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Huxley’s model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research,
resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size,
and overall data quality can undermine the reliability of a fit of Huxley’s model. Customary amendments enhance the
complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure. The
resulting protocols bear multiple-parameter complex allometry forms that could pose interpretative shortcomings and
parameter estimation difficulties, and even being empirically pertinent, they could potentially bear overfitting. A subsequent
heavy-tailed Q-Q normal spread often remains undetected since the adequacy of a normally distributed error term remains
unexplored. Previously, we promoted the advantages of keeping Huxley’s model-driven systematic part while switching to a
logistically distributed error term to improve fit quality. Here, we analyzed eelgrass leaf biomass and area data exhibiting a
marked size-related heterogeneity, perhaps explaining a lack of systematization at data gathering. Overdispersion precluded
adequacy of the logistically adapted protocol, thereby suggesting processing data through a median absolute deviation scheme
aimed to remove unduly replicates. Nevertheless, achieving regularity to Huxley’s power function-like trend required the
removal of many replicates, thereby questioning the integrity of a data cleaning approach. But, we managed to adapt the
complexity of the error term to reliably identify Huxley’s model-like systematic part masked by variability in data. Achieving
this relied on an error term conforming to a normal mixture distribution which successfully managed overdispersion in data.
Compared to normal-complex allometry and data cleaning composites present arrangement delivered a coherent Q-Q normal
mixture spread and a remarkable reproducibility strength of derived proxies. By keeping the analysis within Huxley’s original
theory, the present approach enables substantiating nondestructive allometric proxies aimed at eelgrass conservation. The
viewpoint endorsed here could also make data cleaning unnecessary.
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1. Introduction

Julian Huxley envisioned the notion of constant relative
growth between the size of a trait y and overall body size x
[1–3]. Concurring formulation ordinarily referred to as
Huxley’s model of simple allometry is expressed through
the power-function law:

y = βxα: ð1Þ

The power function form bearing Huxley’s model sus-
tains both theoretical and empirical approaches in many
research endeavors, e.g., biology [4–6], physics [7], economy
[8], earth and atmospheric sciences [9], ecology [10], and
resource management [11]. Allometric methods are particu-
larly relevant in seagrass research. Seagrass species provide
valuable ecological services in estuaries and nearshore envi-
ronments, for instance, by offering food and shelter for a
myriad of ecologically and economically valued marine
organisms [12–14], contributing to nutrient cycling [15, 16],
favoring the stabilization of the shoreline as roots and rhi-
zomes compact the substrate, preventing erosion [17, 18],
participating in the foundation of the detrital food web
[19], and also playing a fundamental role in carbon seques-
tration [20]. In seagrass research, allometric methods mainly
aim at predicting response to changing environmental condi-
tions or analyzing growth patterns, for example, the relation-
ship between the width of the leaves and their dry weight
[21], the relationship between the length of stems and their
density [22], and the relationship between the size of the
leaves and their dry weight [23].

Zostera marina L. also known as eelgrass is an essential
seagrass species providing vital ecological services in estu-
aries and nearshore environments. In addition to the
aforelisted seagrass benefits, eelgrass offers a nursery for
waterfowl and fish species and nutrient recycling. But
despite the ecological relevance of eelgrass meadows, dele-
terious anthropogenic influences currently threaten their
permanence [24]. Eelgrass remediation efforts mainly rely
on transplanting endeavors [25]. Assessing the success of
concurring plots depends on nondestructive estimations
of standing stock from which total leaf biomass is an
important constituent. When Huxley’s model produces a
reliable fit to an eelgrass leaf biomass and area data set,
it could provide reliable surrogates of eelgrass leaf biomass
based on direct nondestructive measurements of leaf area.
Conceiving present allometric examination methods aim to
enhance the efficiency of Huxley’s model-based constructs
for eelgrass conservation.

Despite the pertinence of Huxley’s model, some factors
limit the accuracy of deriving projections. Firstly, a response
variable y expressed as a function of its covariate x through
Equation (1) is extremely sensitive to the variation of esti-
mates of the parameters α and β [26]. Then, error propaga-
tion could undermine the precision of Huxley’s model-based
projections of response values. Other prime influencers on
the accuracy of estimates of parameters in Huxley’s model
are the analysis method, sample size, and data quality
[27–29]. Mainly, envisioning a suitable analysis method to

get estimates of parameters in Huxley’s model relies primar-
ily on detecting the implicit variation pattern in the original
data scales. In some settings, the data spread displays a het-
eroscedastic pattern characterized as an increasing variation
in the response’s replicates concerning or relative to the
predictive variable. The traditional approach to assembling
a regression scheme involves Huxley’s power function form
as the systematic part and a multiplicative error term
specified as a lognormally distributed random variable. The
resultant method entails parameter identification through
nonlinear regression in the direct scales of data. Concurrent
to this approach concerns contemplating a logarithmic
transformation that allows the analysis transference from
natural scales into geometrical space. Their examination
involves a regression model including a systematic linear
part and an additive and normally distributed error term.
The method completes by performing a back transformation
step determining the identified form of Huxley’s model of
simple allometry in the direct scales. The last phase requires
using a factor seeking to correct the bias of retransformation
[30–32]. We will refer to this log transformation approach as
the traditional analysis method of allometry (TAMA).
Oppositely to a heteroscedastic spread pattern, data in the
original scales could adapt to a homoscedastic dispersion
outline. Accordingly, it may be pertinent to assume the
appropriateness of a regression model composing Huxley’s
power function form at the systematic part along with an
additive and normally distributed error term. Such a scheme
precludes a log transformation step and sets nonlinear
regression in the direct data scales as a necessary protocol
for parameter identification tasks. So built regression model
refers here as a direct nonlinear regression scheme (DNLR).

