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Background. Acute myeloid leukemia (AML) is one of the most common hematological malignancies and accounts for about 20%
of childhood leukemias. Currently, immunotherapy is one of the recommended treatment schemes for recurrent AML patients to
improve their survival rates. Nonetheless, low remission and high mortality rates are observed in recurrent AML and challenge the
prognosis of AML patients. To address this problem, we aimed to establish and verify a reliable prognostic risk model using
immune-related genes to improve the prognostic evaluation and recommendation for personalized treatment of AML.
Methods. Transcriptome data and clinical data were acquired from the TARGET database while immune genes were sourced
from InnateDB and ImmPort Shared databases. The mRNA expression profile matrix of immune genes from 62 normal
samples and 1408 AML cases was extracted from the transcriptome data and subjected to differential expression (DE) analysis.
The entire cohort of DE immune genes was randomly divided into the test group and training group. The prognostic model
associated with immune genes was constructed using the training group. The test group and entire cohort were employed for
model validation. Lastly, we analyzed the potential clinical application of the model and its association with immune cell
infiltration. Results. In total, 751 DE immune genes were differentially regulated, including 552 upregulated and 199
downregulated. Based on these DE genes, we developed and validated a prognostic risk model composed of seven immune
genes, GDF1, TPM2, IL1R1, PSMD4, IL5RA, DHCR24, and IL12RB2. This model is able to predict the 5-year survival rate
more accurately compared with age, gender, and risk stratification. Further analysis showed that CD8+ T-cell contents and
neutrophil infiltration decreased but macrophage infiltration increased as the risk score increased. Conclusions. A seven-
immune gene model of AML was developed and validated. We propose this model as an independent prognostic variable able
to estimate the 5-year survival rate. In addition, the model can also reflect the immune microenvironment of AML patients.

1. Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease
that arises from abnormal immature myeloid cell proliferation
which blocks differentiation. The main clinical features of
AML include anemia, bone pain, coagulation dysfunction,
and enlargement of liver, spleen, and lymph nodes [1].
Previous reports have noted that about 15%-20% of children
with acute leukemia (AL) are diagnosed as AML, and the

majority of them are boys [2, 3]. Continued improvement in
terms of supportive treatment, chemotherapy regimen, and
stem cell transplantation technology have resulted in long-
term survival rates of AML patients at about 70% [4–6].
However, about 30% of patients in remission will go on to
relapse and the five-year survival rate after recurrence of
AML is only 36.1% [7].

Immunotherapy may be one of the important treatment
schemes to delay disease recurrence and to improve patients’
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survival rates. In 2016, Zahler et al. [8] used the anti-CD33
antibody coupled to the drug gemtuzumab ozogamicin
(Go) on 14 children who had been treated by bone marrow
transplantation. Following treatment, their overall survival
rates at 1-year and 5-years were 78% and 61%, respectively
[8]. An adult phase 3 trial indicated that the chemotherapy
drugs combined with Go significantly improved event-free
survival (EFS) of AML patients while the adverse side effects
were not aggravated [9]. However, a different study reported
that 21 children with recurrent AML, who were treated with
allogeneic therapy combined with NK cells, did not signifi-
cantly improve EFS and overall survival (OS) compared with
those without NK cells [10]. The inconsistent response to
immunotherapy as reported in various studies may be asso-
ciated with the heterogeneous nature of AML. Therefore, we
believe that there is an urgent need to develop and evaluate a
molecular model that can reflect the prognostic outcomes of
patients to immunotherapy to justify personalized treatment
for AML children.

In the present study, transcriptome data and clinical data
of AML patients were first obtained from the TARGET data-
base and applied to establish and verify a reliable prognostic
risk model by using DE immune genes. This risk model also
clarifies the theoretical foundation for the prognostic
evaluation and provides a basis for the development of
personalized treatment for AML children.

2. Materials and Methods

2.1. Material Sources. A total of 1470 transcriptome data sets
(62 for the normal group and 1408 for acute myeloid leuke-
mia patients) as of August 21, 2021 were retrieved from the
Target database (https://ocg.cancer.gov/programs/target). It
is well known that the Target database is a children’s tumor
database. In addition, the associated clinical parameters were
also obtained from the same source. The clinical data
excluded any unclear clinical stage and unknown prognostic
information but included the following parameters: survival
time, survival status, age (range 0-30 years, and median age
was 9.9 years old, however, the proportion of AML children
whose age ranged from 0 to 18 years old was 95.5%), gender,
white blood cell counts (WBC), bone marrow leukemic
blast, French-American-British (FAB) category, chromo-
some karyotype, risk stratification, remission after the first
course of treatment (CR1), and remission after the second
course of treatment following a recurrence (CR2). The
AML subtypes included M0-M7 based on the FAB classifica-
tion system. This research did not require any approval from
an ethics committee, as all data used were publicly available.

2.2. Extraction of the Gene mRNA Expression Matrix. The
Perl programming language (https://www.perl.org/) was
applied to extract the original number of transcripts data
for acute myeloid leukemia and normal samples. The
expression profile data were then annotated according to
the Homo sapiens GRCH38. 95.chr. Gtf. GZ file retrieved
from the Ensembl database (https://asia.ensembl.org/index
.html). A total of 6194 immune genes were downloaded
from the Immport Shared Database (https://www.immort

.org/) and InnateDB database (InnateDB) (https://www

.innatedb.ca/). Duplicate genes were removed and the
mRNA expression profile matrix of 2660 immune genes
was extracted from the transcriptome data using Perl script.

