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In this work, we introduce an improved form of the basic SEIRD model based on Python simulation for the troublesome people
who are oblivious about the contemporary pandemics due to diverse social impediments, especially those economically
underprivileged. In the extant epidemiological models, some unorthodox issues are yet to be considered, such as poverty,
illiteracy, and carelessness towards health issues, significantly influencing the data modeling. Our focus is to overcome these
issues by adding two more branches, for instance, uncovered and apathetic people, which significantly influence the practical
purposes. For the data simulation, we have used the Python-based algorithm that trains the desired system based on a set of
real-time data with the proposed model and provides predicted data with a certain level of accuracy. Comparative discussions,
statistical error analysis, and correlation-regression analysis have been introduced to validate the proposed epidemiological
model. To show the numerical evidence, the investigation comprised the figurative and tabular modes for both real-time and
predicted data. Finally, we discussed some concluding remarks based on our findings.

1. Introduction

To investigate the future of a system, we need a proper repre-
sentation of that system. However, often we find it difficult to
infer how the system functions as a whole. Mathematical
modeling provides a framework for conceptualizing our ideas
through some equations, which assist in developing new
hypotheses for future testing [1]. It is used in various settings,
including disease mechanism analysis, biomedical systems,
and government policymaking. William Ogilvy Kermack and
Anderson Gray McKendrick are the introducers of mathemat-
ical modeling into the field of epidemiology [2]. It immensely
aids in the quantification of potential infectious disease control
andmitigation techniques. It provides a crude general behavior
of an epidemic as addressed by epidemic curves, allowing pre-
dictions about the epidemic’s endurance, magnitude in the
population, and evaluation of components that influence
transmission dynamics and thus the number of cases [3].

Mathematical modeling is playing an increasingly para-
mount role in providing quantitative insight into multiple fields
[4]. It has contributed to a better realization of the mechanisms
of various chronic diseases and infectious diseases [5]. For
instance, currently, we can see extensive use of mathematical
modeling in understanding the mysterious mechanisms of
ongoing highly infectious disease COVID-19. It has also availed
understanding of the mechanisms of various critical phenom-
ena, such as wound healing, morphogenesis, and blood-cell
production. It has received increasing attention because model-
ing and simulation allow rapid, cost-effective testing and for-
mulation of novel hypotheses [6]. Investigation of the natural
phenomena and various effects of climate change is another
major field of mathematical modeling [7]. Due to globalization
and the diversity of living objects, climate change has been a
pivotal aspect of research over the years [8–10]. Mathematical
modeling plays a pivotal role in earth science-related aspects
in various branches of environmental sciences. It may enhance
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the solution to the catastrophic incidents and adversities of
unplanned global biodiversity and reduce the threats of the
severe pollution caused over the decades. Artificial intelligence
is vital for treating unwanted climate changes with long-term
natural effects [11]. Mathematical modeling is the fundamental
base of modern computing science that enhances the incorpo-
ration of biological models with artificial intelligence [12]. So,
mathematical modeling can be used to improve prognosis,
management, and control strategies for diseases. Also, properly
utilizing mathematical modeling in the environmental sciences,
especially in the remedy of climate changes, proper time man-
agement, and optimization of several costs, can be ensured [13].

We are aiming for computer-based simulation through the
Python platform, where Age of Information (AoI) plays a prom-
inent role [14]. For the quantitative approaches to data predic-
tion, real-time data is the pivot aspect. In forecasting for the
future or data prediction methods, the data attained from past
periods enhance the logical assumption of the next phenomena.
The majority of the data prediction tools use the primary data
that must be acquired from trustworthy sources in an impartial
manner [15]. Data-driven prediction models are mostly applied
for the forecasting of pandemic situations. Data collection, clas-
sification, model generation, and validity testing are very closely
connected to the AoI [16]. In those sequences of activities, AoI
justifies data modernity by investigating the requirement of
the proposed model, which also ensures the usefulness and
successive updates of the information over the required period
[17]. In the present days, optimization of the data prediction
accuracy is another prime concern of the AoI [18]. Data feasibil-
ity, adjustment to the proposed models, and analysis of the
physical attributes greatly rely on AoI-based strategies [19].
For the betterment of the data collection, transmission, alloca-
tion, and implementation Internet of Things (IoT) act as the
key supportingmechanism [20, 21]. Sensor-based artificial intel-
ligence (AI) with remote access is a distinguished ingredient of
IoT that makes the remote sensing data arrangement more fea-
sible than in the past [22]. Machine learning (ML) technologies
provide a wide range of facilities for data structure, similarity
analysis, and prediction yielding maximum efficiency with min-
imum effort [23]. Presently, IoT is massively used for healthcare
functions, basically for decision-making features. In the current
COVID-19 spreading, the overall scenario of community trans-
mission, deaths, recoveries, and medication information is
accommodated through the various modes of IoT [24, 25].