In allometric examination, when addressing the tradi-
tional multiplicative, log transformation, or direct nonlinear
regression schemes, the essential task should simultaneously
identify the systematic part and the error term in the associ-
ating regression protocol. The systematic part and the error
term are of chief importance since the first determines the
trend and the second, the dispersion pattern of the data.
Nevertheless, usually, the virtual run concerns the identifica-
tion of the systematic component of the model. Such a drive
embodies attempts to improve goodness-of-fit by modifying
Huxley’s systematic part while keeping a normality-borne
shape of the error term. Such a move conceives constructs
referred to as complex allometry forms [33–35]. Moreover,
commonly, concurrent examination attempts to carry out
the normality of errors without verifying the assumptions
of this model. Such a tactic somehow averts due attention
to questioning the adequacy of the complexity of the
assumed distribution of the error term. But Montesinos-
López et al. [36] stirred away from this practice. They dealt
with a data set including pairs of measurements of eelgrass
leaf biomass and area. A TAMA fit resulted inconsistent.
Montesinos-López et al.’s [36] amendment conformed to a
systematic linear part but switched to a nonnormal
distribution-brought error term. Moreover, Montesinos-
López et al. [36] found that clinging to a logistic
distribution-based try, not only lead to a consistent residual
spread but also, remarkably improved the reproducibility
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strength of proxies for average leaf biomass derived from
allometric projections established by a TAMA approach.

Here, we analyzed eelgrass leaf biomass and area data
adapted from a sample originally reported in Echavarria-
Heras et al. [37]. Compared to [36], present data exhibited
overdispersion and marked size-related heterogeneity,
perhaps explained by a lack of systematization in data
gathering. Linked spread pattern precluded consistency of
a TAMA fit. Moreover, the modification based on a logistic
error term addressed in [36], fitted hereafter data cleaning
procedures, also failed to produce consistent results. A nor-
mal mixture distribution provides a convenient model for
data sets displaying high variability and heterogeneity.
Accordingly, we conjectured that while analyzing present
data, keeping the systematic linear term inherent to the
TAMA approach but bearing a mixture of two normal distri-
butions as a candidate for error term distribution could be
suitable. Compared to composites including multiple
parameter-complex allometry forms, normality of errors,
and data cleaning procedures, the consistency of the present
arrangement fitted in raw data delivered a notable reproduc-
ibility strength of proxies of eelgrass leaf biomass. Identify-
ing the referred allometric relationship upon Huxley’s
power function model framework avoids complications
from complex allometry forms during verifying parameter
invariance. This feature is crucial for genuinely nondestruc-
tive assessments since previously fitted parameters could be
used to get allometric projections of eelgrass leaf biomass
values.

Because of difficulties tied to the implementation of
complex allometry constructs, the present findings certainly
enhance the perception of looking for the appropriateness of
the error distribution as a mechanism to achieve a better fit
of Huxley’s model as suggested by Montesinos-López et al.
[36]. Present findings exhibit the strength of a normal mix-
ture distribution-borne error term as a device to produce a
consistent fit of Huxley’s model in a scenario of marked var-
iability in data. It is also worth emphasizing that by keeping
the analysis within the confines of Huxley’s original theory,
the current approach enables substantiating nondestructive
allometric proxies aimed at eelgrass conservation. Besides,
the scheme endorsed here could also make data cleaning
unnecessary. And, since we provide a detailed explanation
of the implementation, including mathematical, statistical,
and computational aspects, the offered scheme can be
straightforwardly adapted to other allometric examination
endeavors. Also, our mixture distribution assumption on
driving the error term bears a path yet not undertaken
within the traditional analytical assortment of allometry.
Therefore, we considered it worth reporting its suitability,
and this manuscript devotes itself to that aim.

This work is structured as follows: In Section 2, we
explain the formalities of the basic regression schemes deriv-
ing from Equation (1) and that circumscribe to a normal
distribution-borne error term. For comparison aims in
Section 3, we include the spread plots of the present data
and that analyzed by Montesinos-López et al. [36]. Section 3
also elaborates on the necessary modifications of the basic
regression schemes introduced in Section 2 that allow consid-

eration of error terms driven by either a logistic or normal
mixture distributions. Section 3 presents the results of con-
ceived regression protocols fitted to the present data and com-
pares their reproducibility power. The results section also
incorporates a simulation study aimed to establish the strength
of the approach under a known scenario. Section 4 pertains to
the discussion that stresses the strengths and weaknesses of the
current approach. We strain on that by keeping allometric
examination within the confines of Huxley’s original theory;
the present process bears advantages while substantiating
nondestructive assessment proxies aimed at eelgrass conserva-
tion. Section 5 presents the conclusions of this study and sug-
gests future work. Appendix A elaborates on reproducibility
measures to assess the suitability of the allometric projection
methods offered here. Appendix B presents the formalities of
the AIC index-based comparison of models fitted on different
scales.

2. Materials and Methods

2.1. Huxley’s Multiplicative Error Model. There are settings
in allometric analysis with a spread in the original scales of
data displaying a pattern of increasing variation in the
response concerning itself or relative to the predictive vari-
able. Assembling a candidate regression scheme usually
undertakes a Huxley’s multiplicative error model. It involves
a systematic part acquiring a power function form and an
error term specified as a function δðϵÞ of a random variable
ϵ that acts in a multiplicative way, namely,

y = βxαδ ϵð Þ, ð2Þ

where y stands for the response variable, x for the covar-
iate, α andβ are parameters, δðϵÞ = exp ðϵÞ and ϵ taken as a
normally distributed random variable having zero mean and
deviationσ; that is, ϵ ~Nð0, σÞ [38–40]. Proposed form sets
δðϵÞ as a lognormally distributed random variable with zero
log-mean and log-deviation σ, that is, δðϵÞ ~ lognormð0, σÞ:
The likelihood function takes the form

L β, α, σð Þ =
Yn
i=1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
yi

exp −
1
2σ2 log yið Þ − μið Þ2

� �( )
,

ð3Þ

where μi = log ðβÞ + α log ðaiÞ.
Besides, as it is set by Equation (2), the variability of the

response at a given value of the covariate regulates by the
contribution of the random error δðϵÞ and the value of the
systematic part βxα. So, for large covariate values, the named
range of variation grows, thus resulting in a heteroscedastic
statistical model. For present aims, the model set by Equation
(2) refers as Huxley’s multiplicative error model (HMEM) or
simply as a MEM protocol.

