatigue are DDX60,
IFIH1, GBP5, LAP3, and TIMM10. The specific genes to
pSS with moderate fatigue are HLA-DRB4 and HLA-
DRB6, and that to pSS with severe fatigue is RTP4. The
Venn diagram (Figure 1) shows that common DEGs
accounted for 67.5% out of a total of 40 DEGs.

3.2. GO Terms and KEGG Pathways. We analyzed 27 com-
mon DEGs for both GO and KEGG pathways. Both of the
results are taken from the top 10 GO entries. GO terms in
Table 1 suggest that DEGs are mainly localized in the mito-
chondria, endosomes, endoplasmic reticulum, and cyto-
plasm. They are involved in the biological processes of
interferon action on cells and cellular defense against
viruses. And the molecular functions are mainly engaged
in the process of RNA synthesis. KEGG pathways in
Table 2 suggest that the DEGs of pSS with fatigue are
involved in the signaling pathways of viruses such as hepati-
tis C, influenza A, measles, and EBV. Both are seen in
Figures 2(a) and 2(b).

3.3. Identification of Hub Genes by PPI Networks. We put
common DEGs into the STRING website, and the files gen-
erated after analysis are further entered into Cytoscape soft-
ware for visual analysis. PPI networks are designed to detect
hub genes for identifying drug molecules for pSS with
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fatigue. PPI networks involve 24 nodes and 552 edges, which
are shown in Figure 3(a). We present the top 20 genes in
Figure 3(b) and Table 3.

3.4. TF-Gene Interactions. The interactions of TF and genes
are shown in Figure 4. The network has 60 nodes and 108
edges. Sixteen TF-genes regulate IFIT1, and IFIT3 is handled
by 14 TF-genes. The network involves 60 TF-genes. Figure 4
shows the network of TF-gene interactions.

3.5. Identification of Drug Candidates. We identify drug
molecules for the top 10 hub genes on the Enrichr platform.
We collect drug candidates judged on adjusted P values. The
analysis reveals that acetohexamide PC3 UP, suloctidil HL60
UP, prenylamine HL 60 UP, and chlorophyllin CTD
00000324 are the four most polygenic drug molecules that
interact with genes. Figure 5 and Table 4 present the drug
candidates in DSigDB.

4. Discussion

Fatigue is an annoying experience that means physical and
mental tiredness [25]. Mengshoel et al. [26] reveal that most
pSS patients literally suffer from fluctuating fatigue out of
control regardless of their health condition. Fatigue has a
significant influence on patients’ daily life, and patients must
adapt to their behavior and lives. Although the underlying
mechanisms are still unclear, former studies take depression
and pain as the prominent factors associated with fatigue [5,
27]. Currently, growing evidence suggests that fatigue has a
molecular and genetic basis on its production and regula-
tion. Therefore, most scholars view fatigue as a biological
and brain phenomenon [9–11].

IL-1β tends to increase rapidly secreted from macro-
phages to activate the immune system when meeting tissue
injury or infection. IL-1β plays its role by binding with the
IL-1 receptor coming with the downstream of IL-1
response [28]. Then, immune and inflammation systems
are activated, which induce the behavior of disease, with

fatigue being involved as an important component [29].
All these inflammatory signaling pathways go on working
and turn fatigue into a chronic state. In the brain, IL-1
β signaling pathways may explain the ultimate pathway
of fatigue [30, 31], and IL-1 blocker treatment may effec-
tively release fatigue [32, 33]. Thus, fatigue and other
unpleasant mood in those patients with autoimmune dis-
ease not only should be understood by the unfortunate
development of chronic illness but also may be related to
some signaling pathways and activation of genes that reg-
ulate the mood in the cerebral system.

