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Viruses remain an area of concern despite constant development of antiviral drugs and therapies. One of the contributors is the
Flaviviridae family of viruses causing diseases that need attention. Among other anitviral methods, antiviral peptides are being
studied as viable candidates. Although antiviral peptides (AVPs) are emerging as potential therapeutics, it is important to
assess the efficacy of a given peptide in terms of its bioactivity. Experimental identification of the bioactivity of each potential
peptide is an expensive and time consuming task. Computational methods like proteochemometric modeling (PCM) is a
promising method for prediction of bioactivity (pIC50) based on peptide and target sequence pair. In this study, we propose a
prediction of pIC50 of AVP against the Flaviviridae family that may help make the decision to choose a peptide with desired
efficacy. The peptides data was collected from a public database and target sequences were manually curated from literature.
Features are calculated using peptide and target sequence PCM descriptors which consist of individual and cross-term features
of peptide and respective target. The resultant R2 and MAPE values are 0.85 and 8.44%, respectively, for prediction of pIC50
value of AVPs.

1. Introduction

Viral diseases have been a cause of multiple epidemic out-
breaks in the last few decades. This includes many different
viruses like Ebola, Zika, Dengue, SARS, and others.
Although belonging to one bigger group of viruses, they dif-
fer a lot in their activity, sequence, structure, and function.
Viruses are also known to have continuous mutations, which
makes it necessary and complex to identify antiviral drug
candidates. This leads to the need for continuous drug devel-
opment. Recently, peptide-based antivirals have gained a lot
of importance and have shown promising development [1].
In this work, we study methods to predict the pIC50 value
for the Flaviviridae family. Among various types of viruses,
publically available data is found majorly for hepatitis C
virus (HCV) and dengue virus (DENV). Rajput and Kumar
developed an algorithm to identify inhibitory activity of che-
micals from ChEMBL and peptides from AVPpred data-
bases against Flaviviruses using QSAR method [2].
Recently, Geoffrey et al. developed machine learning based
Auto-QSAR using PubChem data, which generated drug

leads for Flaviviruses. For the drug leads and their target
proteins in silico modeling was performed [3].

Generally, antiviral peptides are studied based on physi-
cochemical properties, evolutionary properties, and profiles
based on only peptide attributes [4]. However, a peptide
can have good physicochemical properties that are similar
to other bioactive peptides but its efficacy cannot be identi-
fied unless its bioactivity is experimentally determined. The
inhibition constant (IC) 50 value is commonly used for vali-
dating the activity of a peptide. Experimental determination
of IC50 is an expensive and tedious task. Taking all the
potential peptides for experimental validation might not be
feasible. Prediction of IC50 values can reduce the time and
effort and help in selecting the most promising peptide for
further experimentation. There is very little research done
in the area of in silico methods for IC50 value prediction.
To understand the IC50 of a peptide, it is necessary to under-
stand the interaction with the target protein. One method for
doing so is proteochemometric modelling (PCM).

PCM is a computational method that can predict the
bioactivity relations between ligand and targets. It is a
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method to incorporate the target interaction into sequence-
based analysis. Three types of descriptors are included in
PCM-Target descriptor (captures information of target),
Ligand descriptor (captures information of ligand), and
Cross-term descriptor (captures interaction between the
ligand and its target). With the different types of interactions
studied, the scope of PCM has expanded to include protein-
peptide, protein-DNA, and protein-protein interactions.

