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Objective. To review the progress of research on photoplethysmography- (PPG-) based cuffless continuous blood pressure
monitoring technologies and prospect the challenges that need to be addressed in the future. Methods. Using Web of Science
and PubMed as search engines, the literature on cuffless continuous blood pressure studies using PPG signals in the recent five
years were searched. Results. Based on the retrieved literature, this paper describes the available open datasets, commonly used
signal preprocessing methods, and model evaluation criteria. Early researches employed multisite PPG signals to calculate pulse
wave velocity or time and predicted blood pressure by a simple linear equation. Later, extensive researches were dedicated to
mine the features of PPG signals related to blood pressure and regressed blood pressure by machine learning models. Most
recently, many researches have emerged to experiment with complex deep learning models for blood pressure prediction with
the raw PPG signal as input. Conclusion. This paper summarized the methods in the retrieved literature, provided insight into
the artificial intelligence algorithms employed in the literature, and concluded with a discussion of the challenges and
opportunities for the development of cuffless continuous blood pressure monitoring technologies.

1. Introduction

Cardiovascular diseases (CVD) have become the number
one threat to human health, claiming 10.4 million lives
worldwide each year [1]. Of all its causes, hypertension is
the most dangerous one, because abnormal blood pressure
(BP) can cause damage to vital organs such as the heart,
brain, kidneys, and retina and even lead to myocardial
infarction, cerebral hemorrhage, kidney failure, and other
critical symptoms [2]. In recent years, with the aging popu-
lation, the prevalence of obesity, and other factors, the prev-
alence of hypertension is on the rise around the world.
According to the report of World Health Organization
(WHO), the number of hypertension patients has doubled
in the past 30 years and now exceeds 1.2 billion [3]. More-
over, some studies have shown that an increasing number

of children and adolescents have abnormal blood pressure
which causes negative effects on their health. Therefore, with
its high morbidity, disability, and mortality rates, cardiovas-
cular disease caused by blood pressure abnormalities has
imposed a heavy burden on humans worldwide and became
a major public health problem.

1.1. Introduction to Conventional Technologies. Prevention is
the main way to control the prevalence of hypertension.
Through the real-time detection of blood pressure and
timely intervention of blood pressure, the risk of cardiovas-
cular complications and death can be greatly reduced. Blood
pressure measurement methods are divided into invasive
measurement and noninvasive measurement methods.
Therein, the former method implants a pressure sensor cath-
eter into the aorta to detect pressure changes [4]. This
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method produces accurate results but is expensive, painful,
and not suitable for routine measurement. At present, the
commonly used noninvasive blood pressure measurement
methods include the Korotkoff sound, oscillometric, arterial
tension, and volume compensation methods.

(1) Korotkoff sound method blocks arterial blood flow
by inflating cuff and then uses a stethoscope to iden-
tify the percussive sound of blood flow reopening the
vessel, while measuring the external pressure values
detected by a manometer [5]. The Korotkoff sound
method is the reference standard for cuff intermit-
tent blood pressure measurements, but it is easily
disturbed by external interference and relies on mea-
suring physician’s proficiency

(2) The oscillometric method is similar to the Korotkoff
sound method in that the arterial vessel is blocked by
cuff inflation, and subsequent deflation of the cuff
allows the vessel to flow again. Instead of detecting
the sound, a pressure sensor on the air band detects
the arterial pressure superimposed on the cuff [6].
The main disadvantages of oscillometric method
are that it is sensitive to motion and needs the sub-
ject to remain stationary during measurement.
Therefore, both the oscillometric method and the
Korotkoff sound method need the subjects to wear
a cuff, and thus, only intermittent single-point blood
pressure measurements can be performed

(3) Arterial tension method applies a certain pressure to
the arterial vessel near the skin surface of the human
body to cause a deformation of the vessel wall [7].
When the external pressure reaches a fixed value,
the pressure inside the arterial vessel will be equal
to the pressure on the skin surface, and the external
pressure value can be considered the blood pressure.
However, this method should ensure that the pres-
sure transducer is placed directly above the artery
and remains relatively stationary, which restricts its
development

(4) Volume compensation method detects vascular
blood volume by a finger cuff with a photoelectric
volume sensor [8]. With the constant change of
external pressure acting on the blood vessel wall by
the cuff, the regulating system makes the blood vessel
blood volume constant. Therewith, the external pres-
sure of the cuff is equal to the intravascular pressure,
and blood pressure can be measured indirectly
through the external pressure detection. However,
this method needs to apply pressure to the measure-
ment site of the human body, which may cause
venous congestion during prolonged measurement,
so it is not suitable for continuous measurement

Blood pressure is a dynamic physiological parameter,
which has a diel rhythm [9] and is easy to fluctuate greatly
with emotional changes or external stimuli [10]. A single
intermittent blood pressure measurement usually cannot

reflect the individual’s physiological or pathological condi-
tions. As such, continuous monitoring of blood pressure is
of great significance. Otherwise, the cuff measurement
methods usually cause discomfort to the user, so they are
not suitable for infants, patients with open wounds (skin
burns or ulcers, etc.), and people with large arm circumfer-
ences. Consequently, the research on cuffless continuous
blood pressure monitoring is an urgent and significant task.

1.2. Photoplethysmography. Photoplethysmography (PPG) is
a noninvasive method to detect the blood volume changes in
tissues by photoelectric means. This method is based on the
Lambert-Beer law [11], which indicates that the light passing
through the blood tissue will be attenuated by the length of
the propagation path, the density of the tissue, the absor-
bance, and other factors. The blood volume varies periodi-
cally with the blood ejection of the heart, as does the light
intensity through the skin [12]. PPG waveform reflects
abundant information about the cardiovascular function of
the subject, and its formation is closely related to blood pres-
sure as theoretically proven [13]. Moreover, since PPG signal
can be easily collected with a photoelectric sensor, the pre-
diction of blood pressure by PPG signal is an attractive
and promising research direction.

As shown in Figure 1, the common PPG pulse waveform
comprises an ascending branch and a descending branch.
The ascending branch reflects the process of arterial expan-
sion during ventricular ejection, while the descending
branch reflects the vascular retraction during late ejection.
As the ventricles diastole, the intraventricular pressure
becomes lower than the blood pressure in the aorta, where-
upon the blood flows back, followed by the closure of the
aortic valve and a forward flow of blood. Therefrom, a
smaller rise is formed in the descending branch, exhibiting
a diastolic peak on the waveform.