2.3. Identification of Differentially Expressed Immune Genes.
The “edgeR” package of R 4.1.2 software (https://www.r-
project.org/) was employed to screen for differentially
expressed (DE) immune genes from the expression profile
matrix. Statistical significance was set with a threshold of false
discovery rate (FDR)<0.5 and log2|fold change|(FC)>1. The
heatmap and volcano plot were generated with the pheatmap
and gplot package of the R 4.1.2 software, respectively.

2.4. Functional and Pathway Enrichment Analysis. To
explore the biological functions and pathways of the DE
immune genes, the “org Hs.Eg.db” and “clusterProfiler”
packages were employed for gene ontology (GO) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. The top ten GO biological processes including bio-
logical process (BP), cellular component (CC), and molecular
function (MF) with marked enrichment were visualized,
while the KEGG pathways were visualized based on the top
thirty terms. Enrichment of the GO terms and KEGG terms
were deemed statistically significant at P < 0:05.

2.5. Establishment of an Immune Gene Prognostic Risk Model.
The survival period and survival status obtained from the
patients’ clinical records were combined with the mRNA
data of DE immune genes from the entire data set and then
randomly assigned to 2 cohorts to form the training group
and test group by using Rv. Uniform function in the SPSS
software (IBM spss 23.0, Armork, New York, USA). Using
the DE immune genes within the training set, univariate
Cox analysis, and Kaplan Meier analysis were conducted to
identify significant DE immune genes that were relevant to
establish a reliable prognosis using the “survival” package of
the R 4.1.2 software. Further to this, multivariate Cox regres-
sion (MCR) analysis was carried out to select the immune
genes with more promising prognostic values to establish
the model. Lastly, the risk score of samples was measured
using the Cox coefficient and gene expression values with
the following formula.

Risk score = Coei1∗Expi1 + Coei2∗Expi2 +⋯+Coeix∗
Expix (Coei: the coefficient value, and Expi: the gene expres-
sion level (FPKM)) [11, 12].

2.6. Determining the Reliability and Independent Prognostic
Value for the Risk Model. The median risk score values of
the samples were used to delineate the training set into
high-risk (HR) and low-risk (LR) groups. The survival curves
for the respective groups were drawn with “survminer”
within the R package (version 4.1.2); then, time-dependent
receiver operating characteristics (ROC) analysis for the
overall survival (OS) and the area under the ROC (AUC)
were performed using the R package “survivalRoc” to exam-
ine the specificity and sensitivity of the prognostic model.
AUC prediction values >0.60 were considered acceptable
while an AUC prediction value of over 0.75 was considered
excellent [13, 14]. To assess the prognostic value of the

2 BioMed Research International

https://ocg.cancer.gov/programs/target
https://www.perl.org/
https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
https://www.immort.org/
https://www.immort.org/
https://www.innatedb.ca/
https://www.innatedb.ca/
https://www.r-project.org/
https://www.r-project.org/


–5

0

5

Lo
gF

C

0 5 10 15

–Log10 (FDR)

Volcano

(a)

(b)

Positive regulation of cytokine production
Regulation of infammatory response

Regulation of innate immune response
Regulation of immune efector process

Leukocyte migration
Positive regulation of response to external stimulus

Positive regulation of innate immune response
Response to molecule of bacterial origin

Response to lipopolysaccharide
Cell chemotaxis

External side of plasma membrane
Vesicle lumen

Cytoplasmic vesicle lumen
Secretory granule lumen

Collagen-containing extracellular matrix
Vacuolar lumen

Platelet alpha granule
Platelet alpha granule lumen

Specifc granule lumen
Proteasome accessory complex

Receptor ligand activity
Cytokine activity

Cytokine receptor binding

Cytokine binding

Cytokine receptor activity

Growth factor activity
G protein–coupled receptor binding

G protein–coupled peptide receptor activity
Peptide receptor activity

Hormone activity

0.05 0.10 0.15 0.20

Gene ratio

Count
40
80
120

q value

5.0e–08

1.0e–07

1.6e–07

2.0e–07

2.5e–07

BP
CC

M
F

(c)

Figure 1: Continued.
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model, univariate and multivariate Cox analyses were carried
out on the prognostic factors selected from the patients’ clin-
ical features. Patients were assigned to 2 groups based on age
(<10 and≥10 years old). Patients were assigned to three
groups according to WBC (= <50, 50 − 100 and > = 100).
Patients were assigned to three groups according to bone
marrow leukemic blast (= <20, 20 − 80 and> = 80). Heat-
maps, survival status scatter plots, and risk score distribution
plots between the HR and LR groups were also produced and
visualized to assess the model.

Meanwhile, we built a nomograph based on the 7
immune genes in our model using the R packages “rms”,
“regplot”, and “survival”, and the constructed nomograph
was used to predict the OS of the individual AML patients.
If the calibration line was very close to the 45-degree line,
which represented the ideal prediction, this indicated that
the actual survival was very close to the predicted survival.
This analysis validated the good prediction power of the
constructed nomogram.