1.1. Literature Survey. Recently, Parks et al. using the
ChEMBL25 dataset, generated proteochemometric models
to predict pIC50 using random forest and feed-forward neu-
ral network [5]. The study checked the usability of PCM
model to classify binders and nonbinders. For the
ChEMBL25 data set, various physicochemical properties like
log P, molecular weight, number of specific bonds, and fin-
gerprints were used as descriptors. Yordanov et al. demon-
strated the use of PCM for analysing the structure-affinity
relationship of antigen peptides binding to HLA-DP proteins
[6]. The HLA system plays an important part in the immune
system. The HLA proteins bind to a wide range of antigenic
peptides, which is essential for the immune recognition of
the antigens. The chemical structures of peptides and pro-
teins used were described by three z-scales. Bio-activity
modeling of multiple compounds against protein isoforms
was done by Rasti et al. using proteochemometrics modeling
[7]. They applied PCM to investigate inhibition of Carbon
Anhydrase isoforms using a combination of different
descriptors (three z-scale, five z-scale and, GRIND). Muta-
tions affect the antimicrobial activity. The PCM model has
also been used to identify the mutations. The study by Nabu
et al. helped in understanding the impact of physicochemical
properties of mutated amino acids on the resistance of peni-
cillin binding proteins [8]. The mutation positions and vari-
ous chemical descriptors were utilised as protein sequence
and ligand descriptors, respectively.

1.2. Approach. In this work, we developed a PCM-based
model for the prediction of pIC50 values for peptides against
the Flaviviridae family. The peptides and target proteins
were cumulatively studied using PCM descriptors which
included peptide properties, z-scales for peptides, proteins,
and peptide-protein interaction. The complete workflow of
the study is shown in Figure 1.

The overall approach of the study includes:

(i) Curation of dataset

(ii) Defining PCM descriptors

(iii) Methodology and training of the machine learning
model

(iv) pIC50 prediction algorithm results

2. Materials and Methods

This section elaborates on data, features, and details of the
machine learning algorithms.

2.1. Curation of the Dataset. The datasets are made up of
publically available antiviral peptide data with their IC50
values and the target proteins collected from the literature.
This results in two datasets:

(i) Antiviral peptides with IC50 values (Dataset 1) and

(ii) Antiviral peptides with IC50 values and their target
proteins (Dataset 2).

2.1.1. Dataset 1. Antiviral peptide data is taken from the
publicly available AVP-IC50 dataset [9]. The dataset consists
of AVP sequences, IC50 values in micromolar and their
respective viral families. From these, peptides for only the
Flaviviridae family are taken, constituting Dataset 1 with
total of 130 sequences.

2.1.2. Dataset 2. For Dataset 2, along with the AVP, Flavivir-
idae target proteins are also taken. The target proteins of the
antiviral peptides have been identified in the literature
[10–30]. Here, 50 peptide sequences out of 130 have defined
targets. These 50 peptide sequences along with their target
protein sequences form Dataset 2. Target protein sequences
are extracted from Uniprot [31].

2.1.3. pIC50. The IC50 values in the datasets ranged from
0.001 micromolar to 440 micromolar making the distribu-
tion very skewed, as shown in Figure 2(a). This would have
made it difficult for the model to extract informative pat-
terns to learn from. Thus, the IC50 values were negative
log transformed to give the pIC50 value. This is done using
the following formula:

pIC50 = − ln IC50 ∗ 10−6
� � ð1Þ

The data distribution after converting to pIC50 is shown
in Figure 2(b). Hereafter, pIC50 will be used in the rest of the
paper.

2.2. Defining PCM Descriptors. PCM modeling works based
on descriptors which are mathematical representations of
various properties of peptides and their target proteins.
Here, we are looking at the following descriptors which are
calculated for peptides and their target proteins:

(i) Physicochemical properties of peptides and target
protein

(ii) Z-scale for peptides, target protein, and their cross-
term

Physicochemical properties. Peptide and target protein
properties were calculated from their amino acid sequences
using Biopython package [32]

Z-scales. The peptides and target proteins used in this
work are represented using five z-scale descriptors (z1, z2,
z3, z4, and z5) of their amino acid as derived by Sandberg
et al. [33]. The z-scale represents their hydrophobicity ðz1Þ,
steric bulk properties and polarizability ðz2Þ, polarity ðz3Þ,
and electronic effects (z4 and z5). These five z-scales are
the principal components of 26 computed and measured
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physicochemical properties of amino acids. To get a z-scale
descriptor for a peptide and protein, the average is taken of
their amino acid z-scale vectors. The z-scale descriptors for
both peptides and proteins are normalized to standard nor-

mal. In order to incorporate the information about the
interaction between protein and the peptide, cross-term
descriptors were also included. This is calculated as flat-
tened out outer product of normalized peptide z-scales
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Figure 2: Distribution of IC50 and pIC50 values.
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using Random Forest.
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and normalized protein z-scales resulting in 25 (5x5)
dimensional vector. As a result, each peptide-protein pair
is represented as a 35 dimensional vector (5 peptide z-scale,
5 protein z-scale and 25 cross-term)