PPG signals are cheap to acquire, easy to build into
wearable devices (phones, smartwatches, etc.), and free of
cuff limitations. Because of the urgent need for continuous
cuffless blood pressure monitoring, PPG has attracted
numerous attentions of the medical community all over
the world, and a large number of researchers have conducted
in-depth researches in recent years. Using Web of Science
and PubMed as search engines, this paper reviewed PPG-
based continuous cuffless blood pressure monitoring tech-
nologies over the past five years, focused on artificial
intelligence-based solutions, and summarized specific imple-
mentations that could be used for reference.

2. Materials

2.1. Datasets. In the field of blood pressure prediction,
researchers have released some open datasets that provide
a data basis for fair comparison of different algorithms.
Medical Information Mart for Intensive Care (MIMIC) is
the most frequently used public dataset, which is a collabora-
tive effort of physicians and computer science experts from
Beth Israel Deaconess Medical Center (BIDMC), Massachu-
setts Institute of Technology (MIT), Oxford University,
Massachusetts General Hospital (MGH), and others [14].
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The MIMIC dataset provides physiological data such as elec-
trocardiogram (ECG), photoplethysmography (PPG), arte-
rial blood pressure (ABP), and respiration signals (RESP)
collected from intensive care unit (ICU) wards. MIMIC III
V1.4, as the most commonly used dataset version, contains
data on 53,423 adult patients admitted to ICU between
2001 and 2012 and 7,870 neonates admitted between 2001
and 2008. All data in MIMIC are freely available to
researchers worldwide and can be accessed through Physi-
oNet (http://physionet.org/).

The BP dataset in the University of California Irvine
machine learning repository (UCI_BP) is derived from
MIMIC II, and the data is stored in the v7.3 mat format of
MATLAB [15]. This version of the dataset is also widely
used because it has undergone some preprocessing and
validation.

Some studies are based on the Queensland Vital Signs
dataset [16], a monitoring dataset from 32 patients, all of
whom used arterial blood pressure monitoring lasting from
13 minutes to 5 hours. The dataset also saves the corre-
sponding data signal visualization results for easy viewing
and use.

Another dataset used for blood pressure prediction is
clinical data from patients admitted to Guilin People’s Hos-
pital in Guilin, China, and can be downloaded through the
Figshare repository [17]. This dataset (PPG_BP, Figshare)
contains statistics on 657 PPG segments of 219 subjects with
a sampling frequency of 1000Hz, which can be used for in-
depth study of the relationship between PPG signals and
blood pressure.

There are also some researches based on self-collected
datasets, which explored the relationship between PPG signals
and physiological parameters to some extent, but most of these
datasets are small due to the acquisition device and cost.
Table 1 illustrates the datasets commonly used in the retrieved
literature. As the collection time of each subject in the dataset
is long, these long-time signals are usually segmented accord-
ing to the needs of algorithm processing, and the resulting
short duration sequence is called the sample herein.

2.2. Evaluation Metrics. Blood pressure prediction is a
regression analysis and can be evaluated by mean error
(ME), mean absolute error (MAE), standard deviation

(STD), and root mean square error (RSME). The calculation
criterion of ME is shown in formula (1), which represents
the arithmetic mean of the error between the predicted value
(ŷi) and true blood pressure (yi). The calculation criteria of
the MAE and STD are shown in formulas (2) and (3). The
MAE is the average of the absolute values of the errors
between the predicted value (ŷi) and true blood pressure
(yi). The calculation criterion of the RMSE as shown in for-
mula (4) is obtained by calculating the square root of the
mean of the square of the difference between the predicted
value (ŷi) and true blood pressure (yi).
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Compared with ME, the MAE indicator eliminates pos-
itive and negative offsets, and the STD reflects the dispersion
of errors. Hence, MAE and STD are a pair of commonly
used evaluation metrics in blood pressure estimation. The
American Association for the Advancement of Medical
Instrumentation (AAMI) stipulates that the MAE of blood
pressure measuring devices should be less than 5mmHg
and the STD should be less than 8mmHg. Alternatively,
the grading criteria established by the British Hypertension
Society (BHS) are shown in Table 2, which specifies the per-
centages of cumulative frequency with errors less than 3
thresholds, respectively, and achieving grade A or grade B
is in line with the conditions for clinical use.

3. Methods

3.1. Preprocessing. Whether from public datasets or self-
collected datasets, the PPG signals obtained are complex
and easy to overlap with noise. Taking the frequently used
MIMIC as an example, the subjects are patients in ICU,
and their physical conditions have complex impacts on the
PPG signals. Therefore, preprocessing the PPG signals to
obtain high-quality signals is an important link affecting
the accuracy of both subsequent feature analysis and artifi-
cial intelligence models.

(1) Filtering: PPG signal is a very weak signal with a fre-
quency range of 0-25Hz and easy to be disturbed by
external factors as well as its collection device during
the acquisition process. The noises mainly include
baseline drift caused by body motion and breathing
and industrial frequency disturbance caused by elec-
tromagnetic wave radiation. These noises have a
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Figure 1: A common PPG pulse waveform.
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serious impact on the analysis of the PPG signal;
therefore, filtering operations are required. Many
researchers adopted Butterworth filter, which allows
signals within a specific frequency range to pass and
suppresses signals outside the given frequency range.
For instance, Aguirre et al. [18] used a Butterworth fil-
ter with the cut-off frequency set to 0.5-8Hz. Ghosh
et al. [19] used a third-order Butterworth bandpass
IIR filter with the cut-off frequency set to 1.5-20Hz.
Tiloca et al. [20] adopted a Butterworth FIR filter to
limit the PPG signal to the frequency band range of
[0.5-6] Hz. Likewise, Slapničar et al. [21] employed a
fourth-order Butterworth filter with the cut-off fre-
quency of [0.5-8] Hz to eliminate baseline drift and
high-frequency noise. Furthermore in the research
by Slapničar et al. [22], a fourth-order Butterworth
bandpass filter with the cut-off frequency of 0.5-4Hz
was adopted. Other studies such as El-Hajj et al. [23]
chose discrete wavelet decomposition to set the
decomposition coefficients of the low-frequency and
high-frequency components to 0 and performed soft
threshold denoising on the remaining decomposition
coefficients. In the study by Li et al. [24], the discrete
Fourier transform was used to convert the temporal
signal to the frequency domain and filter out the
low-frequency components by setting the cut-off fre-
quency. Besides, the Chebyshev filter with the cut-off
frequency of 10Hz was adopted for PPG signal filter-
ing in the research by Hasanzadeh et al. [25]

(2) Segmentation: the duration of the collected PPG sig-
nals is different. For instance, many PPG signals in
the MIMIC dataset last up to tens of hours. Thus,

PPG signals are usually divided into windows,
referred to herein as segments. The length of the split
windows can be set according to the needs of the
subsequent AI algorithm, ranging from a single cycle
to tens of seconds