Genome-wide association analysis of pSS patients has
been conducted, and a gene (RTP4) is identified as highly
relevant. Similarly, we confirm that RTP4 is highly expressed
in pSS patients with severe fatigue through bioinformatic
analysis, suggesting that this gene is critical in the mecha-
nisms of fatigue. RTP4 encodes a protein associated with
the expression of opioid receptors on the cell surface. These
receptors are also expressed in the lymph system and pain-
regulated pathways in the brain [34]. However, the former
study did not stratify pSS based on the degree of fatigue,
and it is unclear which degree of fatigue expresses the
RTP4 gene. Our study finds that pSS patients with severe
fatigue specifically express the RTP4 gene, providing clues
for further studies on the genomics of fatigue features in
pSS patients.

OAS1, a coexpressed gene for pSS in our study, has been
established in previous studies as a risk locus of pSS and
impacts the flaw of virus clearance because of the altering
response of IFN [35]. Our gene pathway analysis points
out that DEGs for pSS with fatigue are mainly localized
intracellularly and involved in signaling pathways of com-
mon viruses in the respiratory and digestive tracts, suggest-
ing that pSS is a systemic disease with an uncertain
etiology and that viral infection may be a predisposing
factor.

Fatigue always accompanies pSS patients, but it is
hard work to manage these bad feelings [36]. The clinical
practice guidelines (CPG) committee emphasizes the
many causes of fatigue in pSS; therefore, the comprehen-
sive evaluation for diagnosis is essential. So far, the treat-
ment for fatigue in pSS with solid recommendation is
mere taking exercise, which is also practical in other
autoimmune diseases [37]. In America, hydroxychloro-
quine (HCQ) is the most widely used drug therapy for
pSS with fatigue, but the recommendation strength is
not strong enough [34]. It is not recommended to release
fatigue in pSS using dehydroepiandrosterone (DHEA)
[34]. Both the tumor necrosis factor inhibitor is discour-
aged for the treatment of fatigue in pSS [38, 39]. Our
bioinformatic study reveals that besides chloroquine and
testosterone drugs that help improve fatigue, chlorophyl-
lin, the sulphonylurea hypoglycaemic drug acetylhexane,
and the antiallergic drug terfenadine may have improved
fatigue in pSS. However, chloroquine and testosterone are
not strongly recommended as we mentioned before. Acet-
ohexamide has been discontinued in the American mar-
ket due to its significant hypoglycaemic risk.
Terfenadine is not suitable for long-term use since its
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Figure 1: A Venn diagram represents common DEGs. Twenty-
seven genes are found common among the 40 DEGs of pSS
patients with varying degrees of fatigue. The common DEGs
accounted for 67.5% out of a total of 40 DEGs.
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Table 1: Top 10 GO pathways and their corresponding P values and genes.