Descriptor groups. In order to perform various machine
learning experiments, multiple groups of descriptors were
created as defined as follows:

(i) Physicochemical properties for peptides (PP)

(ii) Physicochemical properties for target protein (TP)

(iii) Peptide z-scale descriptors (PZ)-5 z-scale descrip-
tors calculated for peptide sequences

(iv) Target protein z-scale descriptors (TZ)-5 z-scale
descriptors calculated for target protein sequences

(v) Cross term descriptors (XZ)-Multiplication of pep-
tide and target protein z-scale descriptors generated
the cross term descriptors group

2.3. Machine Learning Details. In this section, we discuss the
features selection method, machine learning algorithm, and
evaluation criteria of the model.

Feature selection. In machine learning, it is important to
have useful input features or descriptors. Therefore, in order
to remove uninformative predictors, feature selection is car-
ried out. This not only removes noise from the data, but also
reduces dimensionality of the data which makes the trained
model less complex and more interpretable. The feature
selection for this work is carried out in two steps. First, the
feature ranking is obtained using Recursive Feature Elimina-
tion. This is followed by adding the features iteratively start-
ing from the highest ranking feature and checking for their
predictive performance. Further, only those features were
added to the final feature set whose addition improved the
adjusted-R2 value. The calculation of adjusted-R2 based on
R2 value is as follows:

adjusted − R2 = 1 − 1 − R2� �
n − 1ð Þ

n − p − 1 , ð2Þ

where R2 is sample R-squared value, n is number of exam-
ples, and p is number of predictors.

Random Forest. Random Forest is an ensemble learning
method for classification and regression. The underlying
principle is to construct multiple decision trees and aggre-
gate the output from each decision tree. In case of a regres-
sion problem, most common means of aggregating the
output is mean of the predictions. In Random Forest, each
of the decision tree is trained on a randomly selected subset
of features and examples from the training data which
causes each tree to learn different patterns from the same
training data. This results in a reduced variance, making
the model more effective. Random Forest regressor model
from scikit-learn library [34] was used

Evaluation criteria. The selection of informative perfor-
mance metrics is vital in order to measure effectiveness of
a prediction model. Therefore, to informatively measure

performance of the prediction models, performance mea-
sures used in this work is described as follows:

(i) Root Mean Squared Error (RMSE):

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
i

yi − ŷið Þ2
s

ð3Þ

(ii) Mean Absolute Percentage Error (MAPE):

MAPE = 1
n
〠
i

yi − ŷij j ∗ 100
yi

ð4Þ

(iii) R-squared value (R2):

R2 = 1 − SSres
SStot

,

SSres =〠
i

yi − ŷið Þ2,

SSres =〠
i

yi − �yð Þ2,

ð5Þ

where SSres is residual sum of squares, SStot is total sum of
squares

(iv) Pearson’s Correlation Coefficient (PCC):

PCC = ∑i yi − �yð Þ ŷi − �ŷ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yi − �yð Þ2� �

∑i ŷi − �ŷ
� �2� �r , ð6Þ

where y is actual pIC50 value, ŷ is predicted pIC50 value, �y is
mean of actual pIC50 values, and �ŷ is mean of predicted
pIC50 values

2.4. Methodology. This section elaborates on utilizing the
curated data, properties, and algorithm for training the

Table 1: Range of values used to tune hyperparameters for
Random Forest.