Epidemiological modeling is done by integrating mathe-
matical modeling into the system that works on a certain pop-
ulation, which can be divided into nonintersecting classes,
such as susceptible (SðtÞ), infective (IðtÞ), and removed (RðtÞ
) [26, 27]. Infective classes of the population and then specify
the behavior of casual agents in different compartments were
analyzed over time [28, 29]. The simplest compartmental
model is SIR, which is used for epidemiological modeling
[30]. Since each disease is distinct, models must be adjusted
depending on the epidemic’s parameters and components.
SIS, SIR, SIRD, SEIR, SIQR, and SEIRD are some of the
extended versions of SIR that researchers use for epidemiolog-
ical modeling [31–33]. Using epidemiological models, we can
show how different public health interventions may affect the
outcome of the epidemics [34, 35].

Epidemiological modeling is a great tool for estimating the
future of a pandemic, and researchers always try to optimize
these models. Great work to comprehend these models has
been proposed by Herbert Hethcote, in which he presented
overviews of different compartmental models and their theo-
retical characteristics [36]. Jesus Fernandez-Villaverde and
Charles I. Jones have introduced the SIRD model to estimate
standard epidemiological modeling of COVID-19 [37]. How-
ever, only death data from many countries around the world
was used in their models. They have made certain additions,
including inverting the SIRD model and introducing an addi-
tional recovery state for those who seem to be infectious for a
couple of days but took longer to recover. Through the simu-
lation, they tried to predict the possible outcomes of COVID-
19. Saulo B. Bastos and Daniel O. Cajueiro have also used
compartmental models such as SIR, SIRD, and SIRED to fore-
cast the growth of COVID-19 in Brazil [38]. They proposed
two variations of the SIRmodel and added a parameter to ana-
lyze the effect of social distancing. However, an optimal con-
trol method for models like SIR, SIRD, and SEIRD can be
found in the work of Morton and Wickwire [39].

Themain challenge in epidemiological modeling is finding
accurate data on cases. So researchers have to make some
assumptions for the sake of their work. Sincemany parameters
get ignored this way, the accuracy level significantly fluctuates.
Fernandez-Villaverde and Charles I. Jones had faced similar
kinds of difficulties [37]. As they have only focused on death
data, they came to a conclusion based on a relatively simple
model. Then again, as the massive test campaign did not take
place, the exact number of deaths is still unsure. Saulo B.
Bastos, in his paper, has urged to test the population as there
is a possibility that an asymptomatic individual too can be a
carrier of the virus [38].

To fight against any disease, we need to know the exact
number of people at high risk and provide them with the
proper healthcare. However, it is hard to do in such over-
crowded countries as Bangladesh, India, and Indonesia. As a
result, a great number of people remain uncovered (those
who are susceptible to the coronavirus but are not tested).
Some components are accountable for this, for instance, insuf-
ficient funding for running a massive campaign, hurriedly col-
lecting data, and lacking human resources to reach every
corner of the country. Similarly, due to social and monetary
issues, a significant number of apathetic people (those who
are unwilling to take a test ormaintain proper instructions after
being exposed) intend to refrain from healthcare activities.
Most apathetic people are illiterate and make their decision
over some rumor. So they fear going through the testing proce-
dure. Another main reason is that they cannot manage enough
money on time to go to the hospital and receive treatment.

The SEIRD model, one of the epidemiological models
that researchers and epidemiologists use to predict the future
of a pandemic, comprises five branches, namely, susceptible
(S), exposed (E), infected (I), recovered (R), and dead (D)
[40]. Susceptible are those groups of people who are not
infected but are at high risk of getting COVID-19. Those
who are prone to the infection can be categorized as
exposed. The infected category is for those who have tested
COVID-19 positive. Finally, after these three states, people
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would either recover or die. The basic SEIRD model is
shown in Figure 1.