(3) Signal quality assessment: the PPG signals are still
complex and variable after denoising; hence, thor-
ough criteria need to be established to remove sig-
nals with poor quality, thereby reducing the
negative impacts of anomalous signals on subse-
quent AI algorithms. This task is challenging, and
no consistent criteria have been established yet,
which often needs to be determined empirically or
experimentally. First, the poor signals can be
removed by some empirical values, such as limiting
systolic blood pressure (SBP) and diastolic blood
pressure (DBP) to 80-180mmHg and 60-130mmHg,
respectively [26, 27], deleting the PPG signals with
heart rate below 60 beats per minute [28], and reject-
ing outliers by using quartile [29] or 3-sigma crite-
rion [30]. Moreover, considering the periodicity of
PPG, some researches adopted autocorrelation
between PPG periodic signals [31], dynamic time
warping [32], or high-order statistics, such as skew-
ness and kurtosis [33, 34], to further standardize
the quality of PPG signals

(4) Normalization: converting the amplitude of the PPG
signal to the range of [0-1] can simplify and enhance
the analysis process of the PPG signal and ensure
that the extracted values are meaningful and fair to
the subsequent characterization process. The nor-
malization methods of these studies are relatively
uniform, with some using the method in formula
(5) to convert the amplitude of the PPG signal to
0-1 [35] and others normalizing the PPG signal to
have a mean of 0 and a variance of 1 [21]:

xi′=
xi −min xð Þ

max xð Þ −min xð Þ , ð5Þ

Table 1: Summary of the database retrieved.

Authors Dataset Subjects Samples Signals

Slapničar et al. [21] MIMIC III 510 — PPG

Aguirre et al. [18] MIMIC III 1131 6478 PPG

Leitner et al. [31] MIMIC III 100 — PPG

Baek et al. [92] MIMIC II 942 1912 PPG, ECG

Schlesinger et al. [93] MIMIC II 329 136459 PPG

Wang et al. [94] MIMIC II 72 58795 PPG

Yen et al. [87] UCI_BP 1551 — PPG

Panwar et al. [86] UCI_BP 1557 — PPG

Khalid et al. [58]
Queensland,
MIMIC II

— 8133, 9877 PPG

Han et al. [33] PPG_BP Figshare — 116 PPG

Table 2: The standards of BHS.

Cumulative error percentage
5mmHg 10mmHg 15mmHg

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%
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where xi′ refers to the amplitude of the sample after con-
version, xi refers to the original amplitude of the sample, and
min ðxÞ and max ðxÞ are the minimum and the maximum
amplitude in the set of samples, respectively

3.2. Methods. A dataset consisting of a large number of PPG
segments (here also called samples) belonging to different
subjects is obtained after preprocessing. Next, the dataset is
divided into training and test sets (deep learning models
may include training, validation, and test sets) according to
proportion or other means and are fed into models for sub-
sequent study. Most researches divided the training and test
sets randomly by sample, while only a few researches divided
the training and test sets strictly by subjects. The latter
method is more recommended. Two factors are considered
in the case: primarily, PPG segments belonging to the same
subject are correlated [32]; thus, dividing the dataset only
by samples may bring out impure results due to the fact that
there are segments of the same subject in both the training
and test sets. Secondarily, considering that we need to deploy
the algorithm on mobile phones or wearable devices in the
future, the users to be tested must be the unseen subjects
in the training set. For the above reasons, it is more robust
to divide the training and test sets by subjects.

3.2.1. Blood Pressure Estimation Method Based on Pulse
Wave Velocity or Transit Time. The propagation speed of
pulse wave is mainly influenced by the compliance of the
arterial vessels. When the blood pressure is high, the arterial
compliance becomes worse, and the propagation speed of
pulse wave becomes faster. Conversely, when the blood pres-
sure is low, then the artery compliance increases, and the
transmission speed of the pulse wave slows down. The equa-
tion for the propagation velocity of waves in an elastic tube
of an ideal type is

c0 =

ffiffiffiffiffiffi

Eh
ρD

s

: ð6Þ

Here, E is the elastic modulus of the artery, h is the thick-
ness of the artery wall, D is the inner diameter of the artery,
and P is the blood density [36]. Pulse wave velocity (PWV)
or pulse transit time (PTT) is an attractive index for blood
pressure estimation. PTT can be considered the interval of
pulse wave transmission time at different sites of arteries,
which is inversely proportional to PWV. Besides, the pulse
arrival time (PAT) has resemblance to PTT, which can be
calculated by the time interval between the R peak of ECG
and the peak of PPG. There are two common measurement
methods for PTT/PAT. One is to synchronously measure
the ECG and PPG signals. Alternatively, multiple sensors
can be deployed at the proximal and distal ends, thereby cal-
culating the time interval between the PPG signals at the dif-
ference sites of the human body.

Once the PTT/PAT/PWV is calculated, blood pressure
can be estimated with a simple formula, which is a common
method in early researches. Viunytskyi et al. [37] recorded
both single-channel ECG and PPG signals through a self-

designed device. The adopted dataset included a total of 30
records consisting of the records collected by the self-
designed hardware and extracted from the MIMIC database.
Blood pressure was estimated by a simple linear equation
with an RMSE of 5.71 for SBP and 5.13 for DBP. Lazazzera
et al. [38] collected PPG signals from the wrist and fingertips
through two sensors placed on the back and the front of the
smartwatch. The time intervals of the two sites PPG were fed
into a linear model to estimate blood pressure. The model
was validated on 44 subjects, and the results almost satisfied
the standard of AAMI. Kim et al. [39] employed two sensors
to collect PPG signals at different locations of the same fin-
ger and estimated blood pressure by a simple model with
the time difference between the two sites PPG. The error rate
was stable at about 5% in a small experimental cohort, and
the error rate referred to the ratio of the prediction error
to the true BP value. The signal acquirement by Byfield
et al. [40] is similar to that designed by Kim et al., and the
time interval of the two sites PPG was subjected to a Gauss-
ian regression model for blood pressure prediction. Other-
wise, Tabei et al. [41] synchronously acquired the PPG
signals at the index of the left and right hand through the
cameras of two mobile phones and sequentially calculated
the PTT to estimate blood pressure.

Some other studies combined phonocardiogram (PCG)
[42], impedance plethysmography (IPG) [43], and ballisto-
cardiogram (BCG) [44] to obtain two sites signals, thereby
estimating blood pressure by PTT/PAT/PWV. However,
both ECG signals and multisite PPG signals require addi-
tional sensors. Hardware consumption increases the diffi-
culty of deployment of wearable devices, and it is
particularly hard to build into mobile phones because of
the difficulty of hardware changes to widely used phones.
Table 3 summarizes BP estimation methods based on PTT/
PAT/PWV presented in the paper.