Hyperparameter Ranges

n_estimators 100, 200, 250, 300, 500, 1000, 1500

min_samples_split 2, 5, 10

min_samples_leaf 1, 2, 4

max_features auto, sqrt, log2

max_depth 2, 3, 5, 10, 15, 20, None

bootstrap True, False
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suitable model. As explained in 2.1, properties were calcu-
lated for Dataset 1 and Dataset 2. Dataset 1 was studied
using physicochemical properties. However, for Dataset 2
all descriptor groups (as explained in Section 2.2) were cal-
culated as they contain both peptide and target protein
information. Using only the peptide properties for Dataset
1 to train the model, resulted in lower R2 value. Considering
this, this study further focuses on utilizing Dataset 2.

We see an improvement in the results with the addition
of peptide and target property groups in the model. Using
multiple sequence descriptors can be helpful for the model
to learn. Hence, along with properties, z-scales are used to
represent the sequences. The model was trained on peptide
(PZ) and target protein z-scales (TZ), which further
improved the performance of the model. The PCM
approach includes one more cross-term group (XZ). A com-
bination of property groups for peptides (PP), target pro-
teins (TP), and z-scale groups (PZ, TZ, and XZ) performs
the best out of all the combinations. The descriptors calcu-
lated and the combinations are illustrated in Figure 1. Fur-
thermore, in order to remove the noisy or noninformative
features, we performed feature selection as explained in Sub-
section 2.3. During the feature selection phase, Random For-
est with default parameters is used as a base regression
model.

The Random Forest model is then tuned on the selected
features to achieve the best performance. For this, we use the
grid search approach where hyperparameters form the axis
of the grid and each point on the grid is a combination of
defined values for each hyperparameter. 5 fold cross-
validation on Mean Absolute Percentage Error (MAPE)
helps to obtain best performing hyperparameter values.
The hyperparameters and their values for which the Ran-
dom Forest model is tuned are mentioned in Table 1. As a
last step, the Random Forest training is done on the best pre-
forming feature set and hyperparameters, and its predictive

performance is evaluated. Furthermore, to ensure fairness
of the results, all performance measures are calculated using
Leave-one-out (LOO) cross-validation (CV).

3. Results and Discussion

In this section we look at the results obtained for various
combinations of descriptor groups. Results for some of the
example sequences are mentioned in Table 2. It can be seen
from the results that the predicted pIC50 values are very
close to actual pIC50 values. The performance of the model
is evaluated using Leave-one-out cross-validation and the
results are tabulated in Table 3.

The model is trained using only peptide properties
which resulted in the low R-squared value of 0.29 and high
mean absolute percentage error of 17.10%. To understand
this, we have done further analysis of the dataset. We
observed that there are certain peptide sequences in the
dataset which are very similar but still have very different
pIC50 value and vice versa. Similar is the observation for
physico-chemical properties based descriptors. This might
make it difficult for the model to learn informative patterns
from the peptides alone and needs additional information.

Based on the results in Table 3, the rest of the experi-
mentation are performed using PCM approach. The addi-
tion of target protein properties improved the results in
R-squared value of 0.30 and MAPE of 18.82. The combina-
tion of z-scale for peptide and protein significantly
improved the results giving R-squared value of 0.72 and
MAPE of 11.32%. The details of peptide and target protein
combinations for z-scale and physicochemical properties
are detailed in Section 2.2.

In PCM, along with the target and peptide descriptor
groups, cross-term z-scales are often considered as they rep-
resent the potential of peptide and target protein. The model
has been trained using the three descriptor groups (PZ, TZ,
and XZ). The addition of peptide protein cross-term
descriptor slightly improved the predictive performance of
the model further, giving R-squared value of 0.76 and MAPE
of 9.48%.

The best results with R-squared value of 0.85 and MAPE
of 8.44% are obtained with combinations of z-scale and
physicochemical properties.

3.1. Discussion. Despite various scientific discoveries and
advancements, viruses continue to be one of the threats to

Table 2: Actual and predicted pIC50 values for example sequences.

