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Body fat assessment is required as part of an objective health assessment, both for nonobese and obese people. Image-based body
fat assessment will enable faster diagnosis. Body fat analysis that accounts for age and sex will help in both diagnosis and
correlating diseases and fat distribution. After evaluating computed tomography imaging algorithms to identify and segment
human abdominal and subcutaneous fat, we present an improved region growing scale-invariant feature transform algorithm.
It applies Naive Bayes image thresholding for key point selection and image matching. This method enables rapid and accurate
comparison and matching of images from multiple databases and improves the efficiency of image processing.

1. Introduction

Obesity is a global health problem. Globally, 1.5 billion
adults are overweight, and of these, 200 million men and
300 million women are obese. Child and adolescent obe-
sity is increasing in both developed and developing coun-
tries, negatively impacting physical and mental health.
According to the World Health Organization, global child
obesity increased from 32 million in 1990 to 41 million in
2016. Obesity leads to metabolic syndrome and other
complications, including type 2 diabetes mellitus, nonalco-
holic fatty liver disease, hypertension, hyperlipidaemia,
chronic kidney disease, cardiovascular disease, obstructive
sleep apnoea, osteoarthritis, and malignant tumours
(breast, colon, prostate, and others), thus increasing mor-
tality [1].

Body fat imaging, which is crucial for diagnosis and
research (Figure 1), has seen substantial advances in terms
of field-of-vision and analysis. Reliable fat quantification is
important in preventative healthcare and in diagnosing liver
steatosis in nonalcoholic fatty liver disease, a risk factor for
hepatocellular carcinoma development and progression [2].

Further, visceral obesity is an important predictor of meta-
bolic syndrome, and measuring internal fat is important in
understanding metabolic syndrome pathology. Nonetheless,
there are as yet no unified diagnostic standards for fat
detection.

Fat scanning methods include computed tomography
(CT), magnetic resonance imaging (MRI), and ultrasound.
Among these, only CT provides an accurate measurement
of visceral fat area. Abdominal bioimpedance analysis
(BIA), which is as accurate as abdominal CT, can safely
and simply detect excessive visceral fat accumulation.
Abdominal BIA is more effective than using waist circumfer-
ence. Abdominal BIA has been used to study the connec-
tions between visceral fat area and metabolic syndrome
risk factors. The characteristics of subjects with excessive vis-
ceral fat revealed via BIA, rather than via waist circumfer-
ence, have been studied [3-5].

X-ray imaging, which led to unprecedented advances in
diagnostic imaging, has a few disadvantages. In X-ray
images, the pixel intensity is the sum of the attenuation of
all the rays passing through the object, and three-
dimensional results are projected on a two-dimensional
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FIGURE 1: Relationships between obesity, visceral fat, cardiovascular disease, liver steatosis, metabolic syndrome, and nonalcoholic fatty liver

disease [6].

plane. This inevitably duplicates information about the tar-
get’s internal structure, preventing its clear display. CT
imaging effectively overcomes this problem by scanning spe-
cific layers of the object and measuring the X-ray attenuation
coeflicient of the object at different angles. CT scanning pro-
vides multiangle data, enabling image reconstruction with
reduced error. Computer-based reconstruction and algo-
rithms enable the creation of multiple two-dimensional
tomographic images.

Human abdominal fat comprises mainly visceral and
subcutaneous fat. These two compartments with different
molecular, biological, and anatomical compositions have a
different meaning and importance. While subcutaneous fat
shows a greater activity for long-term energy storage, vis-
ceral fat has a greater metabolic and hormonal activity
through the release of adipokines [7]. Abdominal fat thick-
ness is a risk indicator for conditions such as heart disease
and diabetes. Although abdominal fat content, especially of
intra-abdominal fat, is closely related to conditions such as
type 2 diabetes, coronary heart disease, insulin resistance,
and dyslipidaemia, the correlation between subcutaneous
fat and these diseases is not significant [8, 9]. Measuring
abdominal fat is more meaningful than measuring entire
body fat. The body mass index, waist-to-hip ratio, waist cir-
cumference, and BIA are widely used to calculate and mea-
sure body fat. Waist circumference is widely accepted and
used as an index of visceral fat.