GO GO_ID Description P-value Genes

MF

GO:0001730 2'-5'-oligoadenylate synthetase activity
1.305e-
12

OAS2 OAS3 OASL OAS1

GO:0003725 double-stranded RNA binding
1.225e-
09

OAS1 OAS2 EIF2AK2 OAS3 OASL

GO:0016779 nucleotidyltransferase activity
2.993e-
06

OAS1 OAS3 OAS2 OASL

GO:0003723 RNA binding
2.089e-
04

EIF2AK2 OAS1 OAS3 HERC5 IFIT2 IFIT3 IFIT1 OASL
OAS2

GO:0035639 purine ribonucleoside triphosphate binding
8.781e-
03

EIF2AK2 MX1 OAS1 OAS3 GBP1 OASL OAS2

GO:0001883 purine nucleoside binding
9.156e-
03

EIF2AK2 MX1 OAS1 OAS3 GBP1 OASL OAS2

GO:0032549 ribonucleoside binding
9.156e-
03

EIF2AK2 MX1 OAS1 OAS3 GBP1 OASL OAS2

GO:0001882 nucleoside binding
9.363e-
03

EIF2AK2 MX1 OAS1 OAS3 GBP1 OASL OAS2

GO:0017076 purine nucleotide binding
1.032e-
02

EIF2AK2 MX1 OAS1 OAS3 GBP1 OASL OAS2

GO:0044822 poly(A) RNA binding
5.088e-
02

EIF2AK2 HERC5 IFIT2 OASL

CC

GO:0048471 perinuclear region of cytoplasm
3.888e-
03

EIF2AK2 MX1 HERC5 OAS2

GO:0005829 cytosol
9.919e-
06

EIF2AK2 OAS1 OAS3 IRF7 HERC5 ISG15 OAS2 MX1
USP18 IFIT2 OTOF IFIT3 GBP1 IFIT1 OASL XAF1

GO:0005739 mitochondrion
4.810e-
03

OAS1 RSAD2 IFI27 IFIT3 IFI6 XAF1 OAS2

GO:0005783 endoplasmic reticulum
1.583e-
02

MX1 OAS1 IFIT2 RSAD2 OTOF OAS2

GO:0012505 endomembrane system
4.168e-
03

SAMD9L OAS1 SERPING1 IRF7 RSAD2 IFITM3
OAS2 MX1 IFIT2 OTOF IFI27 GBP1

GO:0005737 cytoplasm
1.488e-
02

SERPING1 RSAD2 ISG15 USP18 OTOF IFI27 IFIT3 OASL
SAMD9L OAS1 OAS3 HERC5 IFI44 IFI6 IRF7 OAS2 GBP1

IFIT1 EIF2AK2 IFITM3 MX1 IFIT2 IFI44L XAF1

BP

GO:0035455 response to interferon-alpha
1.907e-
12

IFITM3 IFIT3 OAS1 IFIT2 EIF2AK2

GO:0071357 cellular response to type I interferon
2.702e-
30

IFIT1 OAS3 MX1 USP18 IFIT2 IRF7 OAS1 OAS2
IFITM3 OASL IFIT3 XAF1 ISG15 RSAD2 IFI27 IFI6

GO:0060337 type I interferon signaling pathway
2.702e-
30

IFIT1 OAS3 MX1 USP18 IFIT2 IRF7 OAS1 OAS2
IFITM3 OASL IFIT3 XAF1 ISG15 RSAD2 IFI27 IFI6

GO:0045071
negative regulation of viral genome

replication
2.204e-
18

OAS1 EIF2AK2 IFIT1 OAS3 MX1 IFITM3 OASL ISG15
RSAD2

GO:0034340 response to type I interferon
3.905e-
30

IFIT1 OAS3 MX1 USP18 IFIT2 IRF7 OAS1 OAS2
IFITM3 OASL IFIT3 XAF1 ISG15 RSAD2 IFI27 IFI6

GO:0045069 regulation of viral genome replication
9.301e-
17

EIF2AK2 IFIT1 OAS3 MX1 OAS1 IFITM3 OASL ISG15
RSAD2

GO:0048525 negative regulation of viral process
4.916e-
16

EIF2AK2 IFIT1 OAS3 MX1 OAS1 IFITM3 OASL ISG15
RSAD2

GO:0019079 viral genome replication
9.276e-
16

EIF2AK2 IFIT1 OAS3 MX1 OAS1 IFITM3 OASL ISG15
RSAD2

GO:0060333
interferon-gamma-mediated signaling

pathway
1.854e-
10

OAS3 GBP1 IRF7 OAS1 OAS2 OASL

GO:0051607 defense response to virus
6.646e-
09

HLA-DPA1 GBP2 IFNGR1 VCAM1 HLA-DRA CCL22
ICAM1
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central depression as an antiallergy drug. And chloro-
phyllin appears to hold some promise for reducing
fatigue in pSS.