Assuming suitability of the model of Equation (2), we
usually address the problem of acquiring the mean of the
response y conditioned on a covariate value x. Associating
form denoting here through EðyjxÞ is gotten by taking the

3BioMed Research International



expected value on both sides of Equation (2) conditioned by
the explanatory variable x, namely,

E y xjð Þ = βxαE δð Þ ð4Þ

where

E δð Þ = exp σ2

2

� �
: ð5Þ

Then, to obtain the mean response EðyjxÞ, in addition to
the power function-like systematic term βxα, we must con-
sider a factor EðδÞ, which interprets as a correction factor
(CF) for bias of allometric projection of the mean response
through the estimated form of the power function βxα. Only
in the case of Huxley’s lognormal multiplicative error model
the correction factor EðδÞ takes on the form given by
Equation (4). In the general settings given the distribution
of the random variable δðϵÞ we could attempt to obtain a
closed-form for the correction factor EðδÞ by evaluating
the expectation of the response variable y. It is worth
emphasizing that in getting a closed form for EðδÞ, it is
essential to identify the form of the distribution acquired
by the error term δðϵÞ.
2.2. The Traditional Analysis Method of Allometry. Concur-
rent to Huxley’s lognormal multiplicative error model of
Equation (2), there is an approach relying on a log transfor-
mation: ðx, yÞ⟶ ðu, vÞ = ðlnx, lnyÞ, that allows the contem-
plation of a linear regression model in the geometrical scales,
namely,

v = β0 + αu + ϵ, ð6Þ

whereβ0 = lnβ and with an additive error term ϵ = ln ðδÞ
expressing as a normally distributed random variable having
zero mean and deviation σ, that is, ϵ ~Nð0, σÞ. The likeli-
hood function is as follows:

L β, α, σð Þ =
Yn
i=1

1ffiffiffiffiffiffi
2π

p
σ

� �
exp −

1
2

vi − μi
σ

� �2	 

, ð7Þ

and with μi = β0 + αui.
Based on the identified form of Equation (6), we perform

a back transformation step to get estimated form of the
mean response function of Equation (4) and that of the cor-
rection factor (5) [30–32]. Afterwards, we refer to the proto-
col of Equation (4) as the traditional analysis method of
allometry (TAMA) [41–43].

2.3. The Direct Nonlinear Regression Protocol. Oppositely to
a circumstance described by the Huxley’s lognormal multi-
plicative error model of Equation (2), it may be pertinent
to conceive a regression model where the systematic power
function-like term maintains, but that the random error
contributes additively to the variability of the response y,
that is,

y = βxα + ϵ, ð8Þ

with ϵ usually assumed as a normally distributed random
variable having a zero mean and a deviation σ, that is, ϵ ~
Nð0, σÞ. Therefore, oppositely to the heteroscedastic spread
entailed by the multiplicative error model of Equation (2)
for the additive error model of Equation (6), the contribu-
tion of ϵ to y variability is its value itself, being this null when
ϵ vanishes. The likelihood function turns out to be

L β, α, σð Þ =
Yn
i=1

1ffiffiffiffiffiffi
2π

p
σ

� �
exp −

1
2

yi − μi
σ

� �2	 

, ð9Þ

with μi = βxαi .
We further on refer to the scheme of Equation (6) as

direct nonlinear regression (DNLR) [40, 44–46].
In what follows, we will refer generically to the error

structure of a given regression scheme as a merge of the
way the error term enters into the model and the distribu-
tion that drives its stochasticity. Accordingly, we say that
the model of Equation (2) bears a multiplicative-lognormal
error structure and that the models of Equation (6) and
Equation (8) both share an additive-normal error structure.
For the aim of exploring the extent of modifying the error
structure of the MEM, TAMA, or DNLR schemes in what
follows, we conceive composite regression schemes that
maintain the involved systematic terms but modify the
assumption on the error-shaping random variable ϵ from
normality to being logistically distributed or else, according
to a mixture of two normal distributions of common zero
mean but different deviations. Particularly, for the DNLR
scheme we adapt a Breusch-Pagan [47] type variance function
form, aimed to take over heteroscedasticity. For comparison,
we include the polynomial modification to TAMA’s scheme
undertaken by Echavarría-Heras et al. [37]. Formal expres-
sions of the composite regression schemes addressed here
appear in the results section.

3. Results

3.1. Data. Present examination relies in a data set compris-
ing pairs of measurements of leaf weight y ½g� and relating
area x ½mm2�, adapted from a sample reported in Echavarría
Heras et al. [37] obtained by a 13-month sampling per-
formed on an eelgrass meadow in Ensenada, B.C., Mexico.
Figure 1(a) displays data spread in the original arithmetical
scales. We can be aware of noticeable variability of replicates
as well as of marked heterogeneity of patterns among the
pools of smaller and larger leaf area values in the sample.
Figure 1(b) pertains to spread corresponding to log scales.
To compose present data set we removed two of the 10412
pairs reported. We further refer to the resulting 10,410 pairs
as the present data set that could be also indistinctly referred
by means of the symbol EHDS, for Echavarría-Heras et al.
[37] data set.

For comparison aims, we depend on a second eelgrass
leaf biomass to area data set examined by Montesinos-
López et al. [36] and collected at the same meadow as the
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EHDS. It composes a total of 537 pairs of measurements of
leaf weight ðyÞ and relating area ðxÞ, also gathered in the
Echavarria-Heras et al. [37] study site but only over a one-
month sampling. Ahead this data set identifies by the label
MLDS, for Montesinos-López et al. [36] data set.
Figure 2(a) displays associating spread in the original arith-
metical scales. Figure 2(b) presents that one corresponding
to geometrical scales.

3.2. Performance of the MEM and TAMA Schemes. The het-
eroscedastic pattern shown in Figure 1(a) suggests exploring
the suitability of a MEM assumption. Therefore, we could
firstly analyze the EHDS according to the regression model
of Equations (2) and (3) or equivalently by calling on to
the concurring TAMA scheme in geometrical scales
appointed by Equations (6) and (7). Including this last fit
provides insight at envisioning the actual distribution of
the error term contemplated in the regular MEM scheme.
Also incorporating the TAMA-based fits allows comparing