2.7. Validating the Prognostic Value of the Risk Model Using
the Test and Entire Cohorts. The specificity and sensitivity of
the prognostic risk model was validated using the test cohort
and the entire cohort. As noted above, survival curves, ROC

for OS, AUC, heatmaps, survival status scatter plots, and risk
score distribution plots were also employed to assess the
model. Further validation was also based on the nomogram
and its calibration curve as described above. Meanwhile, uni-
variate and multivariate Cox analyses were carried out to
analyze the prognostic factors based on the clinical features.

2.8. Clinical Utility of the Model. To verify that the selected
immune genes involved in the development of AML were
the best indicators for our model’s predictive ability for
prognostication, we analyzed the prognosis of the entire
cohort of patients and the relationship between the model
(risk gene level and risk score) and the clinical characteristics
of the entire cohort (age, gender, risk stratification, CR2).

2.9. Association between the Model and Immune Cell
Infiltration. To determine if the model reflected the status
of the immune microenvironment in AML, we extracted
infiltrated immune cells such as CD4+T cells, B cells,
macrophages, dendritic cells, CD8+T cells, and neutrophils
from the transcriptome data of AML patients using the
analysis tool (CIBERPORT) firstly, and then we evaluated
the association between the risk score and immune cell infil-
tration in the entire cohort. The Pearson’s correlation
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Figure 1: DE immune genes. (a) Volcano plot of the DE genes (the blue line at the top of the figure represented the control group and the
pink line represented AML). (b) Heatmap of the DE genes (red and green dots indicated upregulated and downregulated genes,
respectively). (c) GO analysis of the DE immune genes for biological process (BP), cellular component (cc), as well as molecular function
(MF) terms. (d) KEGG analysis of the DE immune genes.
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Table 1: KEGG pathway enrichment analysis of DE genes in childhood AML patients.