Tetrapolar impedance measurement provides a simple
and low-cost alternative method. Focused impedance, another
method, provides local information. These two methods have
been studied using an intuitive physical model and experi-
mentally using a simulated abdominal subcutaneous fat layer.
For accurate subcutaneous fat layer thickness measurement,
tetrapolar and focused impedance require different electrode
spacings. While small spacings between the current and

potential electrodes hardly affect the impedance, larger dis-
tances reduce it substantially, until it becomes negligible.
However, these methods require further analysis and experi-
mental work [10].

For liver steatosis diagnosis and confirmation, complica-
tions are very rare. It is followed by histological classification
based on the number of tissue cells with identifiable cyto-
plasm [11]. Although postbiopsy bleeding is a severe compli-
cation, there is a very low risk of massive haemorrhage if it is
conducted carefully, and if patients are first screened prop-
erly. While such bleeding can occur unpredictably, it is
related to age and malignancy [12]. Therefore, despite its
advantages for determining visceral fat, the invasiveness
and complications of biopsy provide motivation for develop-
ing noninvasive methods.

Ultrasound is fast and highly sensitive and has low neg-
ative effects on the human body. It is easily performed on
comatose patients, which is an advantage with children, or
with adults who cannot tolerate MRI, and has no sedative
effect [13]. Abdominal obesity can be measured simply and
economically via ultrasound and specifically via the newly
developed quantitative ultrasound. In liver cirrhosis detec-
tion and measurement, quantitative ultrasound attenuation
is determined based on the liver attenuation coefficient. It
uses nonenhanced CT attenuation as the reference standard
to enable noninvasive diagnosis and follow-up. However,
ultrasound fat detection is not sufficiently intuitive and its
results are difficult to store. The ultrasound device must be
configured differently to detect visceral or subcutaneous
fat. Because of these limitations associated with ultrasound
imaging, CT and MRI are more widely accepted for visceral
fat detection.

Compared to CT, MRI detects subcutaneous fat with sim-
ilarly high consistency but with much greater error in visceral
fat segmentation. Historically, nuclear magnetic resonance
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FIGURE 2: Manual segmentation of human fat CT images.

imaging has often been used to analyse visceral fat. For years,
MRI has been considered the optimal noninvasive method for
the assessment of fat accumulation [14]. However, it can dis-
rupt cardiac metabolism, leading to complications; has low
accuracy [15]; is slow; and is expensive, making it unpopular
and uncommon. In human body, the classification of fat is
not only subcutaneous and visceral but also white adipose tis-
sue (WAT) and brown adipose tissue (BAT) according to its
different functions. BAT is involved in energy dissipation
and has been linked to weight loss, insulin sensitivity, and
reduced risk of atherosclerotic disease [16]. Therefore, posi-
tron emission computed tomography (PET) has some advan-
tages. For instance, 18F-FDG-PET/CT after cold exposure is
the most commonly used and mature method for detecting
and quantifying activated brown fat in the human body and
evaluating its metabolic activity [17]. However, it is considered
that PET has no significant effect on fat segmentation. The
application of any radiotracer-based molecular imaging study
in longitudinal studies with human subjects must take into
account radiation dose [18]. So pet is not the main direction
of fat segmentation.

CT, which has high repeatability, clinical safety, and con-
venience, produces high-resolution images and achieves accu-
rate quantitative positioning [19]. Quantitative CT is therefore
currently the technology-of-choice for body fat detection and
analysis [20]. Nonetheless, it uses ionizing radiation, which
limits repeated examination. Further, CT attenuation values
based on voxels are confounded by the presence of substances
such as glycogen, iron, copper, and iodine [21].

In this study, we analyse abdominal fat images (Figure 2),
considering multiple factors, with the objective of elucidating

human abdominal fat CT imaging. We examine various image
segmentation methods and present an improved intelligent
thresholding region growing segmentation method. We pres-
ent a user-oriented graphical interface and examine image fea-
ture extraction and matching via scale-invariant feature
transformation.

2. Materials and Methods

2.1. Image Segmentation. Image segmentation, central to
image processing and developed over several decades, uses
algorithms to decompose an image into several strongly cor-
related sets, segmenting the image into nonoverlapping
areas. As with human visual cells, which separate objects
from the background, digital image segmentation separates
the objects as distinct areas of the image. Current tech-
niques, using mathematical morphology, machine vision,
intelligent algorithms, and other approaches, are based on
segmentation thresholds, boundary extraction, and com-
bined approaches.