present findings to results reported by Echavarría-Heras
et al. [37], as well as to those by Montesinos-López et al.
[36] when analyzing the MLDS. Table 1 presents fitting sta-
tistics of a MEM try, and those relating to a TAMA fit do in
Table 2. Spread plots on both the MEM and the TAMA fits
appear in Figures 3 and 4 one to one. Figure 3(a) displays the
spread about the fitted MEM’s power function-like system-
atic part. Figure 3(b) suggests that the error term does not
match the expected lognormal distribution pattern. Besides,
Figure 3(c) shows the associating Q-Q lognormal plot of the
residuals. Vertical lines sketched in Figure 3(c) delimit the
linear part of the Q-Q lognormal plot. Such a sector places
in the interval (0.240, 3.883), between the ordered observa-
tions, num. 700 and the 9500 of the 10410 original data
pairs. Lowermost panels in Figure 3 display a close-up split
of the Q-Q lognormal diagram in Figure 3(c). Figure 3(e)
associates with the linear sector. Figures 3(d) and 3(f) reveal
that we have heavy tails in the set of residuals corresponding
to a MEM’s fit on the EHDS.
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Figure 1: Spread diagrams of eelgrass leaf weight [g] against relating area [mm2] composing the 13 months sampling data set arranged by
Echavarría-Heras et al. [37]. (a) Dispersion on the arithmetical scales. (b) Dispersion in log scales. We can be aware of extreme variability of
replicates as well of marked heterogeneity of spread patterns for smaller and larger leaf area values. This allocates spread in the geometrical
space.
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Figure 2: Spread diagrams of eelgrass leaf weight [g] against relating area [mm2] the data set addressed by Montesinos-López et al. [36]. (a)
Dispersion on the arithmetical scales. (b) A spread on the geometrical space.
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Correspondingly, Figure 4(a) shows the spread about the
TAMA’s linear systematic part (cf. Equations (6) and (7)
fitted to the EHDS in geometrical scales. Moreover,
Figure 4(b) already suggest that the error term does not
match the expected normal distribution pattern. Besides,
opposing to a masked heavy tail at the left extreme of
Figure 3(c) the spread in Figure 4(c) clearly reveals that
while the normal distribution fits adequately in the central
part, the pattern at the extremes departs from that corre-
sponding to a normal distribution; namely, we have heavy
tails in TAMA’s set of residuals. Concerning this fit, calculat-
ing the value of the kurtosis coefficient provides additional
evidence of the existence of heavy tails in the distribution
of the error term. Certainly, the associating kurtosis coeffi-
cient attained a value of kurt = 14,176, which is a much
larger value than the one corresponding to a normal distri-
bution ðkurt = 3:0Þ:According to Wheeler [48], such a big
value indicates that the distribution of the residues has heavy
tails since kurtosis provides information on the extremes
rather than the central part of the distribution. Therefore, a
TAMA scheme turns out to be very simple to produce a reli-
able fit on the EHDS. Indeed, the analyzed data exhibit a var-
iability pattern suggesting that the complexity of an error
structure beyond that one bearing to normality turns out
to be necessary to grant a coherent fit. Thus, the resulting
residuals should instead model through a distribution with
a considerably greater overdispersion than the normal one
in the geometric scales could explain. In summary, results
suggest that a normal distribution assumption for the ran-
dom variable ϵ inherent to the MEM and TAMA fits does

not support a suitable model for the variability pattern
inherent to the EHDS.

3.3. Implementation of the Breusch-Pagan Modification on
the Regular DNLR Protocol. As it conceives here, a DLNR-
BP protocol stands for a Breusch-Pagan [47] modification
of the basic DLNR scheme of Equation (6) envisioned to
account for the heteroscedastic pattern shown in
Figure 1(a). Formally, a DNLR-BP adaptation acquires a
form:

y = βxα+ ∈ ð10Þ

with ϵ taken as normally distributed random variable, hav-
ing a zero mean, and a covariate dependent deviation σðxÞ,
that is, ϵ ~Nð0, σðxÞÞ. To offer a suitable candidate form
for σðxÞ, we recall the procedure yielding the Breusch-
Pagan [47] test, so we set the following:

σ y xjð Þ = σ 1 + kxð Þ ð11Þ

Additionally, the likelihood function becomes the fol-
lowing:

L β, α, k, σð Þ =
Yn
i=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ yi xijð Þp !

exp −
1
2

yi − μi
σ yi xijð Þ
� �2

( )
,

ð12Þ

with μi = βxαi and σðyijxiÞ = σð1 + kxiÞ.

Table 1: Estimated parameters, related statistics, and AIC values associated with a MEM scheme as given by Equations (2) and (3) and fitted
on the EHDS. We include parameter estimates with their projected uncertainties, t value, p value, LogLikMx, and AIC stand for maximum
loglikelihood and Akaike information index values one to one.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β 1:3543e − 05 2:8836e − 07 1:2978e − 05, 1:4108e − 05ð Þ 47.0 <1:0 × 10−30

α 1:0239e + 00 3:6235e − 03 1:0168e + 00, 1:0310e + 00ð Þ 282.5 <1:0 × 10−30

σ 5:6609e − 01 3:9231e − 03 5:5840e − 01, 5:7378e − 01ð Þ 144.3 <1:0 × 10−30

LogLikMx 47375.9

AIC -94745.76

Table 2: Estimated parameters and related statistics associating with a TAMA scheme as given by Equations (6) and (7) and fitted on the
EHDS. We include parameter estimates with their projected uncertainties, t value, p value, LogLikMx, and AIC stand for maximum
loglikelihood and Akaike information index values one to one. LogLikMxA and AICA correspond one to one to values of the LogLikMx
and AIC statistics expressed in direct arithmetical scales.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β0 -11.2096 0.021515 (-11.251357, -11.167892) -520.66 <1:0 × 10−30

α 1.0239 0.0036615 (1.016808, 1.031013) 279.33 <1:0 × 10−30

σ 5:6609e − 01 0.0039234 (0.558420, 0.573800) 144.3 <1:0 × 10−30

LogLikMx -8848.2

AIC 17702.4

LogLikMxA 47375.9

AICA -94745.8
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Table 3 presents parameter estimates and associating fit-
ting statistics of the DNLR-BP scheme of Equations (10) and
(12) performing on the EHDS. The resulting spread plots
appear in Figure 5. In Figure 5(a), we exhibit the dispersion
about fitted Huxley’s power function form. Figure 5(b)
shows the scatter diagram of residuals against leaf area. In
turn, Figure 5(c) shows a Q-Q normal plot of the residuals
on direct arithmetical scales. Although spreads in (a) and
(b) suggest the presence of two correspondence rules con-
forming to the global area-weight relationship, the fitted
power function deems roughly consistent. But still,
Figure 5(c) displays a heavy tails pattern of the error term,
although now being asymmetrical. Such a Q-Q normal dia-
gram perhaps explains by the fact that even by appointing
a Breusch-Pagan [47] variance function form, that move

failed to provide a sound model for the heterogeneity of
the heteroscedastic spread. But said asymmetrical spread
could additionally explain by the Lai et al. [40] observation
that direct nonlinear regression can produce bias for large
covariate values. Moreover, comparison of AIC values
among the MEM (AIC = −94745:76) and the DNLR-BP ð
AIC = −84528:9Þ fit produces ΔAIC = −10217, favoring the
MEM fit. Therefore, a multiplicative error structure seems
more fit at analyzing the EHDS. The relatively fair spread
about the fitted systematic term hints on adequacy of Hux-
ley’s model at describing the trend in the EHDS but the
spreads in the Q-Q normal diagrams accompanying the
MEM, TAMA, and DNLR-BP fits suggest that assuming
the error shaping random variable ϵ as being normally dis-
tributed is statistically unsupported.