Chlorophyll is an ingredient of the derifil drug which
is available as an over-the-counter medicine [40]. And
chlorophyllin, obtained by hydrolyzing chlorophyll to
remove phytyl alcohol, is a water-soluble derivative. Chlo-
rophyll has been shown to exert its anticancer properties
by playing a role as an antioxidant [41], a CYP inhibitor
[42], an apoptosis inducer [43], a phase II enzyme stimu-
lator [44], and a carcinogen transport modulator [45].
Currently, COVID-19 has swept the world and may last
for a long time because of its rapid mutation. Almost

5,000,000 people have died in this epidemic [46], and the
reduction of lymphocytes in COVID-19 patients is consid-
ered an important risk factor for poor prognosis [47–49].
Recent studies suggest that the chlorophyll derivative
sodium copper chlorophyllin (SCC) may improve survival
in critically ill COVID-19 patients by increasing the total
number of lymphocytes [50]. Increasing consumers choose
dietary chlorophyll which is derived from SCC for diet
supplements for the sake of keeping healthy [51, 52]. Die-
tary chlorophyll is safe and has been shown to have a
higher absorption rate in the human body, which may
trigger ionic compound chelation [53, 54]. Zeng et al.
[55] cognize one functional food called barley grass

Table 2: Top 10 KEGG pathways and their corresponding P values and genes.

Pathway ID Description P value Genes

hsa05160 Hepatitis C 2:02329e − 11 IFIT1 IRF7 MX1 OAS1 OAS2 OAS3 EIF2AK2 RSAD2

hsa05164 Influenza A 2:60307e − 09 IRF7 MX1 OAS1 OAS2 OAS3 EIF2AK2 RSAD2

hsa05162 Measles 3:6267e − 08 IRF7 MX1 OAS1 OAS2 OAS3 EIF2AK2

hsa05169 Epstein-Barr virus infection 3:37146e − 07 IRF7 OAS1 OAS2 OAS3 EIF2AK2 ISG15

hsa04621 NOD-like receptor signaling pathway 5:95267e − 06 GBP1 IRF7 OAS1 OAS2 OAS3

hsa05165 Human papillomavirus infection 0.000110032 MX1 EIF2AK2 OASL ISG15 HES4

hsa05168 Herpes simplex virus 1 infection 0.000742976 IRF7 OAS1 OAS2 OAS3 EIF2AK2

hsa04622 RIG-I-like receptor signaling pathway 0.005431097 IRF7 ISG15

hsa05167 Kaposi sarcoma-associated herpesvirus infection 0.037274554 IRF7 EIF2AK2

hsa05203 Viral carcinogenesis 0.041244055 IRF7 EIF2AK2

Gene count

GO pathway
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GO:0032549
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GO:0005739
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Figure 2: (a) The result of biological process-, molecular function-, and cellular component-associated GO terms. (b) The result of KEGG
pathway analysis.
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powder which is rich in chlorophyll, and other nutrients
can effectively alleviate fatigue in chronic patients. The
mechanism of chlorophyll’s role in relieving fatigue in
pSS patients is unclear. It may be related to the nature
of the hepatic enzyme inhibitors that increase the concen-
trations of immunosuppressant like hydroxychloroquine,

which has better control of fatigue. And the capacity of
scavenging the oxygen radical as an antioxidant may
somewhat improve the fatigue of body.

We have identified gene expression profiles in periph-
eral blood specific to pSS with fatigue characteristics. The
analysis of identified DEGs and pathways in this study will

OAS2 OAS3
IFI27

IFIT1

IFITM3

OASL

GBP1

IFI44

EIF2AK2

EPSTI1
LY6ESAMD9LIRF7

XAF1

HERC5

IFIT3

OAS1

IFI44L

IFIT2

MX1

IFI6

USP18

ISG15

RSAD2

(a)

EIF2AK2

OAS3

GBP1

OASL

OAS2

ISG15

XAF1 LY6E RSAD2

OAS1

MX1

IRF7

HERC5

IFI27

IFI44

IFI44L

IFI6IFIT2IFIT3

IFIT1

(b)

Figure 3: (a) Protein-protein interaction (PPI) network for DEGs of patients with varying degrees of fatigue. Nodes in blue color indicate
common DEGs with the highest connection degree value, and edges specify the interconnection in the middle of two genes. The network
involves 24 nodes and 552 edges. (b) The top 20 genes are detected from the PPI network of common DEGs. The nodes in red color
represent 14 genes with the highest degree value which are MX1, IFIT1, ISG15, RSAD2, IFI44L, IFI44, IFIT3, OAS2, OAS1, IFI6, XAF1,
IFIT2, GBP1, and OAS3. Based on the topological analysis, the degree value of these 14 genes is both 23.