Pathway
ID

Description
P

value
Gene
count

Genes

hsa04060
Cytokine-cytokine receptor

interaction
3.81E-
54

109

XCR1/OSM/CXCL12/BMP5/TNFRSF17/CXCR6/IL2RB/LEPR/GDF15/
FASLG/PPBP/INHBE/INHBC/GHR/IL15/

ACVR2A/CD70/PF4V1/IL18/GDF9/TNFRSF13B/IL2RG/GDF1/LIFR/
GDF5/IL23A/IL10/IL1R2/IL11/IL1R1/

TNFSF9/GDF11/CXCR3/IL18RAP/IL17B/IFNB1/CCR5/IL9R/IL17RE/
EPOR/CX3CR1/TNFRSF8/IL1RL1/

TNFRSF10D/IL5RA/TNFRSF6B/IL1RL2/ACVR1C/IL7R/CCL25/IL12A/
CCR4/PF4/TNF/IL3RA/MSTN/CCR10/

CCL1/IL33/CCR6/CCL28/GH1/BMP6/CTF1/EBI3/PRL/CSF3/IL13/
INHBB/LTA/TSLP/BMP10/MPL/TNFRSF4/

IL17D/CXCL8/TNFSF14/CCR1/IL2RA/IL24/IL17RB/GDF3/NODAL/
IFNLR1/CXCL13/CXCL3/OSMR/CCL24/

CCL27/NGFR/CXCL16/INHA/IL7/IL27/CRLF2/TNFRSF11A/IFNK/
IL13RA2/BMPR1B/CXCL11/AMHR2/CSF2/

ACKR4/IL12RB2/BMP2/CXCL5/IL12B/LEP/CXCL14

hsa04630 JAK-STAT signaling pathway
5.75E-
20

49

OSM/PDGFRA/STAT5A/IL2RB/EGFR/LEPR/SOCS5/SOCS3/GHR/IL15/
IL2RG/LIFR/IL23A/IL-10/HRAS/IL11/

IFNB1/IL9R/EPOR/JAK3/IL5RA/IL7R/PDGFB/IL12A/IL22RA2/IL3RA/
SOCS2/GH1/CTF1/PRL/CSF3/IL13/TSLP

/BCL2L1/MPL/IL17D/IL2RA/IL24/IFNLR1/OSMR/EGF/IL7/CRLF2/
IFNK/IL13RA2/CSF2/IL12RB2/IL12B/LEP

hsa04061
Viral protein interaction with
cytokine and cytokine receptor

8.36E-
17

35

XCR1/CXCL12/IL2RB/PPBP/PF4V1/IL18/IL2RG/IL10/CXCR3/IL18RAP/
CCR5/CX3CR1/

TNFRSF10D/CCL25/CCR4/PF4/TNF/CCR10/CCL1/CCR6/CCL28/LTA/
CXCL8/TNFSF14/CCR1/IL2RA/IL24/

CXCL13/CXCL3/CCL24/CCL27/CXCL11/ACKR4/CXCL5/CXCL14

hsa05133 Pertussis
2.78E-
15

29

NLRP3/RELA/TRAF6/MAPK3/CASP7/CD14/RHOA/NFKB1/GNAI2/
NOD1/IL23A/IL10/IRF1/TLR4/C4B/C2/C1S/

JUN/PYCARD/IL12A/TNF/TICAM1/C5/GNAI1/CXCL8/SERPING1/
C4BPA/CXCL5/IL12B

hsa04650
Natural killer cell mediated

cytotoxicity
1.56E-
13

36

KLRD1/SH2D1B/GZMB/PRF1/FASLG/MAPK3/MICA/NCR1/MICB/
HLA-A/KLRC1/FCGR3A/KLRK1/HRAS/

HCST/FYN/KIR3DL1/IFNB1/HLA-C/RAET1E/TNF/KIR2DL3/RAC2/
NCR2/RAC3/TYROBP/KIR2DL1/CD244/

KIR3DL2/HLA-G/SHC4/SH2D1A/FCER1G/SHC3/ULBP1/CSF2

hsa04612
Antigen processing and

presentation
4.13E-
13

27

KLRD1/HSPA5/CALR/PDIA3/HSP90AB1/RFXANK/CTSS/CD8A/HLA-
A/KLRC1/HSPA1B/TAPBP/KIR3DL1/PSME1/PSME2/HLA-C/

HSP90AA1/HSPA1A/TNF/KIR2DL3/HSPA2/HSPA6/KIR2DL1/KIR3DL2/
HLA-G/HLA-DMA/CD74

hsa05417 Lipid and atherosclerosis
1.37E-
12

46

HSPA5/DDIT3/ATF4/NLRP3/HSP90AB1/RELA/TRAF6/XBP1/FASLG/
MAPK3/CASP7/VCAM1/VLDLR/CD36/CD14/

IL18/RHOA/NFKB1/APOA1/CAMK2A/HSPA1B/HRAS/TLR4/OLR1/
IFNB1/CYBB/HSP90AA1/JUN/PYCARD/IL12A

/HSPA1A/RXRA/TNF/TICAM1/ABCA1/CASP6/HSPA2/HSPA6/BCL2L1/
ABCG1/CXCL8/CXCL3/SELE/LBP/MMP9/IL12B

hsa04151 PI3K-Akt signaling pathway
5.98E-
11

59

OSM/PDGFRA/PKN1/THBS1/KITLG/ATF4/HSP90AB1/RELA/IL2RB/
EGFR/VEGFA/FGF17/FASLG/MAPK3/ATF2/GHR/FGFR4/FLT3/IL2RG/
FGFR1/NFKB1/TNC/HRAS/TLR4/IFNB1/EIF4EBP1/EPOR/HSP90AA1/
JAK3/VEGFC/IL7R/PDGFB/RXRA/FGF5/IL3RA/NR4A1/CDK6/GH1/

ITGB3/
PRL/CSF3/HGF/PDGFC/PGF/BCL2L1/FGF18/ANGPT1/FLT4/IGF1/

IL2RA/OSMR/EGF/NGFR/IGF2/IL7/
FGF10/VTN/ANGPT4/FGF2

hsa04010 MAPK signaling pathway
9.65E-
11

52

XCR1/CXCL12/NFKBIB/RELA/CXCR6/CRKL/PPBP/MAPK3/PF4V1/
RHOA/NFKB1/GNAI2/HRAS/GSK3A/CXCR3/

CCR5/CX3CR1/JAK3/CCL25/CCR4/PF4/CCR10/CCL1/CCR6/CCL28/
RAC2/RAC3/GNAI1/CXCL8/CCR1/SHC4/
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coefficient test was employed to assess the correlation
between risk score of the model and level of different
immune cell types. In addition, we analyzed the difference
between the low- and high-risk scores of AML-related
immune cells in the entire cohort using “limma”,"survival”,
and “survminer R” packages.

3. Results

3.1. Identification of the DE Immune Genes and Analysis of
their Functional and Pathway Enrichment. The tran-
scriptome data sets sourced from the Target database were
submitted to Perl and after eliminating duplicates, 2660
immune genes were obtained. Using the “edgeR” software
package of R version 4.1.2, a total of 751 immune genes
differentially expressed in AML versus normal samples were
obtained, including 552 and 199 upregulated and downregu-
lated, respectively. The DE immune genes were evaluated
and visualized as a volcano plot and heatmap (Figures 1(a)
and 1(b)). To determine the biological function of the DE
immune genes, we conducted enrichment analysis on the
top 10 GO biological processes and top 30 KEGG pathways.
The results demonstrated that the DE immune genes associ-
ated with GO were mainly enriched in receptor ligand
activity, leukocyte migration, external phase of the plasma
membrane, receptor ligand activity, and G protein-coupled
receptor binding (Figure 1(c)). The enriched GO functions
included several terms which were closely related to the
processes involved in AML development but the terms “leu-
kocyte proliferation” and “regulation of hemopoiesis” were
not visualizable in Figure 1(c) although also involved in
AML. Figure 1(d) showed the top 30 KEGG pathways
including cytokine-cytokine receptor related effects, JAK
−STAT signaling pathway, MAPK signaling pathway, PI3K
−Akt signaling pathway, and neuroactive ligand receptor
related effects while the top 10 KEGG pathways and
additional gene information were presented in Table 1.