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000

Area (mm2)

W
eig

ht
 (g

)

(a)

–0.1

–0.05

0

0.05

0.1

0 2000 4000 6000 8000

Area (mm2)

Re
sid

ua
ls

(b)

20

0

40

60

80

100

0 10 20 30 40 50 

Theorical quantiles

Sa
m

pl
e q

ua
nt

ile
s

(c)

0

0.6
0.8

0.2
0.4

1

1.6
1.8

1.2
1.4

2

0 0.40.2 0.6 0.8 1 1.2

Theorical quantiles

Sa
m

pl
e q

ua
nt

ile
s

(d)

0

0.05

1

1.5

2

1 1.5 2 2.5

Theorical quantiles

Sa
m

pl
e q

ua
nt

ile
s

(e)

0

2

4

6

8

2.5 3 3.5 4 4.5 5 5.5 6

Theorical quantiles

Sa
m

pl
e q

ua
nt

ile
s

(f)

Figure 3: Spread plots of the fit of a MEM scheme as given by Equations (2) and (3) on present data (EHDS). Uppermost panels display the
diagrams of dispersion about the fitted systematic part, residuals, and Q-Q lognormal plot. The lowermost panels exhibit a close-up split of
the different regions associated with the Q-Q lognormal diagram. (a) Dispersion around MEM-fitted power function in direct scales. (b) The
scatter diagram of residuals against the area values. (c) The Q-Q lognormal plot of the residuals on the direct scales. Vertical lines in (c)
delimit the linear part of the Q-Q lognormal plot, placing in the interval (0.240, 3.883), between the ordered observations, num. 700 and
the 9500 of the 10410 original data pairs. (e) The linear sector. (d, f) The pattern at the extremes departs from that corresponding to a
lognormal distribution; namely, we have heavy tails in the set of residuals corresponding to the MEM’s fit.
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3.4. Execution of the Logistic Distribution Amendments to
the Regular MEM and TAMA Schemes. Agreeing to
Montesinos-López et al. [36], while analyzing the EHDS,
we attempted to model overdispersion or residuals pro-
duced by the regular MEM or TAMA fits by agreeing to
a complexity of error structure adaptation approach. We
assumed first that the basic random variable ϵ better con-
forms to a logistic distribution, since this last one works
fine when the overdispersion is low. Resulting analytical

arrangements describe by the acronyms MEM-loglogistic
and TAMA-logistic. Formally, the MEM-loglogistic con-
struct stands for a modification of the regression model of
Equation (2), which establishes through

y = βxαδ ∈ð Þ ð13Þ

with δðϵÞ = exp ðϵÞ and ϵ taken as a logistically distributed
random variable having zero location and scale σ, that is,
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Figure 4: Dispersions about the fitted systematic part, residuals, and Q-Q diagram of a TAMA scheme as given by Equations (6) and (7) and
fitted on the Echavarría-Heras et al. [37] data. (a) Dispersion around TAMA-fitted line in log scales. (b) The scatter diagram of residuals
against the logarithm of the area. (c) The Q-Q normal plot of the residuals on a geometric scale. Heavy tails refer to an unreliable
TAMA fit.

Table 3: Estimated parameters, related statistics, and AIC values associating with a DNLR-BP scheme (cf. Equations (10) and (12)) fitted on
the EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for maximum
loglikelihood and Akaike information index values one to one.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β 9:76e − 06 3:76e − 07 (9:048e − 06, 1:052e − 05) 26.0 <2 × 10−16

α 1.0883 0.0053 (1.078, 1.0987) 205.73 <2 × 10−16

σ 0.002557 3:4042e − 05 (0.00249, 0.00262) 75.2 <2 × 10−16

k 0.001215 4:1431e − 05 (0.001134, 0.001296) 29.4 <2 × 10−16

LogLikMx 42268.43

AIC -84528.9
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Figure 5: Spreads about mean response curve, that of residual and the one portraying in the Q-Q normal plot of the heteroscedastic DNLR-
BP scheme of Equations (10) and (12) fitted on the Echavarría-Heras et al. [37] data set. (a) Dispersion about fitted Huxley’s power function
form. (b) The scatter diagram of residuals against leaf area. (c) The Q-Q normal plot of the residuals on direct arithmetical scales. Heavy tails
appear through a markedly asymmetrical pattern which refers to an overall inconsistent DNLR-BP fit.
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ϵ ~ logistic ð0, σÞ: Proposed form sets δðϵÞ as a loglogisti-
cally distributed random variable with zero log-location
and log-scale σ: The likelihood function takes a form:

L β, α, σð Þ =
Yn
i=1

exp ln yið Þ − ln μið Þð Þ/σ½ �
σ 1 + exp ln yið Þ − ln μið Þð Þ/σ½ �½ �2 , ð14Þ

being μi = βaαi . The mean response function becomes the
following:

E y xjð Þ = βxαE δð Þ, ð15Þ

where

E δð Þ = Γ 1 + σð ÞΓ 1 − σð Þ: ð16Þ

Meanwhile, according to Equation (5), a TAMA-logistic
scheme sets by the model

v = β + αu + ϵ, ð17Þ

with ϵ ~ logisticð0, σÞ: The likelihood function takes on a
form:

L β, α, σð Þ =
Yn
i=1

exp vi − μið Þ/σð Þ
σ 1 + exp vi − μið Þ/σð Þ½ �2 , ð18Þ

where μi = β0 + αui. The back transformation step requires
using the correction factor