Image segmentation, formally based on set analysis,
strives to identify and extract the focal areas of an image.
The entire image region is represented by the set R, which
is divided into nonempty subsets R1, R2, R3, ---, Rn. Assum-
ing that the two regions are critical, the union of Ri and Rj
forms a connected region. Ri reflects regional connectivity,
where i=1,2,---,N. Neither the subregions nor regions
intersect, and all pixels in the original image are within the
union of all subregions. Connecting the pixels in each region
in a defined way completes the segmentation process.
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FIGURE 3: Segmentation based on the original and improved region growing algorithms.

For all i and j, i # j and RiN Rj= & holds; & represents

an empty set, and N is the image set intersection. For i =1
,2,++-,N, P(Ri) =trueholds; P is a predefined attribute of
R. Pixels in the same region should always have the same
characteristics. Each subregion has unique characteristics:
its elements must have the same grey level or similar charac-
teristics. For I#j, P(RiU Rj) = false holds; U is the intersec-
tion. Pixels in different regions and subregions should have
different characteristics, without common elements.

Most image segmentation algorithms are based on iden-
tifying discontinuity or similarity (consistency) in grey-scale
images. Edge detection, which depends on abrupt changes in
grey scale, is a typical example of discontinuity-based seg-
mentation, while threshold segmentation, region growing,
and other methods are based primarily on similarity. In
edge-based segmentation, local grey-scale discontinuities
between the background and boundary are integrated to
detect the boundary. Alternatively, subregions can be sepa-
rated based on background characteristics such as colour,
texture, grey scale, or other unique properties. Segmentation
should achieve smooth boundaries, and the pixels should be
kept as smooth as possible within each region, without gaps.
Irregular shapes can be smoothed using filter operators or
algorithms that attempt to maintain boundary integrity.
Adjacent regions should be effectively contrasted. Image seg-
mentation methods differ in their principles and associated
problems, and different methods are required for different
fields.

The image sources are as follows: computed tomography
(CT) images are stored in Digital Imaging and Communica-
tions in Medicine (DICOM) format. The normal images’
sizes are 512 by 512. In this step, the DICOM images are
converted to grey-scale portable network graphics (PNG)
images. All images were standardized so that their pixel
values lie in the range of [0,1]. The bed plate interferes with
the separation process, so the subcutaneous fat will be auto-
matically segmented after the histogram threshold is selected
to remove the bed plate obstacle area.

2.2. Region Growing Segmentation. Region growing com-
bines pixels or subregions into large regions, based on the
nature of the problem, applying predefined growth criteria:

it requires seed selection, a similarity criterion (growth rule),
and a growth stop condition. The seed can be a single pixel
or small area of several pixels. This algorithm forms sets of
merged pixels with similar properties. For each region, a
seed point is designated as the starting point; the surround-
ing pixels are compared with it, and similar pixels are
merged until all similar pixels are merged. The similarity cri-
terion can be based on grey scale, colour, gradient, and
texture.

Further, connectivity must be considered in segmenta-
tion. Methods based only on texture or other similarity cri-
teria can lead to false fusion or incorrect segmentation that
has no research value.

2.2.1. Seed-Point Selection. Seed pixels are selected to obtain
seed points for regional growth. Change point selection can
be automatic or based on semiautomatic (manual) human-
computer interaction. Automatic selection can be targeted
to field-specific image-analysis problems.

2.2.2. Improved Region Growing Algorithm. Here, we present
an improved region growing algorithm, which differs pri-
marily from the other common region growing algorithms
in its seed-point selection. Because fat and surrounding tis-
sue do not differ sufficiently in contrast, it is difficult to select
seed points using grey gradient maps. The improved algo-
rithm first applies multidirectional automatic positioning
of seed points among subcutaneous fat pixels, thus avoiding
manual selection. Seed points are selected based on their
grey features, on Euclidean distances between pixels, or via
position analysis. In CT images, the subcutaneous fat
boundary can usually be clearly identified, occurring
between the dermis and the fascia and enclosed by the
superficial fascia. Automatic seed-point selection enables
the region growing algorithm to proceed effectively.