3.2.2. Blood Pressure Estimation Method Based on Pulse
Wave Analysis (PWA). The morphology of PPG waveform
contains a wealth of physiological and pathological informa-
tion and has a close relationship with the cardiovascular sys-
tem. Pulse wave analysis (PWA) aims at expiring the
physiological significance of the pulse wave by extracting
rich features from PPG and its derivatives and combines
with powerful artificial intelligence algorithms to estimate
blood pressure. The paper [45, 46] provided prospective
studies on the feasibility of using a single PPG signal to esti-
mate blood pressure. Inspired by these researches, extensive
studies are dedicated to mining BP-related features and
combine traditional machine learning for blood pressure
estimation. Researches of blood pressure estimation
methods based on PWV focus on two aspects: One is mining
features with strong correlation to blood pressure, and the
other is the optimization of artificial intelligence algorithms.
Many features of PPG waveform have been experimentally
proven to be related to blood pressure, including the afore-
mentioned PTT. The features adopted in the existing studies
can be classified into time domain features, frequency
domain features, demographic information, etc. As typical
one among them, the peak of PPG waveform is considered
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related to stroke volume [47], while the pulse width at 50%
and pulse area ratio are indicators related to total peripheral
resistance [48]. In addition, the photoplethysmographic
intensity ratio (PIR) can reflect variations in the internal
diameter of the artery and correlates with changes in blood
pressure [49], and the artery stiffness index (ASI) presents
arterial stiffness [50]. Moreover, the K value can reflect the
changes in peripheral resistance of blood vessels, elasticity
of arterial walls, and blood viscosity [51]. The first derivative
(VPG) and second derivative (APG) of PPG play an impor-
tant role in detecting the fiducial points of PPG and analyz-
ing the physiological significance of PPG waveform [52].
Therefore, abundant features can be extracted from the
PPG derivatives for analysis. Furthermore, Fourier trans-
form, singular value decomposition, wavelet transform, and
other techniques can be adopted to map the time domain
signal to the frequency domain, to perform spectral analysis
of the PPG signal. Besides, entropy is a measure of signal
uncertainty [53], so extracting the entropy of the PPG signal
facilitates the analysis of complex blood pressure signals.
Some of the typical features are listed in Table 4, and some
of them are depicted in Figures 2 and 3.

In the existing studies, the maximum feature dimension
extracted from PPG waveform reaches up to more than 200,
among which redundant features will reduce the accuracy of
the model and increase the complexity of the model. Hence,
the feature selection method is advised to reduce the dimen-
sion of features, screen out the most relevant feature subset,
and enhance the accuracy of the algorithm. Correlation anal-
ysis, multicollinearity analysis, recursive elimination, mini-
mum redundancy maximum correlation, and intelligent
optimization strategies such as genetic algorithm (GA) are
all extensively used feature selection methods.

Machine learning algorithms can identify and analyze
the complex mapping between PPG signals and blood pres-
sure, thereby establishing an effective blood pressure predic-
tion model. A large number of researches have applied
different regression models to estimate blood pressure, such
as multiple linear regression (MLR), regression tree (RT),
random forest regression (RFR), support vector machine

regression (SVR), Adaboosting regression, and artificial neu-
ral network (ANN). In particular, some researches have
proved that random forest regression is a more robust algo-
rithm because it can evaluate the importance of features and
is not sensitive to outliers [54]. The BP estimation methods
base on PWA retrieved in this paper are listed in Table 5.

Thambiraj et al. [55] extracted 43 features from ECG and
PPG signals, employed a genetic algorithm to search for the
optimal feature subset, and used a random forest model to
estimate blood pressure. The MAEs of this method were
9.54 and 5.48mmHg for SBP and DBP, respectively. Tiloca
et al. [20] extracted 11 features including PTT, PIR, and
heart rate from PPG and ECG signals in the MIMIC II data-
set and employed a random forest regression model to pre-
dict blood pressure, which obtained a RMSE of 13.01 and
12.89mmHg for SBP and DBP. The two aforementioned
experimental datasets were not large and the experimental
results did not meet the requirements of the BHS or AAMI
standards. Hasanzadeh et al. [25] modified an algorithm
for detecting the fiducial points of PPG signal, which helped
to improve the accuracy of feature extraction. Based on 19
features such as heart rate, pulse width, and reflex index
extracted from PPG signals, the blood pressure was esti-
mated by linear regression, decision tree, random forest,
and Adaboosting regression models. The validation results
on the UCI dataset dedicated that Adaboosting and random
forest regression outperformed other models. However,
compared with the AAMI and BHS standards, the result of
SBP could not satisfy the standards. Liu et al. [56] collected
PPG and ECG signals from 35 clinical patients and extracted
15 relevant features to compare the performance of four
regression models: decision tree, support vector machine,
Adaboosting, and random forest. The results demonstrated
that random forest regression outperformed the other
models, with ME ± STD of SBP and DBP were 0:04 ± 6:11,
and 0:11 ± 3:62mmHg, respectively. Since the study only
enrolled 35 subjects, the performance of the method needs
to be verified on a large experimental cohort. Khalid et al.
[57] extracted 5 features including area, time, and pulse
width on PPG segments refined from the Queensland

Table 3: Summary of BP estimation methods based on PTT/PAT/PWV.

Authors Signals Position of sensors Subjects
Results (mmHg)

SBP DBP

Viunytskyi et al. [37] PPG, ECG Finger, chest 30 records RMSE: 5.71 RMSE: 5.13

Lazazzera et al. [38] PPG, PPG Wrist, finger 5 + 44 subjects
ME: -1.52
STD: 9.45

ME: 0.39
STD: 4.93

Kim et al. [39] PPG, PPG Finger, finger 21 subjects Error rate ≈ 5%

Byfield et al. [40] PPG, PPG Finger, finger 26 subjects
MAE: 2.117
STD: 0.257

MAE: 2.935
STD: 0.721

Tabei et al. [41] PPG, PPG Finger, finger 6 subjects
MAE: 2.07
STD: 2.06

MAE: 2.12
STD: 1.85

Marzorati et al. [42] PPG, PCG Finger, chest 20 subjects MAE: 3.06 MAE: 1.83

Huynh et al. [43] PPG, IPG Finger, wrist 15 subjects
RMSE: 8.47
STD: 0.91

RMSE: 5.02
STD: 0.73

Yousefian et al. [44] PCD, BCG Wrist, wrist 22 subjects MAE: 7.6 MAE: 5.1
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Table 4: A list of typical feature extracted from the PPG and its derivatives.