We have added two more branches to the main SEIRD
model in our work, namely, uncovered (U) and apathetic (A
), intending to estimate the future of COVID-19. This uncov-
ered stage is a subcategory of susceptible, which means some
people remain uncovered even if they are at high risk, and
the apathetic people are included in the exposed state who does
not receive the proper treatment. In this work, we have utilized
real-time input-data-based simulation techniques incorporat-

ing Python programming with the mathematical induction
approach. Our system is designed and trained to take the input
data and provide the predicted data with significant accuracy.
We have justified the proposed model by comparing the pre-
dicted data with the real-time data by the graphical manifesta-
tion. Error analysis of the data prediction is provided through
the relative error expressed as the percentage, where the figura-
tive interpretation is incorporated with the statistical analysis.
Finally, some numerical assessment was done by the correla-
tion and regression analysis. We expect this work will facilitate

ES
𝛼 𝛾

𝛿

𝜇

I

D

R
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Figure 2: Flowcharts of the models designed in [41].
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exploring the spreading characteristics of COVID-19, along
with its future growth. It may help in making different govern-
ment policies as well.

2. Materials and Methods

Presently, COVID-19 is one of the atrocious epidemics in the
world. From a statistical point of view, the SEIRD model is
being studied systematically. Too many researchers have pro-
posed various models using this, as wementioned before. Sim-
ilarly, we have investigated the extensions of the basic SEIRD
model in our previous work and introduced two extended
models by adding the branches uncovered and apathetic,
respectively [41]. The extended SEIRD models are exhibited
below in subfigures of Figure 2, respectively.

List of the parameters with the corresponding symbols
are given in Table 1.

Later on, it seemed that if the whole ingredients could be
shown in a single model rather than separate models, the
acceptability and adaptability of this updated SEIRD model
would be preferable to before. Consequently, we are propos-
ing an improved version of the SEIRD model, where we have
merged the previous extensions.

2.1. ProposedModel. In the proposedmodel, we are incorporat-
ing the basic components of the SEIRD model with that of the
unprivileged classes of the population, namely, the uncovered
and apathetic. The improved proposed version of the extended
SEIRD model would be able to illustrate the real-time scenario
of the pandemic situation in Third World countries. The pro-
posed extension of the SEIRD model is depicted in Figure 3.

2.2. Mathematical Formulation. The components connected
to the physical phenomena incorporated with the logical affir-
mation enhance the composition of a mathematical model
that can comprehensively manifest the attributes of the objec-
tive population. The following system of governing equations
designs the formulation of the proposed improved epidemio-
logical model.

ΔS = −α
S × E
N

− β
S ×U
N

, ð1Þ

ΔU = β
S ×U
N

− σU − τU , ð2Þ

ΔE = α
S × E
N

− γI − λA − ρIs, ð3Þ

ΔA = λA − ωA − ηA, ð4Þ
ΔI = γI − δI − μI, ð5Þ

ΔIs = ρIs ð6Þ
ΔDI = δI, ð7Þ
ΔRI = μI, ð8Þ
ΔDA = ωA, ð9Þ
ΔRA = ηA, ð10Þ

ΔDU = σU , ð11Þ

ΔRU = τU: ð12Þ

Variations of the different components of the epidemio-
logical models are contingent on the rate parameters of the
governing equations. Equations (1) to (12) are expressing the
successive increment in the desired components of the pro-
posed model. In each equation, the target component is taken
as the node, whereas incoming and outgoing components are
taken as the positive and negative flows for the corresponding
component. Rate parameters are taken as the weight for each
incoming and outgoing component. The linear combinations
of the total flows provide the desired increment of the target
component.

To find the rate parameters of the proposed model, we
have to solve the Equations (1) to (12). The simplified forms
of those rate parameters are given below.

τ = ΔRU

U
, ð13Þ

Table 1: List of parameters.