2.2.3. Image Processing and Analysis. In CT images of body
fat, the bed board appears in the lower part of the image,
and its influence should be excluded to avoid meaningless
segmentation. Because the location of the bed board is
uncertain, there are more nonzero pixels in the subject area
than in the obstacle area (Figure 3). By setting the threshold
values for the nonzero pixels in the horizontal and vertical
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FI1GURE 5: Implementation of the scale invariant feature transform (SIFT) algorithm.

directions, based on analysis of the grey histogram in various
directions, the uninteresting areas can be identified and
excluded.

When selecting seed points, the improved region grow-
ing algorithm passes through eight directions of two main
lines in the centre of the image and two diagonal sublines,
and the rays from all directions converge at the centre of
the image. The centre falls on the first nonzero pixel it meets;
the growth thus proceeds several units in this direction into
the subcutaneous region, thereby completing the first step of
region growing.

Four grey-value ratios are then obtained, based on the
grey values of the pixels in the four neighbourhoods around
the seed point and on that of the seed point. At ratios greater
than the predetermined similarity criterion, the points that
meet the criterion can be included in the seed sequence; oth-
erwise, growth is stopped. As the number of seed points
increases, the grey value of the seed sequence approaches
the average grey value of the subcutaneous tissue. As long
as the grey-value ratio of the points in each new neighbour-
hood to that of the average for the image meets the predeter-
mined conditions, the new neighbourhood is merged into
the region. Thus, the average grey level of the sequence is
updated and the region is grown. Once almost all of the sub-

cutaneous fat pixels have been evaluated, the set of pixels
represents the target fat area.

2.3. Intelligent Image Segmentation. Threshold analysis,
which is computationally simple and generates intuitive
results, can produce good results for images with large
grey-value differences between the target and background.
Various intelligent algorithms have been applied in machine
vision to classify grey thresholds. Here, we used classical
Bayesian classification to select the optimal grey-value
threshold for fat images.

2.3.1. Naive Bayes Algorithm. Image segmentation and clas-
sification are conventionally performed using the k-nearest
neighbour’s algorithm, neural networks, and decision trees.
Bayesian classification applies Bayes’ probability theorem
(a class of intelligent algorithms) to categorise objects by
their characteristics. Among such classification methods,
Naive Bayes is the most efficient and effective, in some cases
performing better than neural networks and decision trees.

The Naive Bayes algorithm, which is mathematically
derived, is based on clear rules that are easy to understand.
Further, it is easier to specify and debug than other methods.
It is widely applicable and rapid to implement, accepts most
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FIGURE 6: Gaussian difference pyramid model [23].

types of data, and is computationally efficient. In Bayesian
classification models, the potential default attribute is inde-
pendent. While this constrains its use somewhat, it also
reduces its complexity and resource requirements.

2.3.2. Segmentation Analysis. Naive Bayes classification clas-
sifies items by placing them in the category with highest
probability, under this condition. The initial threshold is
the average of the minimum and maximum grey levels.
The grey values and numbers of the pixels with grey values
above or below the initial threshold are then obtained, for
all images. The grey values and numbers of pixels on each
side of the points between the threshold values are summed
to obtain the total grey values above and below the initial
threshold values and averages. An iterative threshold opti-
misation algorithm is then applied; after each iteration, the
target threshold value is approached from the direction that
increases the existing threshold probability value. The itera-
tion continues until the difference between the front and
back threshold values is close to 0, finally returning the opti-
mal threshold value (Figure 4).

Although the optimised segmentation threshold is close
to the ideal threshold, many connections between visceral
and subcutaneous fat points are broken during the optimiza-
tion process. Further, the segmentation is affected by the
presence of many connections between the external bound-
ary and the background.

2.4. Fat Image Analysis Based on Scale-Invariant
Feature Transformation

2.4.1. Scale Invariant Feature Transform (SIFT) Algorithm.
The SIFT algorithm (patented by David G. Lowe), which
assumes that two photos contain the same content, applies
affine transformation based on the degree of illumination,

(next

Scale
(first
octave)

Difference of
gaussian (DOG)

F1GURE 7: Construction of the Gaussian difference pyramid [23].

image angle, and size. It aims to match two points in the
two images.

The SIFT algorithm recognises objects by extracting key
points, creating corresponding descriptors, and identifying
corresponding feature points via matching, thereby connect-
ing the corresponding points (Figure 5). SIFT features are
not affected by ordinary affine transformation and differ-
ences in image brightness and are relatively unaffected by
noise. SIFT is thus suitable for accurate and fast image
matching. Even when there are several objects in the same
area, it generates many SIFT feature vectors.