Feature Description

Time
domain

Amplitude Amplitude of the fiducial points in Figure 2 (e.g., systolic peak, diastolic peak, and dicrotic notch)

Time Time interval between the fiducial points in Figure 2 (e.g., systolic peak, diastolic peak, dicrotic notch, and onset)

Width
Systolic width at 10%, 25%, 33%, 50%, 66%, and 75% and diastolic width at 10%, 25%, 33%, 50%, 66%, and 75%,

as shown in Figure 3

Area Systolic area, diastolic area, and their ratios

Derivatives Ratio of amplitude of fiducial points on first-order derivative and second-order derivative in Figure 2

Frequency domain Amplitude and frequency of the first, second, and third peaks of the frequency domain signal

Demographic
information

Age, gender, height, weight, body mass index (BMI), etc.

Entropy Shannon entropy, spectral entropy, approximate entropy, sample entropy, etc.

Statistical
characteristics

Mean, standard deviation, skewness, kurtosis, etc.

Others K value, PIR, ASI, etc.

1

0

Pulse
wave

Onset

sys

dia

dic

End

(a)

ms

1st
deriv

0

(b)

a

c e

d

b

2nd
deriv

0

(c)

Figure 2: Fiducial points of PPG wave and its derivatives: The three subplots from top to bottom are (a) PPG pulse wave, (b) first-order
derivative, and (c) second-order derivative. In (a), “onset” and “end” denote the beginning and the end of the waveform, respectively,
“sys” and “dia” represent the systolic and diastolic peaks, and “dic” represents the dicrotic notch. In (b), “ms” denotes the maximum
slope point. In (c), “a,” “b,” “c,” “d,” and “e” are five key fiducial points of the second derivative.
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dataset, followed by a variance inflation factor (VIF) to per-
form a multicollinearity test on the features, and eliminated
two redundant features. In this study, MLR, SVR, and RT
were used to estimate blood pressure, and the results
revealed that regression tree model achieved the best perfor-
mance. A subsequent study by Khalid et al. [58] refined a
comprehensive dataset of 18,010 PPG segments from
Queensland and MIMIC datasets and extracted 16 time
domain features from these PPG segments. The multicollin-
earity test was performed on the features by variance infla-
tion factor (VIF), and the most significant 3 features were
screened out. Subsequently, the k-nearest neighbor model
was first adopted to cluster hypotension, hypertension, and
normotensive and then combined with the regression tree
algorithm to estimate blood pressure. The results obtained
in this study were in line with AAMI standards. The two
studies both used manual check to determine the quality of
the signal, which needs to be improved in the future. Simi-
larly, after k means clustering with three features extracted
from ECG and PPG signals, Farki et al. [59] employed gradi-
ent boosting, random forest, and multilayer perceptron
regression methods to regress the blood pressure for each
cluster. The method was validated on the MIMIC dataset
and yielded an MAE of 2.56 for SBP and 2.23 for DBP, but
the details of the dataset were not clearly disclosed. Haddad
et al. [60] extracted 27 features from PPG and its derivatives
based on the 30-second PPG segments of 28 subjects in the
MIMIC dataset. The study constructed the MLR model for
blood pressure prediction and resulted in an error of 6:10
± 8:01mmHg for SBP and 4:65 ± :22mmHg for DBP. Man-
amperi et al. [61] extracted 53 features from PPG and its
derivatives and predicted blood pressure through a 6-layer
ANN model. The experimental results on the MIMIC II
dataset showed that both SBP and DBP achieved the grade
A of the BHS standard. Subsequent trials with 50 voluntary
subjects achieved the grade A of the BHS standard for
DBP and grade B for SBP. Attarpour et al. [62] collected
the wrist and fingertip PPG signals from 111 volunteers
and then extracted a total of 34 features from PPG signal

and its second derivative, height, weight, etc. Subsequently,
the optimal feature subset was selected by using the moving
backward algorithm and genetic algorithm, and finally, the
blood pressure was predicted by a multilayer neural net-
work. By comparison, a genetic algorithm-based feature
selection algorithm improved the performance of blood
pressure estimation, with an accuracy (MAE ± STD) of
SBP as 5:59 ± 0:30mmHg and DBP as 4:45 ± 0:16mmHg.
Chakraborty et al. [63] collected 670 records from 50
patients in the open dataset and extracted 15 time domain
features. The study adopted neighborhood component anal-
ysis (NCA) and relief (RLF), respectively, to finally select the
optimal feature subset consisting of four features. Based on
the modified ANN model, the proposed algorithm obtained
an error of 0:461 ± 2:62mmHg for SBP and 0:15 ± 4:482
mmHg for DBP, whereas the first minute initial calibration
and the four-minute blood pressure estimation made the
method not very real-time, and the fiducial detection tech-
nique adopted in the study was sensitive to noise. Yang
et al. [64] extracted 90 features including PAT, heart rate,
and complexity features of PPG and ECG signals and
employed support vector machine, Lasso, and artificial neu-
ral network models to predict blood pressure. This study val-
idated on 14 male volunteers, and the optimal result
(MAE ± STD) of SBP was 7:33 ± 9:53mmHg obtained by
the support vector machine model, while the optimal result
of DBP was 5:15 ± 6:46mmHg obtained by the ANN model.
Otherwise, Chen et al. [65] extracted 14 features of ECG and
PPG from the open dataset, selected features by the mean
impact value (MIV) index, and finally predicted blood pres-
sure using SVR model optimized by a genetic algorithm. The
proposed algorithm yielded an error (MAE ± STD) of 3:27
± 5:52mmHg for SBP and 1:16 ± 1:97mmHg for DBP. Sim-
ilarly, Tan et al. [66] synchronously collected PPG and ECG
from 10 healthy volunteers, extracted 17 time domain fea-
tures, and retained features with the cumulative contribution
rate more than 85% by MIV. The study used a GA-based BP
network to model SBP and DBP separately, and the pro-
posed algorithm outperformed the traditional regression
model and ANN. Since the data size in the previous three
studies was not big enough, the generalization ability and
confidence of the model would be affected to some extent.