Symbol Name of the parameter

N Total population

S Susceptible population

E Exposed population

I Infected population

DI Died population from infection

RI Recovered population from infection

Is Isolated population

U Uncovered population

DU Died population from uncovered

RU Recovered population from uncovered

A Apathetic population

DA Died population from apathetic

RA Recovered population from apathetic

α Rate of exposed population

β Rate of uncovered population

λ Rate of apathetic population

ρ Rate of isolated population

γ Rate of infected population

δ Rate of infected population death

μ Rate of infected population recovery

σ Rate of uncovered population death

τ Rate of uncovered population recovery

ω Rate of apathetic population death

η Rate of apathetic population recovery
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σ = ΔDU

U
, ð14Þ

η = ΔRA

A
, ð15Þ

ω = ΔDA

A
, ð16Þ

μ = ΔRI

I
, ð17Þ

δ = ΔDI

I
, ð18Þ

ρ = ΔIs
Is

, ð19Þ

γ = ΔI+ΔDI+ΔRI

A
, ð20Þ

λ = ΔA+ΔDA+ΔRA

A
, ð21Þ

β = ΔU+ΔDU+ΔRU

S ×U
×N , ð22Þ

α = ΔE+ΔI+ΔDI+ΔRI+ΔA+ΔDA+ΔDA+ΔIs
S × E

×N: ð23Þ

3. Results and Discussions

Validation of the proposed model is investigated in this sec-
tion with practical pieces of evidence. We have applied the
improved SEIRD model to analyze and forecast the COVID-
19 circumstances in Bangladesh. We have observed the indi-
viduals of the cases for the components susceptible, exposed,
uncovered, isolated, infected, and apathetic, along with the

occurrences of deaths and recoveries. In this scheme of inves-
tigation, we have used the experimental data collected from
some trustworthy sources and configured them according to
the requirement of the proposed model.

3.1. Data Collection Scheme and Setting Arrangement. A well-
grounded data set is a fundamental prerequisite for validating
mathematical models. The present work scrutinizes a very
sophisticated contemporary issue, namely, COVID-19. Thus,
the selection of a real-time data set is a very crucial task.
Attaining authentic data is always a cumbersome assignment.
In the data collection process, we have inquired into several
types of public data sources, for instance, health-care-related
national and international news portals, and open-source data
directories of government and nongovernment agencies. We
have collected the COVID-19-related information from social
sites as well. Moreover, due to their absence in well-established
institutions, few data are collected locally from newspapers
and news bulletins.

The assembled data set comprised the columns of the total
number of susceptible, exposed, uncovered, isolated, infected,
and apathetic cases with corresponding deaths and recoveries.
Here, we can refer some reliable sources of practical data, such
as DGHS Bangladesh, Corona Info, IEDCR, Worldometer,
and WHO. The real-time data of 46 days from 16 June 2021
to 31 July 2021 are collected and considered in this research
for predicting the data for desired upcoming days.

3.2. Methodology of the Data Prediction. The desired predic-
tion will be estimated by the proposed model utilizing numer-
ical simulations. The Python programming language will be
assimilated for the simulation codes. To predict the future
data, from the previous works, it has been seen that the SEIRD
models can be trained for at most 7 days, and it has been
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extended to 15 days in [41]. Now, we aim to assign the pro-
posed model for training over more than 15 days to predict
the future data for longer. We employed the real-time data
for 21 days from 11 July 2021 to 31 July 2021 and predicted
the future data for 30 days from 1 August 2021 to 30 August
2021. According to the successive prediction process, the pro-
posed model learns the data every 30 days, predicts the out-
come of the next day, and does the same for the next days,
which is a recurrence prediction strategy.

3.3. Figurative Comparison of the Predicted Data with the Real-
Time Data. To justify the validity and accuracy of the proposed
model, a figurative comparison between real-time data and the
predicted data for the target components is considered. Predic-
tions of the total number of cases are pointed out for each com-
ponent, and the number of individual cases can be found by
taking successive differences of two consecutive days.

Figures 4, 5, and 6 demonstrate the comparison of real-
time data and predicted data of the total number of uncov-
ered, infected, and apathetic cases along with the corre-
sponding deaths and recoveries, respectively.

Figures 7 and 8 exhibit the comparison of the real-time
and predicted data of the total number of exposed and isolated
cases. The dates of the target period are depicted in x axis,
whereas the number of respective cases is depicted in y axis.
Scaling of y axis is distinctly taken so that the difference
between real-time and predicted data could be significantly
ascertained.

The subfigures of Figures 4, 5, and 6 illustrate admissible
resemblance of the real-time and predicted data of uncovered,
infected, and apathetic cases along with the corresponding
deaths and recoveries, respectively. The prediction process
was excellent for about 20 days, and then, the deviation started
for a few cases. However, this is not surprising as the real-time

data pattern was nonlinear, whereas in most of the cases, the
pattern of predicted data lost the nonlinearity.