3.2. Establishment of a Prognostic Risk Model from the DE
Immune Genes. To assess the DE immune genes related to
AML prognosis in children, we first analyzed 1408 AML
samples for the availability of survival status and survival
time. A total of 74 samples were removed from the collection
as they did not have clinical information or were duplicates
of other samples. Then, the remainder 1334 cases were ran-
domly assigned to the training (667 cases) and test (667
cases) groups. The training group was applied to establish

the prognostic risk model, while the test group and the entire
cohort were employed to verify the model. The workflow for
the analysis was shown in Figure 2. In the training group, we
screened 114 DE immune genes using univariate Cox regres-
sion and Kaplan-Meier analyses for those which markedly
correlated with OS in AML patients (Supplementary
Table 1). Moreover, MCR analysis was conducted and we
identified seven genes that had a greater impact on the OS
of patients, which were then applied to establish the
prognostic risk model as shown in Table 2.

3.3. Verification of the Reliability of the Prognostic Model and
Independent Prognostic Value in the Training Group. The
seven genes, growth differentiation factor 1 (GDF1), tropo-
myosin 2 (TPM2), interleukin 1 receptor 1 (IL1R1), protea-
some 26S subunit non-ATPase 4 (PSMD4), IL-5 receptor
alpha (IL5RA), Dehydrocholesterol reductase 24 (DHCR24),
and interleukin-12 receptor beta-2 (IL12RB2), were applied
to establish the prognostic model. After that, we calculated
the risk score of each as follows: Risk score = ½expression
value of GDF1∗ð−0:07435Þ� + ðexpression value of TPM2∗
0:279473Þ + ½expression value of IL1R1∗ð−0:10441Þ� + ð
expression value of PSMD4∗0:250769Þ + ½expression value of
IL5RA∗ð−0:06511Þ� + ðexpression value of DHCR24∗
0:129822Þ + ðexpression value of IL12RB2∗0:068248Þ.

Taking the median risk score as the boundary, the
patients were assigned to two groups: HR group and LR
group. The survival curve indicated that the OS of patients
in the HR group was significantly shortened (P < 0:001)
(Figure 3(a)). In addition, we used time-dependent ROC
to analyze the specificity and sensitivity of our model in
predicting the OS and found that the AUC at one, three
and five years was 0.702, 0.715, and 0.719, respectively
(Figure 3(b)). Moreover, we ranked the risk scores of
patients and analyzed their distributions and the dots rep-
resented the survival status of each patient and the Heat-
map showed the expression of these seven immune genes
in the HR and LR groups (Figures 3(c)–3(e)).

In terms of the independent prognostic value of the
model, both univariate and multivariate Cox analyses
showed that age, risk stratification, and the risk score were
related to the OS of AML in the training group and pro-
posed that these might be independent prognostic factors
(P < 0:05) (Figures 4(a) and 4(b)). Then, we further com-
pared these variables and observed that risk score had
higher specificity and sensitivity compered to age, gender,
risk stratification, and CR2 in predicting the 5-year OS.

Table 1: Continued.

Pathway
ID

Description
P

value
Gene
count

Genes

CXCL13/CXCL3/CCL24/CCL27/CXCL16/SHC3/CXCL11/CXCL5/
CXCL14

hsa04062 Chemokine signaling pathway
1.01E-
10

40

PKN1/NFKBIB/NLRP3/HSP90AB1/RELA/TRAF6/NLRP7/MAPK3/IL18/
DEFA4/RHOA/NFKB1/NOD1/TLR4/NLRP6/

DEFA3/NOD2/IFNB1/CYBB/DEFA1/MEFV/NAMPT/HSP90AA1/JUN/
NLRP12/PYCARD/GABARAP/TNF/TICAM1/

RIPK2/DEFA1B/CARD9/BCL2L1/CAMP/NLRC4/CXCL8/GBP7/CXCL3
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At 5 years, the AUCs of risk score, age, gender, risk strat-
ification, and CR2 were 0.719, 0.483, 0.605, 0.524, and
0.646, respectively, which demonstrated that the prediction

power of risk score was better than the other factors
within the training group (Figure 4(c)). In addition, it
can be seen from the calibration curve that the

DE immune genesEntire cohort (n = 1334) DE immune genes

Training group (n = 667) DE immune genes

mRNA expression of AML patients mRNA expression of normal patients (62)Immune genes from immport and innate DB 

mRNA expression of Immune genes of AML mRNA expression of Immune genes of normal patients

Go analysis
KEGG analysis

Deletion of samples which did not have clinical
information or were merged the duplicate ones (n = 74)

Test group (n = 667) DE immune genes

Seven-DE immune gene model

Immune infltrate data were
detected using CIBERSORT

package of R sofware

Assessment of independent prognosis model

Clinical utility of the model

Correlation analysis

Univariate Cox analysis
multivariate Cox analysis

Clinical information of entire cohort (n = 1334)

Validation

Figure 2: The diagram of experimental analysis process.
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constructed nomograph had good predictive performance
in terms of predicting the survival rate of the individual
patient with AML (Figures 4(d)–4(e)).