Sequence Actual pIC50 value Predicted pIC50 value

AFLGWIGAIVSTALPQWR 11.289 11.261

ACFPWGNTWCGGK 11.250 11.262

MANAGLQLLGFILAFLGWIGAI 12.429 11.224

RWMVWRHWFHRLRLPYNPGK NKQNQQWP 11.736 11.246

AAQRRGRIGRNPSQVGD 7.934 8.158

RTGRGRRGIYR 10.271 11.294

GELGRLVYLLDGPGYDPIHCSL AYGDASTLVVF 17.678 19.780

Table 3: Results of obtained models.

Descriptor combinations R2 MAPE PCC MSE

PP 0.48 14.04 0.72 6.88

PP+TP 0.72 11.46 0.84 3.70

PZ+TZ 0.72 11.32 0.85 3.63

PZ+TZ+XZ 0.76 9.48 0.87 3.14

PP+TP and PZ+TZ+XZ 0.85 8.44 0.92 1.99

5BioMed Research International



human health [35]. Antiviral peptides (AVPs) are emerging
as one of the interesting alternative therapeutics to viral con-
cerns. Although elusive, antiviral peptides do exhibit certain
physicochemical properties which makes them great candi-
dates for antiviral therapeutics [1]. The work done by Surana
et al. explains the usage of physicochemical properties [36].
Although physicochemical properties do help in identifying
the potential antiviral peptides, IC50 is one of the methods
used for further validating the efficacy of candidate peptides
[37]. In order to predict the candidate peptides as close to
the experimental method as possible, we propose the predic-
tion of pIC50 in our current study.

We initially utilized a combination of peptide properties
and IC50 of known peptides to create the algorithm. How-
ever, we discovered that there is no direct correlation
between the peptides and the IC50 values. The behavior of
a peptide depends on its own properties as well as the nature
of the target against which the peptide is going to act. This is
where PCM methods seem to be the right approach because
it does not only take the peptides but also takes the target
protein into account.

PCM models give the flexibility to study multiple ligands
(peptide in this case) and multiple target setups, which
become beneficial in the current study. As for Flaviviridae
AVPs, although they are all against flaviviruses, they have
different targets that they act upon. As explained earlier,
the major features utilized were the physicochemical proper-
ties of peptides and target proteins. We observed that adding
the physicochemical properties of target proteins improved
the pIC50 prediction for the peptides. Along with the basic
physicochemical properties, the addition of Z-scores gave a
boost to the model performance.

The Z-score includes the hydrophobicity, steric bulk
properties, polarity, polarizability, and electronic effects giv-
ing additional features to the physicochemical properties.
The Z-scores individually cover the features of peptides, tar-
get proteins, and cross-descriptors covering the interaction
features between the peptide and target proteins. The cross-
terms features give an additional edge in terms of covering
the ligand-target interactions instead of only features of indi-
vidual peptides and targets. Multiple combinations of physi-
cochemical properties and Z-score descriptors lead us to the
model with the best descriptors giving good predictions. The
best descriptors identified were target polarity, cross-term of
peptide polarity, and target hydrophobicity along with aro-
maticity. It can be inferred that aromaticity, along with
hydrophobicity and polarity of protein and peptide, best
describes the relationship and hence the prediction of IC50.

We further explored the PCM2Vec methodology for
IC50 predictions. However, we did not get very good results
there, and it needs to be explored further. PCM2Vec can be a
promising algorithm which can be explored in future work.

4. Conclusion

In this study we have applied proteochemometric modeling
to study the pIC50 values for AVPs against the Flaviviridae
family. The activity prediction of probable antiviral peptide
brings in additional validation to the efficacy of AVP to

choose the peptide for further experiments based on their
pIC50 value, and thus reducing the time and cost for the
experimental cycle. As most of the peptides or drug candi-
dates are built against specific targets, being able to predict
their bioactivity values is one step closer to getting more
accurate peptides. This can be further extended to multiple
viral families or target-based PCM models. Currently we
have considered entire target sequences, however, further
study can be done to include binding site residues and their
interactions. Taking binding site residues into consideration
might further boost the algorithm performance.
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