CF = Γ 1 + σð ÞΓ 1 − σð Þ: ð19Þ

Estimated parameter values and relating statistics for a
MEM-loglogistic protocol of Equations (13) and (14) fitted
on the EHDS appear in Table 4. Correspondingly, those
pertaining to a TAMA-logistic fit (cf. Equations (17) and
(18)) display in Table 5. In Figure 6, we include spread
plots on both the MEM-loglogistic and the TAMA-logistic
fits. Besides, upper panels of Figure 6 present spreads asso-
ciating with MEM-loglogistic fit, that is, Figure 6(a)
includes spread about fitted Huxley’s power function,
Figure 6(b) corresponding to residual’s dispersion and
Figure 6(c) devoting to the Q-Q loglogistic diagram spread
of residuals in direct arithmetical scales. As we arranged for
Figure 3(c), by splitting the diagram in Figure 6(c) and then
amplifying we can also be aware of that the pattern at the
extremes departs from that corresponding to a loglogistic
distribution; namely, we have heavy tails in the set of resid-
uals corresponding to the MEM-loglogistic fit. Correspond-
ingly, lower panels in Figure 6 present dispersion patterns
resulting from a TAMA-logistic fit. Figure 6(d) portraits
dispersion about fitted TAMA-logistic line. Figure 6(e)
exhibits residual dispersion led by the TAMA-logistic fit.
And Figure 6(f) portraits the corresponding Q-Q logistic
plot of residuals in geometrical space. Again, a heavy tails
pattern shows. For the sake of conciseness when comparing
to the Montesinos-López et al. [36] fit, we only discuss the
implications of the TAMA-logistic spread plots. Compared
to a regular TAMA fit present residual spread still shows an
uneven pattern. Moreover, the improvement in consistency

Table 4: Estimated parameters, related statistics, and AIC values associating with a MEM-loglogistic scheme (cf. Equations (13) and (14))
fitted on the EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for
maximum loglikelihood and Akaike information index values one to one.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β 1:0869e − 05 2:1875e − 07 (1:0440e − 05, 1:1298e − 05) 49.7 <1:0 × 10−30

α 1:0584e + 00 3:2813e − 03 (1:0520e + 00, 1:0648e + 00) 322.6 <1:0 × 10−30

σ 2:6506e − 01 2:2582e − 03 (2:6063e − 01, 2:6949e − 01) 117.7 <1:0 × 10−30

LogLikMx 48651.65

AIC -97297.3

Table 5: Estimated parameters, related statistics, and AIC values associating with a TAMA-logistic scheme (cf. Equations (17) and (18))
fitted on the EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for
maximum loglikelihood and Akaike information index values one to one. LogLikMxA and AICA correspond one to one to values of the
LogLikMx and AIC statistics expressed in direct arithmetical scales.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β0 -11.4296 0.02007617 (−1:1469e + 01, −1:1390e + 01) -569.3 <1:0 × 10−30

α 1:0584e + 00 3:2813e − 03 (1:0520e + 00, 1:0648e + 00) 322.6 <1:0 × 10−30

σ 2:6506e − 01 2:2582e − 03 (2:6063e − 01, 2:6949e − 01) 117.7 <1:0 × 10−30

LogLikMx -7572.45

AIC 15150.9

LogLikMxA 48651.6

AICA -97297.2
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Figure 6: Fitted systematic part residual and Q-Q plots of a MEM-loglogistic (cf. Equations (13) and (14)) and a TAMA-logistic (cf.
Equations (17) and (18)) fitted on the Echavarría-Heras et al. [37] data. (a) Dispersion about the MEM-loglogistic fitted Huxley’s power
function systematic part. (b) Resulting MEM-loglogistic residual spread and (c) presents corresponding heavy tails displaying in Q-Q
loglogistic diagram. Correspondingly, (d) displays dispersion around the TAMA-logistic line in log scales. (e) The scatter diagram of
residuals against the logarithm of leaf area. (f) The Q-Q logistic plot of the residuals on geometrical space. Heavy tails refer to an
inconsistent TAMA-logistic fit.
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of the Q-Q logistic plot spread reported by Montesinos-
López et al. [36] did not show up in present EHDS fit.
Indeed, contrasted to the Q-Q logistic plot spread shown
in Montesinos-López et al. [36] the Q-Q logistic plot in
Figure 6(f) still stands to a heavy tails pattern. Therefore,
in contraposition to the results reported by Montesinos-
López et al. [36] the present TAMA-logistic scheme turned
on unsuccessful at modeling the allometric relationship
intrinsic to the EHDS.

The logistic distribution can reasonably model a higher
dispersion than the normal one [36]. But the heavy tails
arrangement displaying in the Q-Q loglogistic diagram of
Figure 6(c) refers to an unfair MEM-loglogistic fit (Equation
(9)), and equally, the Q-Q logistic plot of the residuals of a
TAMA-logistic fit (Figure 6(f)) on geometrical space show-
ing heavy tails also point to an inconsistent TAMA-logistic
(Equation (10)) fit.

3.5. Performing the Breusch-Pagan and Logistic Distributed
Error Modification on the DNLR Protocol. As it conceives
here, a DLNR-BP-logistic protocol stands for a Breusch-
Pagan [47] along with a logistically distributed error modifi-
cation of the basic DLNR scheme of Equation (6) envisioned
to account for the heteroscedastic pattern shown in
Figure 1(a). Formally, a DNLR-BP-logistic adaptation
admits a form:

y = βxα+ ∈ ð20Þ

with ϵ taken as a logistically distributed random variable,
having a zero location and a covariate dependent scale σðxÞ,
that is, ϵ ~ logisticð0, σðxÞÞ, where we set the following:

σ y xjð Þ = σ 1 + kxð Þ ð21Þ

The likelihood function becomes

L β, α, σð Þ =
Yn
i=1

exp yi − μið Þ/σið Þ
σi 1 + exp yi − μið Þ/σið Þ½ �2 , ð22Þ

with μi = βxαi , and σi = σð1 + kxiÞ.
Table 6 presents parameter estimates and associating fit-

ting statistics of the DNLR-BP-logistic scheme as given by

Equations (20) and (22) and performing on the EHDS.
The resulting spread plots appear in Figure 7. In
Figure 7(a), we exhibit the dispersion about fitted Huxley’s
power function form. Figure 7(b) shows the scatter diagram
of residuals against leaf area. In turn, Figure 7(c) shows a Q-
Q logistic plot of the residuals on direct arithmetical scales.
Moreover, comparison of AIC values among the MEM-
logistic (AIC = −97297:3) and the DNLR-BP-logistic
(AIC = −84528:9) fits produces ΔAIC = −12768, favoring
the MEM-logistic protocol, with an AIC difference that
widens over that recorded for a comparison between the
MEM and DNLR-BP schemes. And yet, Figure 7(c) displays
a heavy tails pattern of the error term, once again being
asymmetrical as in the case of a DNLR-BP fit. Again, such
an asymmetrical spread could explain by the embedding of
a real multiplicative error structure into an additive error
counterpart. An on top of that, the Lai et al. [40] observation
of biased direct nonlinear regression output for large covar-
iate values could be also pertinent. In any event, the spread
in the Q-Q logistic in Figure 7(c) bears that assuming logis-
tically distributed residuals turns out to be unfeasible. At this
point of the matter, by looking at a relatively fair spread
about the systematic parts of fitted MEM, TAMA, DNLR-
BP schemes and their subsequent modifications to contem-
plate a logistic distribution-borne error term, it is not idle
to say that the detected inconsistencies in Q-Q diagram
spreads, could already hint at a lack of suitability of either
a normal or a logistic distribution as compatible models
for the residual dispersion in present data.