From Figures 7 and 8, it is conspicuous that both the
real-time and predicted data for the exposed and isolated
cases have nonlinearity. Still, the trend is not the same and
has noticeable fluctuations. This happened due to the lack
of trustworthiness of the collected data and peoples’ unwill-
ingness to maintain public health regulations. Moreover,
many of the exposed and isolated cases were not firmly
recorded because of the initial infrastructural infelicity of
the healthcare institutions.

Thus, from the figurative comparison, it can be claimed
that the proposed model can be competently used to predict
the future data for the epidemics for up to 20 days for most
of the components and almost 30 days for some of the
components.

It can be said that, if we reduce the number of prediction
days, the fluctuations between the real-time data and predicted
data for the target cases can be optimized. Also, if we can get
more reliable open-source real-time data, the better predic-
tions can be gained by utilizing the proposed model.

3.4. Error Analysis. Since we have scaled the graphs for
exploring the variations of the real-time and predicted data
distinguishable, the scales were not uniform for all of the
components of the epidemiology. So, to clarify the variations
properly, their descriptive analysis is essential. The relative
errors for the target components expressed in percentage
are appraised in the error analysis. Figure 9 displays the rel-
ative errors in percentage for all the components for 30 days
from 1 August 2021 to 30 August 2021.

From Figure 9, it is obvious that for the first 10 days, no
significant errors can be seen for all the components but in
isolation. The errors for all components other than isolation
are allowable for up to the next 10 days. For the final 10
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days, the errors for DI , RI , and E are comparatively signifi-
cant, whereas the error for Is is remarkable. The unbounded
error for isolation cases is due to the improper healthcare
management and ignorance of the basic healthcare regula-
tions of the mass people in practical, which are methodically
neglected in the prediction process. To disclose the plenary
scenario of the error analysis, a tabular exposure of the sta-
tistical ingredients of error analysis, including minimum
value, maximum value, average, and standard deviation
(SD) of the relative errors, is provided in Table 2.

So, from the graphical and tabular pieces of evidence, it is
ascertained that almost all of the target components of the epi-
demiology proposed model can be suitably implemented.

3.5. Correlation and Regression Analysis. The number of
deaths and recoveries are the most prominent components
of the epidemics, and most epidemiological models are
designed to predict them essentially. From the previous sec-
tions, it is already justified that the component’s deaths and
recoveries can be properly predicted by implementing the
proposed model. In this section, the correlation and regres-
sion analysis of the real-time and predicted data will be done
for the deaths and recoveries of the uncovered, infected, and
apathetic cases, respectively.

Table 3 displays the correlation coefficients of the deaths
and recoveries of several cases’ real-time and predicted data.
The table shows that the deaths and recoveries of those cases
are perfectly correlated with a correlation coefficient of
almost 1. However, according to the numerical evidence,
predicted data shows a better correlation than real-time data.

Table 4 displays the regression coefficients of the deaths
and recoveries of several cases’ real-time and predicted data.
From the table, it is seen that for both the real-time and pre-
dicted data, the number of deaths is dominant over the
number of recoveries. In all cases, the rate of the dominance
of the number of deaths is a bit higher for the predicted than
that of the real-time data.

It is crucial to predict the number of deaths and recover-
ies according to the cases arising from uncovered, infected,
and apathetic people. The regression lines for predicting
future data of deaths and recoveries depending on the cur-
rent data of the uncovered, infected, and apathetic cases
for both real-time and predicted data are given below.