3.4. Validation and Independent Prognostic Value of the Risk
Model in the Test Group and in the Entire Cohort. To
confirm the accuracy of the risk model, we analyzed the
independent prognostic value of the model in the test group
and the entire cohort. First, the risk scores of each patient
were calculated and then assigned to HR and LR groups
according to the median risk score. In the test group, the
survival probability was significantly lower in the HR group
and the same result was observed for the entire group
(P < 0:001) (Figures 5(a) and 5(b)). Figures 5(c)–5(h)
showed the risk score distribution, survival status, and risk
gene expression heatmap in the two cohorts. In addition,
the AUCs in the test group at 1, 3, and 5 years were 0.704,
0.720, and 0.694, respectively, and were 0.701, 0.714, and
0.703, respectively, for the entire cohort (Figures 5(i) and
5(j)). Moreover, the univariate and multivariate analyses
revealed that CR2 and risk score were related to the progno-
sis of patients in the test group (P < 0:05) (Figures 5(k) and
5(m)). Meanwhile, we found that CR2, risk stratification,
and risk score were independent prognostic factors for the
entire cohort (P < 0:05) (Figures 5(l) and 5(n)). Moreover,
when either the test group or the whole cohort data was
used, the predictive ability of the constructed nomograph
as based on the calibration curve was good in terms of
predicting the survival rate of the individual patient
(Figures 5(o)–5(r)).

3.5. Correlation between the Risk Model and AML within the
Entire Cohort. To assess whether the genes in our model were
indeed involved in the development of AML, we analyzed the
relationship between their expression and OS in the entire
cohort. The findings indicated that all genes were related to
OS and that the lower the expression of IL5RA and GDF1,
the worse the prognosis of AML in children while the higher
the expression of TPM2, IL1R1, PSMD4, DHCR24, and
IL12RB2, the worse the prognosis for AML children
(Figures 6(a)–6(g)). Then, we further analyzed the relationship
between risk genes, risk score, and clinical features. In terms of
the association between risk genes and risk stratification, we
discovered that the expression levels of GDF1 and IL5RA
genes in low-risk AML patients were increased compared to
those in HR and standard risk groups, while the expression
levels of PSMD4, DHCR24, and IL12RB2 genes in low-risk

AML patients were lower (Figure 7(a)). As for the relationship
between risk genes and CR2, it was observed that expression
levels of IL5RA and GDF1 genes were higher in CR2; while
the expression level of PSMD4 was lower (Figure 7(b)). Lastly,
we compared the different variables and observed that the
specificity and sensitivity of the risk score was higher in pre-
dicting 5-year OS when compared to age, gender, CR2, and
risk stratification (Figure 7(c)_). These results also suggested
that these immune genes be associated with the development
of AML in the entire cohort.

3.6. Correlation between the Model and Immune Cell
Infiltration. Within the entire cohort, the risk score was pos-
itively correlated with macrophage content and negatively
correlated with CD8+ T cells and neutrophils (Figures 8(a)–
8(f)). In addition, macrophage content was significant higher
in the HR group, while the neutrophils were lower. For CD8+

T cells, no differences were noted between the HR and LR
group (Figures 9(a)–9(f)). These findings demonstrated that
the selected immune genes in the model might reflect the
immune microenvironment status of AML patients.

4. Discussion

AML is a common hematological malignancy in children
with chemotherapy and allogeneic stem cell transplantation
provided as the standard treatment. Although these treat-
ments continue to be optimized and the 5-year survival rate
of children is remarkably increased, the outcome is still not
ideal because of the low remission rates and high mortality
in patients with recurrent AML [15, 16]. Growing evidence
suggests that cells of the immune system could regulate
immunoprotein-encoding genes and immunotherapy may
be an alternative approach to improve the survival rate of
children with recurrent AML [17–21]. Unfortunately,
Nguyen et al. [10] reported that immunotherapy did not
successfully improve the OS of children with recurrent
AML suggesting that immunotherapy might not be suitable
for all children. To address this problem, we developed and
verified an immune risk prognostic model according to
seven immune genes to improve the precision treatment of
AML-afflicted children. Additionally, this model could also
predict the 5-year survival rate more accurately when com-
pared to age, gender, and risk stratification.

In this study, the biological functions of DE immune
genes were analyzed through bioinformatics. GO functional
enrichment analysis showed that the DE genes were mainly

Table 2: A seven-gene signatures identified based on MCR.

Gene ID Coef Exp (coef) Se (coef) Z Pr(>|z|)
GDF1 -0.07435 0.928345 0.02859 -2.60065 0.009305

TPM2 0.279473 1.322432 0.052832 5.289841 1.22E-07

IL1R1 -0.10441 1.110055 0.034104 3.061558 0.002202

PSMD4 0.250769 1.285013 0.080676 3.108343 0.001881

IL5RA -0.06511 0.936968 0.027078 -2.40437 0.0162

DHCR24 0.129822 1.138626 0.034274 3.78782 0.000152

IL12RB2 0.068248 1.070631 0.021656 3.151412 0.001625
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Figure 3: Establishment of the prognostic risk model according to the training group. (a) Overall survival. (b) Time-dependent receiver
operating characteristic (ROC) curve analysis. (c) Risk score distribution. (d) Survival status scatter plot. (e) Heatmap of risk genes.
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enriched for receptor ligand activity, G protein−coupled
receptor binding, leukocyte migration, external side of
plasma membrane, regulation of hemopoiesis, cell chemo-
taxis, and leukocyte proliferation. These results support pre-
vious reports that abnormalities of these functions may
lead to the progression of AML [22, 23]. The KEGG path-
way was mainly enriched for cytokine-cytokine receptor
related roles, JAK−STAT signaling pathway, MAPK signal-
ing pathway, PI3K−Akt signaling pathway, and neuroac-
tive ligand receptor related effects. Of note, continuous
activation of the JAK−STAT signaling pathway and PI3K
−Akt signaling pathway has been shown to contribute to
the poor prognosis of AML [24–26]. Thus, the DE
immune genes identified in this study may be responsible
for the pathogenesis of AML.