3.6. Implementation of the TAMA Scheme Fitted on
Processed Data. Heterogeneity of spread in Figure 1 could
perhaps explain by the participation of multiple agents that
contributed to data gathering without standardization of
routines [37]. Then, at first glance, proliferation of unduly
replicates could generate issues at data quality that elucidate
the lack of fit of schemes based on Huxley’s model and
accompanying normal or logistic distributions-borne error
terms. Echavarria-Heras et al. [28] adapted a median abso-
lute deviation procedure to remove anomalous replicates in
a sample of similar allometric eelgrass data. We engaged
these procedures on present data to explore the extent of
data quality influences in determining the inconsistencies
of the fits above. Table 7 presents parameter estimates and

Table 6: Estimated parameters, related statistics, and AIC values associating with a DNLR-BP-logistic scheme of Equations (20) and (22)
fitted on the EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for
maximum loglikelihood and Akaike information index values one to one.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β 7:077e − 06 1:702e − 07 (6:744e − 06, 7:411e − 06) 41.59 <2 × 10−16

α 1:129e + 00 3:538e − 03 (1:122e + 00, 1:136e + 00) 319.16 <2 × 10−16

σ 2:702e − 04 9:855e − 06 (2:508e − 04, 2:895e − 04) 27.41 <2 × 10−16

k 9:651e − 03 4:879e − 04 (8:694e − 03, 1:061e − 02) 19.78 <2 × 10−16

LogLikMx 47279

AIC -94549
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related statistics associating with a TAMA scheme as given
by Equations (6) and (7) and fitted on the processed EHDS.
These statistics on the processed data are only provided for
completion of the presentation and do not intend to support
comparison to the remaining fits as those relied upon the
crude EHDS. Figure 8 displays the spread plots associated
with a TAMA fit on processed data. Figure 8(a) displays dis-
persion about fitted Huxley’s linear systematic part.
Figure 8(b) shows the scatter diagram of residuals against
leaf area. Figure 8(c) presents the Q-Q normal plot of the
residuals that shows heavier tails than those expected for a
normal distribution. Even though the addressed median
absolute deviation procedure removed a large share (25%)
of the original data, the TAMA fit could not normalize the
residual dispersion. Moreover, differentiation of spread pat-
terns among the pools’ smaller and larger leaf sizes barely
hinted by plots in Figure 1 seems to portray undoubtedly
once data processing completes, as shown by (a) and (b) in
Figure 8. Therefore, considering this and for improving the
quality of fits of schemes involving Huxley’s model-driven
systematic term, it seems reasonably calling in distributions

that allow a greater dispersion than the normal or the logis-
tic ones at assembling the accompanying error term.

3.7. Assessments of the Normal Mixture Amendments to the
Regular MEM and TAMA Schemes. Constituents in the fam-
ily of finite mixtures of distributions are highly flexible due
to the diversity of forms that they can acquire. Particularly,
the distributions that we can construct through finite mix-
tures of normal distributions are very varied since we can
obtain multimodal, skewed, and distributions with excess
kurtosis. Particularly, at adapting the symmetric distribution
with zero mean and heavy tails suggested by the spread in
Figure 4(c), we could explore the appropriateness of a mix-
ture of two individual normal distributions; N1ð0, σ1Þ and
N2ð0, σ2Þ having a common zero mean but different devia-
tions σ1and σ2.We assume also, that the weight through
which N1ð0, σ1Þ and N2ð0, σ2Þ participate in the mixture
designates by means of p: For simplicity further on we
employ the symbol M2N to designate so conceived mixture
distribution. Assume that the error shaping random variable
ϵ in Equation (9) distributes according to a M2N mixture.
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Figure 7: Spreads about mean response curve that of residual and the one portraying in the Q-Q logistic plot of the heteroscedastic DNLR-
BP-logistic scheme of Equations (20) and (22) fitted on the Echavarría-Heras et al. [37] data set. (a) Dispersion about fitted Huxley’s power
function form. (b) The scatter diagram of residuals against leaf area. (c) The Q-Q logistic plot of the residuals on direct arithmetical scales.
Heavy tails appear through a markedly asymmetrical pattern which refers to an overall inconsistent DNLR-BP-logistic fit.
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Then, denoting associating probability density function
through the symbol f ðϵ ; p, σ1, σ2Þ, we have the following:

f ϵ ; p, σ1, σ2ð Þ = pf1 ϵ ; 0, σ1ð Þ + 1 − pð Þf2 ϵ ; 0, σ2ð Þ, ð23Þ

where f1ðϵ ; 0, σ1Þ and f2ðϵ ; 0, σ2Þ stand for one to one the
density functions of the components N1ð0, σ1Þ and N2ð0,
σ2Þ. It follows, directly from Equation (14) that EðϵÞ = 0
and that joining variance σ2ðϵÞ takes on the form:

σ2 ϵð Þ = pσ21 + 1 − pð Þσ22: ð24Þ

Therefore, the assumption of ϵ being distributed accord-
ing to presently conceived normal mixture M2N symbolizes
through ϵ ~M2Nðp, 0, σÞ where σ derives from Equation
(16). Whenever ϵ ~M2Nðp, 0, σÞ, the random variable δðϵÞ
= exp ðϵÞ acquires a log-mixture of two normal distribution
of zero log-mean, log-deviation σ and weight p, that is, δðϵÞ
~ LM2Nðp, 0, σÞ. Moreover, the associating density function
denoted through f δðδ ; 0, p, σ1,σ2Þ is given by the following:

f δ δ ; 0, p, σ1, σ2ð Þ = pf1 δ ; 0, σ1ð Þ + 1 − pð Þf2 δ ; 0, σ2ð Þ, ð25Þ

where f1ðδ ; 0, σ1Þ and f2ðδ ; 0, σ2Þ are the two lognormal den-
sity functions, with common log-mean zero and log-
deviations σ1 and σ2, respectively.