Table 3: Topological result exploration for top 20 genes.

Hub gene Degree Stress Closeness Betweenness Eccentricity Clustering coefficient

MX1 23 20 23 1.09235 1 0.96047

IFIT1 23 20 23 1.09235 1 0.96047

ISG15 23 20 23 1.09235 1 0.96047

RSAD2 23 20 23 1.09235 1 0.96047

IFI44L 23 20 23 1.09235 1 0.96047

IFI44 23 20 23 1.09235 1 0.96047

IFIT3 23 20 23 1.09235 1 0.96047

OAS2 23 20 23 1.09235 1 0.96047

OAS1 23 20 23 1.09235 1 0.96047

IFI6 23 20 23 1.09235 1 0.96047

XAF1 23 20 23 1.09235 1 0.96047

IFIT2 23 20 23 1.09235 1 0.96047

GBP1 23 20 23 1.09235 1 0.96047

OAS3 23 20 23 1.09235 1 0.96047

HERC5 22 14 22.5 0.75624 0.5 0.9697

IRF7 22 10 22.5 0.51637 0.5 0.97835

OASL 22 10 22.5 0.51637 0.5 0.97835

IFI27 22 14 22.5 0.77598 0.5 0.9697

EIF2AK2 22 10 22.5 0.51637 0.5 0.97835

LY6E 21 10 22 0.55833 0.5 0.97619
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Table 4: Candidate drug for pSS with fatigue.

Name of drugs P value
Adjusted P

value
Target genes

Acetohexamide PC3 UP 3:47e − 23 8:16e − 21 RSAD2; OAS1; OAS2; MX1; IFI6; IFI44; IFIT1; IFI44L

Suloctidil HL60 UP 2:19e − 22 2:57e − 20 RSAD2; OAS1; OAS2; MX1; IFI6; IFI44; ISG15; IFIT1; IFI44L;
IFIT3

Prenylamine HL60 UP 3:46e − 21 2:71e − 19 OAS1; MX1; IFI6; IFI44; ISG15; IFIT1; IFI44L; IFIT3

Chlorophyllin CTD 00000324 9:59e − 19 5:64e − 17 OAS1 OAS2 MX1 IFI6 ISG15 IFIT1 IFIT3

Terfenadine HL60 UP 1:81e − 16 8:52e − 15 OAS1 MX1 IFI6 IFI44 ISG15 IFIT1 IFIT3

3′-Azido-3′-deoxythymidine CTD
00007047

6:05e − 13 2:37e − 11 RSAD2 OAS1 OAS2 MX1 IFI6 ISG15 IFIT1 IFI44L

Clioquinol PC3 UP 1:79e − 11 6:00e − 10 OAS1 MX1 IFI44 IFIT1 IFIT3

Etoposide HL60 UP 2:92e − 11 8:56e − 10 OAS1 MX1 IFI6 IFI44 ISG15 IFIT1

Testosterone enanthate CTD 00000155 1:03e − 09 2:68e − 08 RSAD2 OAS2 MX1 IFI6 ISG15 IFI44L IFIT3
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nodes represent TF-genes. The network has 60 nodes and 108 edges.
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Figure 5: Acetohexamide PC3 UP, suloctidil HL60 UP, prenylamine HL 60 UP, and chlorophyllin CTD 00000324 are the four most
polygenic drug molecules that connect with the top 10 hub genes.

7BioMed Research International



deepen our understanding of the essence of fatigue in pSS.
The discovery that chlorophyllin may improve fatigue
symptoms provides a theoretical basis for better improving
the quality of life in pSS patients. And a preprint has pre-
viously been published [56].
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