D̂
realð Þ
U = −933:6246 + 0:0273U realð Þ, ð24Þ

R̂
realð Þ
U = −8909:3481 + 0:6215U realð Þ, ð25Þ

D̂
realð Þ
I = −10049:5275 + 0:0241I realð Þ, ð26Þ

R̂
realð Þ
I = −758521:1255 + 1:4507I realð Þ, ð27Þ

D̂
realð Þ
A = −3943:1641 + 0:0303A realð Þ, ð28Þ

R̂
realð Þ
A = −43714:3876 + 0:6484A realð Þ, ð29Þ

D̂
predictedð Þ
U = −4804:5386 + 0:0346U predictedð Þ, ð30Þ

R̂
predictedð Þ
U = −111093:6636 + 0:8149U predictedð Þ, ð31Þ

D̂
predictedð Þ
I = −7768:5885 + 0:0226I predictedð Þ, ð32Þ

R̂
predictedð Þ
I = −791304:2687 + 1:4961I predictedð Þ, ð33Þ

D̂
predictedð Þ
A = −14401:8629 + 0:0451A predictedð Þ, ð34Þ

R̂
predictedð Þ
A = −348195:9455 + 1:0813A predictedð Þ: ð35Þ

So, by exerting the number of uncovered, infected, and
apathetic cases in the above regression lines, the number of
future deaths and recoveries corresponding to these cases
can be suitably predicted.
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Figure 6: Comparison of the real-time data and predicted data for the apathetic population with respective deaths and recoveries.
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Figure 7: Comparison of the real-time data and predicted data for the exposed population.
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Figure 8: Comparison of the real-time data and predicted data for the isolated population.
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Figure 9: Relative errors of the data prediction for the target components.

Table 2: Error analysis of the data prediction.

Component Minimum value of RE (%) Maximum value of RE (%) Average of RE (%) SD of RE (%)

U 0.019989619 1.333720125 0.699549631 0.388538502

DU 0.029713267 4.402515723 1.166717887 1.243956252

RU 0.004975998 4.924759094 1.308852504 1.452518706

E 0.137083351 5.928316544 3.103290897 1.729532422

Is 2.223648509 31.8528292 13.06339325 9.295056472

I 0.064410718 5.380764019 1.623503267 1.386483902

DI 0.021138968 7.219343696 1.898730126 2.118184882

RI 0.313575063 10.37146118 3.301024967 3.066394265

A 0.063733904 4.188094412 3.048232455 1.277145975

DA 0.097092092 2.076857869 0.832487017 0.514673584

RA 0.017224001 2.571790272 0.655207578 0.689055442

Table 3: Correlation coefficients of the number of deaths and recoveries for different categories of the population.

Category Uncovered Infected Apathetic

Real-time data 0.99997024 0.99957924 0.99926613

Predicted data 0.99999994 0.99999998 0.99999996

Table 4: Regression coefficients of the number of deaths and recoveries for different categories of the population.

Category Uncovered Infected Apathetic
Dominance DU RU DI RI DA RA

Real-time data 22.7440 0.0440 60.2672 0.0166 21.7049 0.0460

Predicted data 23.5270 0.0425 66.1188 0.0151 23.9799 0.0417
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4. Conclusion

In this work, an improved SEIRD model was derived and
applied for the underprivileged people in the contemporary
pandemic, a combination of two extensions of the basic
SEIRD model derived in previous work. The uncovered and
apathetic cases and the associated deaths and recoveries are
constituted in this improved version of the SEIRD model. As
the data-driven validation of the proposedmodel, we explored
the pervasiveness of COVID-19 from the Bangladesh perspec-
tive. Implementing the improved SEIRD model, we have
gained the appeasement outcomes in all components except
the isolated cases. The reasons behind the infirmity of predict-
ing isolated cases are conferred. From the figurative compari-
son and analysis of error, it is apparent that the improved
SEIRD model can practically implant for the prediction of
future data based on the real-time data. From the statistical
overview delineated in this work, it can be said that the deaths
and recoveries are perfectly correlated for all sorts of real-time
data cases, and the predicted data follows the same trend.
According to the regression analysis, it is evident that the
number of deaths is expressly over the number of recoveries
for both real-time and predicted data. The regression lines
for predicting future deaths and recoveries according to the
uncovered, infected, and apathetic cases are also formed. From
both the real-time and predicted data, it is comprehensible
that though the numbers of uncovered and apathetic cases
are not negligible, in contrast to the infected cases, these cases
are enough diminutive. Also, the number of recoveries appre-
ciably outplayed the number of deaths on every occasion.

The number of uncovered cases increased due to the lack
of skilled healthcare workers, misconceived authorities, and
impractical infrastructure. Since the percentage of deaths is
significantly more contemptible than the percentage of recov-
eries, which raised the apathetic cases among the uneducated
and troublesome people. Socio-economic conditions and defi-
ciency of epidemiological knowledge are also responsible for
escalating the apathetic cases.

Recently, a novel epidemiological disease, Monkeypox,
evolved and propagated in many countries. The next research
will try implementing the improved SEIRD model for Mon-
keypox. A machine learning algorithm will be derived to sup-
port the improved SEIRD model, and it is expected that the
machine learning approach will resolve the issue that occurred
in isolated cases.

Data Availability

Data can be found at https://github.com/mu2mahmud/
Improved-epidemiological-model/.
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