On the basis of these DE immune genes, a prognostic
risk model composed of seven immune genes, namely
GDF1, TPM2, IL1R1, PSMD4, IL5RA, DHCR24, and
IL12RB2 was employed. The abnormal expression of
GDF1 is closely related to the poor prognosis of gastric
cancer, liver cancer, and other tumors and GDF1 is a
member of the transforming growth factor beta superfam-
ily (TGF-β) [27, 28]. A previous study showed that the
expression of GDF1 in poorly differentiated liver cancer
was significantly increased and overexpression of GDF1
inhibited cell proliferation but significantly increased
tumor invasion and metastasis in vivo and in vitro. Mean-
while, overexpression of GDF1 also enhanced the clinical

therapeutic effects of cytotoxic T cell infiltration and
immune checkpoint inhibitors in mouse models [28].
Taken together, this suggests that high expression of
GDF1 could enhance cancer patients’ sensitivity to immu-
notherapy. Proteasome 26S subunit non-ATPase 4
(PSMD4) is an ubiquitin (UB) receptor involved in the
degradation of ubiquitinated proteins and antigen process-
ing. In addition, the expression of PSMD4 is abnormal in
tumors such as colon cancer, liver cancer, breast cancer,
and esophageal cancer [29–35]. Knocking out PSMD4 in
MC38 colon cancer cells had no effect on cell proliferation
but significantly weakened the immunotherapeutic effect of
atractylenolide-I (ATT-I), which suggested that PSMD4
should play an important role in immunotherapy [36].
Deoxycholesterol reductase (DHCR24, also known as Sela-
din-1) is an enzyme in the final pathway of cholesterol
synthesis and plays a crucial role in regulating cellular
response to carcinogenesis and oxidative stress [37, 38].
DHCR24 is also overexpressed in bladder cancer, mela-
noma and endometrial cancer, prostate cancer, and breast
cancer [39–42]. IL12RB2 is one of the subunits of the
interleukin-12 (IL-12) receptor and its abnormal expres-
sion is closely related to the prognosis of laryngeal cancer
[43, 44]. Airoldi et al. [45] identified lymph node plasma-
cytoma or lung cancer in IL12RB2 gene deficient mice,
which indicated that targeted inactivation of IL12RB2
gene, can induce tumorigenesis. IL12RB2 has also been
shown to exert antitumor activity by regulating the
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Figure 4: (a) Univariate Cox analysis. (b) Multivariate Cox analysis. (c) ROC cure analysis of prognostic variables in the training group at
five years. (d) A nomogram to predict the 1-, 3-, and 5- year OS in AML patients in the training group. (e) Calibration plot of nomogram in
the training group.
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Figure 5: Validation of the prognostic risk model in the test group and entire cohort. (a) OS in the test group. (b) OS in the entire cohort. (c)
Risk score distribution in the test group. (d) Risk score distribution in the entire cohort. (e) Survival status scatter plot in the test group. (f)
Survival status scatter plot for the entire cohort. (g) Heatmap of risk genes in the test group. (h) Heatmap of risk genes in the entire cohort.
(i) ROC curve analysis in the test group. (j) ROC curve analysis in the entire cohort. (k) Univariate Cox analysis in the test group. (l)
Univariate Cox analysis in the entire cohort. (m) Multivariate Cox analysis in the test group. (n) Multivariate Cox analysis in the entire
cohort. (o) A nomogram to predict 1-, 3-, and 5- year OS in AML patients in the test group. (p) A nomogram to predict 1-, 3-, and 5-
year OS in AML patients in the entire cohort. (q) Calibration plot of nomogram in the test group. (r) Calibration plot of nomogram in
the entire cohort.
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function of IL-12 to affect the host immune system [46,
47]. Beta-tropomyosin (TPM2) is a member of the actin
binding protein family and its cytoskeleton can be used
as both a sensor and mediator of apoptosis [48, 49]. Some
studies have shown that abnormal expression of TPM2
maybe closely associated with the development of colorec-
tal cancer and breast cancer [50, 51]. Interleukin-1R1
which plays an important role in cancer-related
inflammation through NF- κB and MAP kinase pathways
is the main receptor for interleukin-1α and interleukin-
1β interacting with the agonist ligand IL-1 α and IL-1 β
[52, 53]. Zhang et al. [53] reported that high expression
of IL-1R1 in gastric cancer patients predicted a poor prog-
nosis because of the over-activation of M2 macrophages
and excessive infiltration of CD8+T cells. At present, the
role of IL5RA in tumorigeneisis is not known.