For images of body fat, SIFT can match CT images of the
same person at specific points. The ability to match processed
body fat CT images to their corresponding database images,
via feature point matching, will substantially improve diagnos-
tic efficiency. This method thus contributes to the database
and represents an advancement in image processing.
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2.4.2. Scale-Space Construction. Before the SIFT algorithm is
implemented, the scale space must be constructed (Figure 6);
on the left-hand side of the figure is the Gaussian pyramid
model, with several explanations. Gaussian convolution is
one manifestation of scale space, and Gaussian blur is widely
used to analyse scenes where it is necessary to reduce the
size. Octaves represent groups of images of the same size.
Images are processed by interval within each octave; scales
within the scale space are interpreted as groups, and the
image blur of each group gradually increases from bottom
to top.

A Gaussian kernel, which is required to generate a multi-
scale space, simulates clarity for near objects and ambiguity
for distant objects [22]. To calculate Gaussian kernels with
different variances, the original image is convolved with
Gaussian kernels of different sigma, to obtain all the first-
group (bottom) layers. The Gaussian pyramid is thus
obtained by convolving the original image sequentially, via
Gaussian kernels of different scales. The second group of
images is obtained by down sampling the first group via
interval sampling, which maintains a continuous scale. A
single pixel has little influence on the whole image.

The normalised LOG operator is scale-invariant [23].
The LOG operator is related to differences in Gaussian ker-
nel function, giving rise to the Gaussian difference operator.
The Gaussian difference pyramid is obtained by subtracting
one layer from its adjacent layer in the same group (right
side, Figure 7). Gaussian difference calculation requires
Gaussian smoothing of adjacent scales.

2.4.3. Accurate Key Point Positioning. After image threshold-
ing, the extreme values must be detected. Local extreme
value points in the Gaussian difference space constitute the
key points. Key points are generally relatively stable, provid-
ing much information, and are used in image matching.
They are usually retained even when external conditions
change, appearing as bright points in dark areas or dark
points in bright areas.

In Figure 8, the X point of the middle layer is compared
with eight adjacent points in the same scale space and 18
vertically adjacent points, totalling 26 points. Every pixel is
compared in the same way. After finding the extreme value
points, they must be accurately located. The extreme value
points and scale space are discrete at this stage. Applying ter-
nary second-order Taylor expansion to the detected extreme
value points and adjusting their positions improve their sub-
pixel location accuracy. The number of iterations is limited.
Points with low contrast (values <T/N) are removed; T is
generally 0.04. In addition, to ensure feature point stability,
the Gaussian difference edge response must be eliminated.

2.4.4. Constructing Key Point Direction. The selected key
points, which are relatively accurate, are characterised by
their X, Y, and o (scale) parameters. We first find the image
closest to the o value of the key point scale in the Gaussian
pyramid and draw a circle with the point as the centre and
radius 1.5 times the Gaussian image scale (Figure 9).
Accounting for the gradient direction and gradient ampli-
tude of the pixels in the circle, the whole angle is divided into
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FIGURE 9: Image gradient of the area around the key points [22].
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FiGgure 10: Histogram of key point direction.

eight directions. There are improved methods that select one
direction every 10° in a 360° histogram, thus generating
more than eight directions. In that case, 1.50 Gaussian filter-
ing is then applied.

To finalise the key point detection, the most frequent
direction from the previous iteration is selected as the pri-
mary direction (Figure 10). Feature points have at most
one auxiliary direction. A feature point with two feature
directions is regarded as two feature points (one main and
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FIGURE 12: Feature matching between the central and whole region of the human abdominal fat image.
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FIGURE 13: Image registration of the edge area and the whole area of CT images of human abdominal fat.

one auxiliary feature point), with the same position and  (Figure 11). Pairs of images are matched using a descriptor,
scale, but different directions. which describes the key point using a set of vectors. The

descriptor contains both the key point and surrounding pixel
2.4.5. Key Point Descriptors and Matching. Key points have  points, which may contribute to target matching. The unique
four parameters, namely, X, Y, o (scales), and main direction ~ vector is generated by dividing the region into blocks and
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FIGURE 15: Image matching between human body fat images from different individuals.

calculating the gradient histogram for each block. Typically,
128-dimensional vector representation is the most
advantageous.