The following two researches dedicated efforts to explore
the features related to blood pressure estimation. Chowdh-
ury et al. [67] adopted the public dataset consisting of 657
PPG samples from 219 subjects and extracted 107 features
including time domain, frequency domain, time-frequency
domain, and demographic information. In this study, corre-
lation evaluation, ReliefF, and minimum redundant maxi-
mum correlation were adopted for feature selection, and
five machine learning methods, linear regression, regression
tree, Gaussian process regression (GPR), support vector
machine regression, and ensemble tree regression, were used
for blood pressure estimation. The ReliefF method com-
bined with GPR outperformed other algorithms, with a
RMSE of 6.74 and 3.59mmHg for SBP and DBP, respec-
tively. Dey et al. [68] collected PPG signals from 206 volun-
teers using Samsung Galaxy S6 mobile phones and extracted
233 features in the time and frequency domain from PPG

Systolic upstroke
time (ST)

Diastolic time (DT)

Diastolic width
at 10% (DW10)

Diastolic width
at 25% (DW25)

Diastolic width
at 33% (DW33)

Diastolic width
at 50% (DW50)

Diastolic width
at 66% (DW66)

Diastolic width
at 75% (DW75)

Systolic width
at 10% (SW10)

Systolic width
at 25% (SW25)

Systolic width
at 33% (SW33)

Systolic width
at 50% (SW50)

Systolic width
at 66% (SW66)

Systolic width
at 75% (SW75)

Cardiac period (CP)

Figure 3: Pulse width feature of the PPG waveform.
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and its derivatives, which is the study with the highest num-
ber of feature dimensions in the retrieved literature. The
study employed a Lasso regression model and categorical
modeling based on demographic information, which
improved the accuracy of blood pressure predictions. How-
ever, the performance of the model does not satisfy the
AAMI standard.

In addition to traditional machine learning models,
some studies have used more complex deep learning net-
works for blood pressure estimation after extracting the rel-
evant features of PPG signals. El-Hajj et al. [69] extracted a
total of 22 time domain features from the PPG signals and
their derivatives, combined Pearson’s correlation, random
forest feature importance, recursive feature elimination,
and sequential forward selection methods, to finally select
seven consistently accepted features that have the greatest
impact on blood pressure estimation. The validation results
on the UCI dataset pointed out that LSTM and GRU outper-
formed other models, which were promising and both met
the AAMI criteria. In a subsequent study, El-Hajj et al.
[23] refined 942 subjects from the MIMIC II dataset and
extracted 52 features from PPG and its derivatives. Com-
bined with Pearson’s correlation, mutual information, and
recursive elimination method, the optimal feature subset
consisting of 24 features were selected. The research
designed a complex deep learning model that involved a
bidirectional RNN layer, a series of conventional recurrent
layers, and an attention layer, which resulted in an error
(MAE ± STD) of 4:51 ± 7:81mmHg for SBP and 2:6 ± 4:41
mmHg for DBP. Li et al. [24] extracted seven features
(including PTT) from PPG and ECG signals, combined with
a deep learning model for blood pressure estimation. The
first layer of the deep learning model is a bidirectional long
short-term memory layer, followed by a multilayer LSTM
with a residual module. The validation results of this method
on the MIMIC II dataset showed that SBP and DBP met
grades B and A of BHS standard, respectively. Senturk
et al. [70] extracted time domain and frequent domain fea-
tures from signals in the MIMIC II dataset, combined with
chaotic features such as the Shannon entropy, sample
entropy, and fuzzy entropy and then compared the perfor-
mance of three machine learning algorithms in blood pres-
sure estimation. The results demonstrated that the
nonlinear autoregressive with exogenous input neural net-
work (NARX-NN) was superior to other algorithms, with
an ME ± STD of 0:0224 ± 2:211mmHg for SBP and 0:0417
± 1:2193mmHg for DBP. However, the size of the dataset
used was not clearly disclosed in the study, so there might
be barriers to comparing results across studies.

3.2.3. Blood Pressure Estimation Method Based on Deep
Learning with Raw PPG. The methods of blood pressure esti-
mation based on PWA may incorporate irrelevant features or
not fully mine the information contained in the PPG wave-
form, and their results highly depend on the accuracy of fidu-
cial point detection of the PPGwaveform. In recent years, with
the rapid development of deep learning, many researches tend
to use the raw PPG signals as input and utilize the advantages
of deep learning in extracting complex high-dimensional fea-

tures and advanced convolution computing capabilities for
continuous blood pressure monitoring.

Blood pressure estimation methods based on deep learn-
ing network use the raw PPG waveform as input, and since
the derivatives of PPG also contain features related to blood
pressure [71], many studies take the PPG derivatives as
input of the model. Researches on deep learning-based blood
pressure monitoring methods mainly focus on the optimiza-
tion of deep learning models and variants. One of the most
classic models is the CNN-LSTM model, which is also the
most widely used in literature. The hybrid model uses the
convolutional neural network (CNN) layer to extract the
complex features of the PPG signals and model them in time
series with the help of the long short-term memory (LSTM)
layer. For instance, in the research by Tazarv et al. [72],
CNN was used as a feature extraction module, and LSTM
was responsible for modeling over the time series. The
CNN-LSTM model was validated on 20 randomly selected
subjects from MIMIC II, resulting in an error of 3:70 ±
3:07 and 2:02 ± 1:76mmHg for SBP and DBP, while the val-
idation results on the Queensland dataset also reached the
grade A of the BHS standard and complied with the AAMI
standard. Similarly, Mou et al. [73] employed a CNN-
LSTM model for blood pressure estimation and validated
on three subjects of the MIMIC dataset. The results showed
that, compared with the traditional models, the proposed
model had a significant improvement in both training time
and prediction accuracy. Otherwise, Esmaelpoor et al. [74]
employed a CNN-LSTM two-stage model, with the CNN
structure for extracting the features of PPG in the first stage
and the LSTM structure for modeling the sequence signal in
the second stage. Considering the correlation between SBP
and DBP, the SBP prediction was applied to the next stage
of DBP prediction, and vice versa. The model was tested
on 200 subjects in the MIMIC II dataset and resulted in an
error (MAE ± STD) of 3:97 ± 5:55 and 2:10 ± 2:84mmHg
for SBP and DBP, respectively, which complied with the
AAMI standard and reached the grade A of the BHS stan-
dard. Nevertheless, the dataset was not strictly divided by
subjects, which affected the confidence of the experimental
results. Baker et al. [75] utilized a CNN-LSTM model that
combined the feature extraction capability of the convolu-
tion layer and the temporal data modeling capability of the
LSTM layer, with PPG and ECG signals from the open data-
set as input, resulting in an MAE of 4.41 and 2.91mmHg for
SBP and DBP, respectively. Tanveer et al. [76] proposed an
ANN-LSTM network which consisted of an ANN for
extracting features and two stacked LSTM layers for model-
ing sequence signals. The proposed model was tested on 39
subjects in MIMIC I and achieved an MAE of 1.10mmHg
for SBP and 0.58mmHg for DBP. Besides, the network pro-
posed by Leitner et al. [31] adopted a gated recurrent unit
(GRU) instead of the LSTM on the basis of the CNN-
LSTM framework, because GRU has similar functions and
slightly different parameters with LSTM. The proposed
model was validated on long-term data of 100 subjects in
the MIMIC dataset, combined with transfer learning-based
calibration techniques, and resulted in an MAE of 3.52 and
2.20mmHg for SBP and DBP, respectively.
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Some other researches have introduced an attention
mechanism to assign appropriate weights between different
input channels or input vectors; therefore, the deep learning
model can focus on more meaningful information and then
improve the prediction accuracy. Qiu et al. [77] incorporated
the squeeze and excitation block (SE module) in a 25-layer
ResNet, which assigned weights to channel dimensions and
improved channel attention. The hybrid model took PPG
and ECG signals as input and predicted blood pressure on
two datasets that included 1216 and 40 subjects from the
MIMIC dataset, respectively. The prediction results of the
model on the two datasets both achieved the grade A of the
BHS standard and satisfied the AAMI standard. Chuang
et al. [78] screened 11,000 PPG and ECG segments from 45
subjects in the MIMIC dataset and introduced an attention
mechanism to the CNN-LSTM model to identify meaningful
features. The results showed that combining the time and fre-
quency domain signals of PPG and ECG could fully obtain the
intrinsic characteristics of the signals, which resulted in an
error (MAE ± STD) of 2:94 ± 4:65mmHg for SBP and 2:02
± 3:81mmHg for DBP. The two aforementioned studies used
a combination input of PPG and ECG to predict blood pres-
sure, which necessarily increased hardware consumption.
Aguirre et al. [18] proposed a recurrent neural network
(RNN) encoder-decoder structure with an attention module
and integrated demographic information such as age and gen-
der to improve the prediction of mean ABP pulse. Under the
condition that the training set and test set were strictly divided
according to subjects, the MAE of SBP and DBP reached
6:57 ± 0:20 and 14:39 ± 0:42mmHg, respectively.