Although there are no previous reports on the association
of the immune genes that make up our model, we have shown
that these seven genes align well with the prognosis of AML
patients within the entire cohort. Low expression of IL5RA
and GDF1 contributed to the poor prognosis of children with
AML, while high expression of TPM2, IL1R1, PSMD4,
DHCR24, and IL12RB2 contributed to the poor prognosis of
AML-afflicted children. The AUC of the prognostic model
used to predict the 1-, 3- and 5-year survival rates was 0.701,
0.714 and 0.703, respectively, which suggested that this set of
seven immune genes might provide higher specificity and sen-
sitivity to predict the survival rates for AML patients. In addi-
tion, the nomogram constructed by the 7 immune genes in our
model also proposed that the nomogram might have good
predictive performance in terms of predicting the survival rate
of the individual patient with AML, as confirmed by the cali-
bration curve. Thus, our results support the proposal that
those immune genes may reflect the progression of AML.
Nonetheless, the specific mechanisms and pathways involving
these gene products in the progression of AML still need to be
unraveled through further studies.

To evaluate the accuracy of the prediction and clinical
applicability of the model, several clinical variables and risk
scores were determined in the training group, the test group,
and the entire cohort. The analysis showed that age, risk
stratification, CR2, and risk score were related to prognosis.
Furthermore, risk stratification, CR2, and risk score were
determined as independent prognostic variables. We also
analyzed the relationship between immune genes and risk
stratification in the model within the entire cohort and
found that high expression of IL5RA and GDF1 was associ-
ated with low-risk stratification, while high expression of
PSMD4, DHCR24, and IL12RB2 was associated with higher
risk stratification. Our findings also concurred with previous
reports, which demonstrated that age and risk stratification
were closely related to the prognosis of AML patients
[54–56]. Meanwhile, when analyzing the possible correlation
between CR2 and the genes in the model, we found that
expression levels of IL5RA and GDF1 were lower in children
with AML who did not go into remission even after the sec-
ond course of treatment following recurrence. On the other
hand, expression of PSMD4 was higher, suggesting that the
model might be helpful to predict the OS of relapsed and
refractory AML patients. In addition, this study further
compared the predictive ability of several clinical variables
with risk score. The results showed that the predictive value
of our model in forecasting a 5-year OS was higher than the
predictive value calculated when age, gender, risk stratifica-
tion, and CR2 were used. Moreover, it is well known that
some mutated genes such as FIT3-ITD, WT1, CEBPA, and
NPM1, are closely related to prognosis. To further verify
whether our model could estimate the prognosis of AML
patients with those mutated genes, we divided the entire
cohort into HR group and LR group based on the median
value of risk score firstly, and then we analyzed their occur-
rence in each groups. It was observed that the probability of
FIT3-ITD mutation and FIT3-ITD combined with WT1
mutation was remarkably higher in the HR group, whereas
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Figure 6: Prognostic value and mRNA expression of the model within the entire cohort. (a)–(g) Relationship between TPM2, IL1R1,
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the probability of CEBPA and NPM1 mutation was mark-
edly higher in the LR group (Supplementary Table 2). This
indicated that our findings were agreement with the result
of previous studies, which reported that if AML patients
had FIT3-ITD or FIT3-ITD combined with a WT1
mutation, their prognosis was poor, while the prognosis
was better when there was a CEBPA or NPM1 mutation
[57]. Thus, our results show that the immune genes
prognostic risk model we constructed has high predictive
ability and is also reliable.

Previous evidence indicated that immune infiltration
was a contributing factor in AML development and resis-
tance to treatment [58, 59] and inhibition of CD8+ T cell
function was conducive for tumor growth [60]. Impaired
or inhibited CD8+ T cell function may cause AML cells to
escape immune monitoring resulting in patient relapse [61,
62]. It has also been reported that when inhibited neutro-
phils take a longer time to recover in AML patients after che-
motherapy, the possibility of AML recurring increases
significantly [63]. It was previously reported that
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macrophage counts in AML patients were significantly
higher than healthy individuals. Macrophages promote
tumor cell proliferation, invasion, and metastasis while also
inhibiting antitumor immune responses. Therefore, macro-
phages may play a positive role in the occurrence of AML
[64, 65]. In this study, we showed that the risk score was

negatively correlated with CD8+ T cell and neutrophil infil-
tration but positively correlated with macrophage infiltra-
tion, suggesting that the model might be able to reveal the
immune microenvironment of AML patients. Collectively,
we propose that our model is superior for predicting the
prognosis of AML.
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5. Conclusion

The prognostic risk model, which is also available to young
AML, constructed in this study can predict the OS for chil-
dren with AML more accurately and significantly reduces
the need for whole genome sequencing of the patients. The
nomogram constructed based on the developed model is
expected to assist doctors in using a personalized medicine
approach for the treatment of AML patients. However, our
study is limited by the reliance on data within public data-
bases and the prognostic model has not been verified using
the additional external datasets as the GEO database related
to childhood AML lacks survival data. In addition, this pro-
posed model also has not been verified through clinical tri-
als. In the future, we plan to conduct prospective trials in
the clinic to verify the accuracy of the model and develop a
kit for evaluating the prognosis of AML in the future to help
doctors judge the prognosis and select the optimal
treatment.
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