Once the descriptor area is determined, it is converted to
the main direction. Using the KD tree algorithm or the more
efficient K nearest-neighbour algorithm, the descriptors of
all key points in the two images are extracted, and the two
descriptors with the shortest distance are selected. These
two descriptors may be for the same key point. The gradients
in eight directions are then counted in each subregion.

3. Results and Discussion

3.1. Matching of Parts with the Whole. With the exception of
some fuzzy edge points, the key points and image registra-
tion were accurate (Figure 12).

There was a high degree of registration between the local
image in the edge area and the whole image; further, the part

TaBLE 1: SIFT registration of the parts and whole of CT images of
human abdominal fat from six groups (individuals).

Group Key points Matches Time
1 324 20 0.124
2 428 27 0.232
3 683 33 0.353
4 564 26 0.257
5 477 36 0.296
6 515 38 0.153
Mean 498.5 30 0.235

cut from the right part area was consistent with the part of
the original image matching the feature points (Figure 13).

3.2. Matching within and between Groups. Images in the same
group came from one individual. Therefore, we conducted
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FiGure 16: Comparison of the SIFT registration number between groups of CT images of human abdominal fat.

matching within groups to screen feature images for this indi-
vidual in the database. There were 436 matched features, show-
ing high matching accuracy (Figure 14).

We conducted feature matching of abdominal fat images
from different groups (individuals). There were 21 matched
features between these different groups (Figure 15), substan-
tially less than the 436 matched features within the same

group.

3.3. Data Analysis. Based on SIFT image registration, we con-
ducted partial and overall analyses and intra- and intergroup
analyses. The former analyses the key points, matches, and
time parameters of the registration between the parts and
whole, by list. The latter provides inter- and intragroup
comparisons of the three groups. The mean key point value
was 498.5, the average number of matches was 30, and the
average matching time was 0.235s (Table 1). This algorithm
performs fast, identifying ca. 500 key points in each group
and ca. 30 matches. To ensure proper representation, we
selected six groups of CT images (that is, from six
individuals) and registered and compared the whole and parts.

The left of the histogram (Figure 16) shows the contrast
registration number of the same group, and the right shows
the configuration number between different groups. We set
up three control groups. From the control group histograms,
it is clear that image registration was high within groups but
low between groups.

The main file generated by the algorithm comprised of
the input image Gaussian scale and difference spaces, local
extreme value selection, and key point descriptor calcula-
tions based on the image gradient.

4. Conclusions

This study presented an improved region growing scale-
invariant feature transformation algorithm for human body

fat image segmentation and image registration. It used a
Naive Bayes classification algorithm for intelligent threshold
segmentation. It applied multidirectional convergence and
automatic positioning of seed points, advancing semiauto-
matic manual seed-point positioning. As the seed points
expanded, the region grew according to a ratio-similarity
growth rule, until the subcutaneous fat region was
completely segmented. Given the complexity of visceral tis-
sues, and the abundance of connections between internal
fat pixels, we did not examine visceral fat imaging in more
detail.

This improved algorithm effectively matched the images
within groups (individuals) based on feature similarity, in
both the part-to-whole and intragroup registration tests. It
has broad operational significance and performs better than
other segmentation algorithms. This improved registration
of human body fat CT images therefore advances image
analysis and makes this algorithm more applicable for
research. It provides a conceptual basis for future imaging
research.

In the submission, we did not give the corresponding
design and application, but in other articles we designed a
“one-click segmentation” operation for the quick segmenta-
tion of fat images for the convenience of the users. The seg-
mented image is obtained directly after the user interacts
with the user interface (UI) component, and there are other
useful operations for the user to handle the image.

The “one-click segmentation” operation includes func-
tions such as opening and saving files, setting fonts, printing
settings, specifying prompt messages, and entering com-
mands. After the user selects the image in the computer
library, the program will read in the image and the user
can perform the crop step. The program will eventually
show the results of processing the original image for this
project and other images in interest. The user can directly
see the processing results of various operators through this
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detection function, and it is easy for the user to learn and
discuss. After use, the user can also save and print the
results, which can make the user feel the shortcut of the pro-
gram, whether it is teaching or research.

Data Availability

All data included in this study are available upon request by
contact with the corresponding author.
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