The residual network (ResNet) [79] proposed by
Microsoft Labs in 2015 can well solve the problems of gra-
dient disappearance and gradient explosion brought by the
deepening of layers through the residual structure.
Schrumpf et al. [80] compared the performance of Alex-
Net, ResNet, LSTM, and the model proposed by Slapničar
et al. [21]. With PPG signals and their derivatives as input,
ResNet outperformed other models under the condition of
strictly differentiated subjects in training and test sets, with
an MAE of 16.4 and 8.5mmHg for SBP and DBP, respec-
tively. However, the associated SDs are not presented. Fur-
thermore, MAEs of 16.4 and 8.5mmHg are relatively
large, meeting neither AAMI nor BHS standards. After
transfer learning-based calibration, the prediction perfor-
mance was significantly improved. Based on PPG and
ECG signals of 40 subjects selected from the MIMIC data-
set, Paviglianiti et al. [81] compared the performance of
three deep learning models, ResNet, LSTM, and WaveNet.
The results pointed out that ResNet combined with three
LSTM layers achieved the best prediction performance,
with an MAE of 4.118 and 2.228mmHg for SBP and
DBP, respectively.

The PPG signals are one-dimensional physiological sig-
nals, while some studies have transformed them into two-
dimensional images, thereby performing transfer learning
through a model pretrained on ImageNet. Wang et al. [82]
converted one-dimensional PPG signals into images by
using the visibility graph (VG) approach. This innovative
approach preserved the time-frequency information in the

PPG signals and allowed transform learning using CNN
models pretrained on the large database ImageNet. The pro-
posed idea was validated on 348 records from UCI_BP data-
set, and the pretrained AlexNet model outperformed other
models, leading to an MAE of 6.17 and 3.66mmHg for
SBP and DBP, respectively.

Other deep learning models and their variants include
the following: Treebupachatsakul et al. [83] performed
Fourier transform on PPG and ECG signals in open data-
sets and used the amplitude and phase of PPG and ECG
signals as input to a context aggregation network (CAN).
The network resulted in a RMSE of 7.1455 and
6.0862mmHg for SBP and DBP, respectively. However,
the associated MAEs or SDs are not presented. Sadrawi
et al. [84] compared the performance of two deep convo-
lutional autoencoders, LeNet-5 and U-Net, and employed
a genetic algorithm to optimize the integration of encoders
in the cross-validation process. The method was evaluated
on 18 subjects in a single center and yielded an MAE of
2.54mmHg for SBP and 1.48mmHg for DBP. The net-
work proposed by Brophy et al. [85] was based on the
GAN framework, which mainly consists of a generator
with two layers of LSTM and a discriminator with four
layers of CNN. Notably, the model is different from previ-
ous models in its ability to generate continuous ABP based
on the PPG signal, rather than directly producing two
values of SBP and DBP. The proposed model was trained
on the UCI dataset and tested on the Queensland dataset
with long-time data selected from one subject, resulting
in an ME of 2:95 ± 19:33mmHg in mean arterial pressure.
However, the population considered was only one subjects,
too few to reduce the confidence of the results. Otherwise,
Slapničar et al. [21] took PPG alongside its derivatives as
input and proposed a complex network model (spectro-
temporal ResNet) combining the residual module with a
spectrotemporal block, which could fully extract the tem-
poral and frequency information of the signals. The pro-
posed model was validated on over 700 hours of PPG
signals from 510 subjects in the MIMIC III dataset, result-
ing in an MAE of 9.43mmHg for SBP and 6.88mmHg for
DBP.

Furthermore, some researches have also experimented
on the CNN with large convolutional kernels, which may
enable the model to obtain larger effective receptive fields.
Panwar et al. [86] proposed a deep learning framework
consisting of CNN, LSTM, and fully connected layer, and
adopted filters of size 9 × 1 in the CNN layers. When eval-
uated on 1557 subjects from the open dataset, the MAE
and STD of the proposed model were 2.30 and
0.196mmHg for SBP, while 3.97 and 0.064mmHg for
DBP. The hybrid network structure proposed by Yen
et al. [87] was composed of multiscale CNN, LSTM, and
dense layers, in which the CNN structures adopted 9 × 1
and 25 × 1 kernel filters, respectively. The model was
tested on 1551 subjects from the UCI_BP dataset, resulting
in an MAE of 2:942 ± 5:076 and 1:747 ± 3:042mmHg for
SBP and DBP, respectively.

Table 6 illustrates the BP estimation methods based on
deep learning model presented in this paper.
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4. Future Research Directions

Continuous monitoring of blood pressure will be an urgent
task in the future, therefore deploying the function on
mobile phones or other portable wearable devices to realize
daily BP monitoring will have a broad application prospect.
From the early simple regression based on multiplexed sig-
nals, to PPG feature extraction combined with artificial
intelligence algorithms, and then to deep learning models
with raw PPG signal most recently, researches on continu-
ous cuffless blood pressure estimation have made great prog-
ress over time. However, the current technology still cannot
meet the standards of practical applications. The major chal-
lenges that need to be addressed urgently include the devel-
opment of large-scale heterogeneous datasets, mining of
strongly correlated feature sets, optimization of lightweight

efficient models, researches on personalized modeling tech-
nology, and rPPG-based blood pressure estimation
technology.

(1) Most of the retrieved studies are based on open data-
sets. For example, the MIMIC dataset is collected
from patients in the ICU, whose complex physical
conditions have various effects on blood pressure.
However, there are differences in blood pressure
changes between diverse groups, such as young peo-
ple and those with cardiovascular disease. Some
researches were based on self-collected datasets, but
the small amount of data led to low confidence in
the validation results. Therefore, it is urgent to estab-
lish large-scale heterogeneous datasets to improve
the adaptability of the model to different

Table 6: The summary of BP estimation methods based on deep learning.

Authors Dataset Signals AI algorithm
Result (mmHg)

SBP DBP

Tazarv et al. [72]
MIMIC II
20 subjects

PPG CNN-LSTM
MAE: 3.70
STD: 3.07

MAE: 2.02
STD: 1.76

Chuang et al. [78]
MIMIC

45 subjects
PPG, ECG CNN-LSTM+self-attention

MAE: 2.94
STD: 4.65

MAE: 2.02
STD: 3.81

Treebupachatsakul et al. [83]
UCI

812 samples
PPG, ECG CAN RMSE: 7.1455 RMSE: 6.0862

Mou et al. [73]
MIMIC
3 subjects

PPG CNN-LSTM MAE: 4.42 for ABP

Paviglianiti et al. [81]
MIMIC

40 subjects
PPG, ECG

ResNet, LSTM, WaveNet,
ResNet+LSTM

MAE: 4.118 MAE: 2.228

Slapničar et al. [21] MIMIC III
510 subjects

PPG, derivatives Spectrotemporal ResNet MAE: 9.43 MAE: 6.88

Brophy et al. [85]
UCI_BP

Queensland
6 subjects

PPG GAN
MAE: 2.95

STD: 19.33 for MAP

Aguirre et al. [18]
MIMIC

1131 subjects
PPG RNN encoder-decoder + attention

MAE: 6.57
STD: 0.20

MAE: 14.39
STD: 0.42

Wang et al. [82]
UCI_BP

348 records
Image transformed

from PPG
Pretrained AlexNet,

Inception-V3, VGG-19
MAE: 6.17 MAE: 3.66

Esmaelpoor et al. [74]
MIMICII

200 subjects
PPG CNN-LSTM

MAE: 3.97
STD: 5.55

MAE: 2.10
STD: 2.84

Baker et al. [75]
MIMIC III

200000 segments
PPG, ECG CNN-LSTM

MAE: 4.41
STD: 6.11

MAE: 2.91
STD: 4.23

Qiu et al. [77]
MIMIC

1216 subjects
PPG, ECG ResNet + SE MAE: 3.70 MAE: 2.81

Leitner et al. [31]
MIMIC

100 subjects
PPG CNN-GRU MAE: 3.52 MAE: 2.20

Schrumpf et al. [80]
MIMIC

3750 + 625 subjects PPG
AlexNet, ResNet, LSTM,
model of Slapničar et al. MAE: 16.4 MAE: 8.5

Yen et al. [87]
UCI

1551 subjects
PPG CNN-LSTM

MAE: 2.942
STD: 5.076

MAE: 1.747
STD: 3.042

Tanveer et al. [76]
MIMIC I
39 subjects

PPG, ECG ANN-LSTM MAE: 1.10 MAE: 0.58

Panwar et al. [86]
MIMIC II

1557 subjects
PPG CNN-LSTM

MAE: 2.30
STD: 0.196

MAE: 3.97
STD: 0.064

Sadrawi et al. [84]
Self-collected
18 subjects

PPG GA+Lenet5/U-net MAE: 2.54 MAE: 1.48
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populations, verify the results of the algorithm, and
promote the optimization of the algorithm

(2) Due to the easy acquirement, low cost, and conve-
nient deployment of PPG signals, PPG-based blood
pressure estimation methods have gained a strong
momentum in recent years, and many studies dedi-
cated to explore the relationship between PPG fea-
tures and the physiological significance of blood
pressure. Considering the individual difference of
PPG signals, there is no set of features directly
related to blood pressure has been generally
employed, so it is necessary to explore PPG features
with explicit physiological significance in the future.
Additionally, the existing offline training model
should be deployed on mobile phones or other wear-
able devices, and the balance between the complexity
and accuracy of the algorithm needs to be consid-
ered. Therefore, the development of lightweight
and accurate models is also a very challenging task
in the future

(3) Because of the differences of blood pressure among
individuals, even deep learning models trained on
large-scale datasets cannot fully learn them. Thus,
within the acceptable conditions for commercial
deployment, the accuracy of the model can be
improved through individual calibration. Haddad
et al. [88] adopted a straightforward approach that
calibrated estimation of the blood pressure with sim-
ple offsets from the same subject. Schrumpf et al.
[80] adopted the idea of transfer learning to fine-
tune the specific layer of the model with a small
amount of template data of the target subject. These
methods may mitigate the systematic error in blood
pressure estimation, but the mapping relation
between the input signal and the estimation of blood
pressure still relies on the performance of AI model

(4) Remote photoplethysmography (rPPG) can be used
to extract the PPG signal by using a camera to cap-
ture the periodic signal of skin color caused by the
cardiac cycle. As smartphones become common
devices, rPPG technology can be easily deployed on
mobile phones for home-style daily blood pressure
monitoring. In recent years, some prospective
researches [89–91] have made some progress.
Affected by the influence of video quality, subjects’
head movement, illumination, and other factors,
rPPG-based blood pressure monitoring technology
faces great challenges in front-end data collection
and processing. However, as rPPG technology is
simple, feasible, and easy to deploy, it is still an
appealing direction in the future

5. Conclusion

This paper retrieved the progress of research in the past five
years on the PPG signal-based cuffless continuous blood
pressure prediction technology. In conclusion, PPG is a

promising and appealing technology with great potential
for application in cuffless continuous blood pressure moni-
toring. Although diverse BP estimation methods such as that
based on PTT/PAT/PWV, PWA, and deep learning have
emerged and achieved some results, to reach the standard
of commercial application, the continuous blood pressure
monitoring technology based on PPG needs in-depth
researches in the following aspects: the construction of het-
erogeneous large datasets, feature mining and optimization
of lightweight model, personalized calibration technology,
and rPPG technology.
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