Correspondingly, the adaptation of the MEM protocol
that replaces a lognormally distributed error term by a
LM2N alternate denotes by MEM-LogM2N. Formally, such
a scheme takes on a form:

y = βxαδ ∈ð Þ ð26Þ

with δðϵÞ = exp ðϵÞ and ϵ taken as a M2N distributed ran-
dom variable, that is, ϵ ~M2Nðp, 0, σÞ. Therefore, δðϵÞ ~
LogM2Nð0, σÞ. The likelihood function becomes the follow-
ing:

L β, α, σ1, σ2, pð Þ =
Yn
i=1

p
1ffiffiffiffiffiffiffiffiffiffi

2πσ2
1

p
yi

exp −
1
2σ21

log yið Þ − μið Þ2
� �(

+ 1 − pð Þ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

2
p

yi
exp −

1
2σ2

2
log yið Þ − μið Þ2

� �)
,

ð27Þ

where μi = log ðβÞ + α log ðxiÞ. And the mean response func-
tion takes on a form:

E y xjð Þ = βxαE δð Þ: ð28Þ

Then, Equation (18) implies the following:

E δð Þ = p exp σ2
1
2

� �
+ 1 − pð Þ exp σ22

2

� �
: ð29Þ

Besides, we use a composite TAMA-M2N to distinguish
the regression arrangement that modifies the regular TAMA
scheme to consider a M2N distributed error term. Formally,
the scheme stands for a modification of the regression model
of Equation (5) that establishes through the following:

v = β + αu + ϵ, ð30Þ

with ϵ being a M2N distributed random variable with zero
mean and deviation σ, that is, ϵ ~M2Nð 0, σÞ. The corre-
sponding likelihood function is given by the following:

L β0, α, σ1, σ2, pð Þ =
Yn
i=1

p
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

1
p exp −

1
2σ21

vi − μið Þ2
� �(

+ 1 − pð Þ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

2
p exp −

1
2σ2

2
vi − μið Þ2

� �)
,

ð31Þ

where μi = β0 + αui.

Table 7: Estimated parameters and related statistics associating with a TAMA scheme as given by Equations (6) and (7) and fitted on the
processed EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for
maximum loglikelihood and Akaike information index values one to one. LogLikMxA and AICA correspond one to one to values of the
LogLikMx and AIC statistics expressed in direct arithmetical scales. Statistics on the processed data are only provided for completion of
the presentation and do not intend to support comparison to the remaining fits as those relied upon the crude EHDS.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β0 -11.3663610 0.01669583 (-11.39908, -11.33364) -680.79 1:0 × 10−30

α 1.044361 0.00278709 (1.03890, 1.04982) 374.71 1:0 × 10−30

σ 0.382246 0.00305903 (0.37625, 0.38824) 124.96 1:0 × 10−30

LogLikMx -3569.7

AIC 7145.4

LogLikMxA

AICA
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Correspondingly, according to Equation (19), the correc-
tion factor for retransformation aims becomes the following:

CF = p exp σ21/2
� �

+ 1 − pð Þ exp σ22/2
� � ð32Þ

Table 8 presents fitting statistics relating to a MEM-
LogM2N protocol (cf. Equations (26) and (27)) performing
on the EHDS. Table 9 provides fitting statistics associating
with a TAMA-M2N fit (cf. Equations (30) and (31)).
Figure 9(a) presents the spread about the MEM-LogM2N
fitted Huxley’s form of a systematic part. Figure 9(b) exhibits
the corresponding residual spread. Figure 9(c) presents the
associating Q-Q LogM2N diagram. It becomes evident that
a M2N distribution bears a fair model for the residual dis-
persion. AIC values clearly asses a gradual improvement of
quality of fit favoring the M2N-driven protocols, i.e., MEM
ðAIC = −94745:76Þ, MEM-loglogistic ðAIC = −97297:3Þ, and
MEM-LogM2N ðAIC = −99520:8Þ: And similarly, for the
TAMA related fits (TAMA ðAICA = −94745:8Þ TAMA-

logistic ðAICA = −97297:2Þ, and TAMA-M2N ðAICA = −
99521:0Þ).We may be also aware of improved residual spread
relative to the severe heavy tail patterns underlying both the
MEM and the MEM-loglogistic schemes. Figure 9(d) shows
the spread about the linearmean response in geometrical space
produced by a TAMA-M2N scheme fitted on the EHDS.
Figure 9(e) displays TAMA-M2N residual spread and
Figure 9(f) presents the link up with Q-Q M2N plot. The
M2N modified TAMA scheme shows a better fit than either
the regular TAMA or its logistic-borne counterpart since as
we can be ascertained by comparing Q-Q diagrams in
Figure 3 through Figure 7, the consistencies of the Q-Q
M2N-borne spreads are remarkable, compared to the severe
heavy tails patterns displayed by either the Q-Q normal and
Q-Q logistic plots.

Besides when comparing the fits with error term pro-
duced by the M2N to those driven by the normal or logistic
distributions on the arithmetic scale, using the Akaike infor-
mation criterion (AIC), where the lower value of the AIC
index represents a better fit, we can be aware from
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Figure 8: Spreads about mean response curve, that of residual and the one portraying in the Q-Q normal plot of a TAMA scheme of
Equations (6) and (7) fitted on the data set produced by applying the mean absolute deviation data cleaning procedures described in
Echavarría-Heras et al. [37] on present data. (a) Dispersion about fitted Huxley’s linear systematic part. (b) The scatter diagram of
residuals against leaf area. (c) The Q-Q normal plot of the residuals that shows heavier tails than those expected for a normal distribution.
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Tables 1, 3, 4, 6, 8, and 10 that the M2N model presents a
better fit than the remaining ones. The above results concede
a notable improvement when replacing the normal or logis-
tic distribution forms of the error term in the geometric scale
with an M2N counterpart. Yet another advantage of the
M2N model concerns to the uncertainty of the estimated
parameters, since as we can see in Tables 1–10, the relative
standard errors of the estimates of the parameters α and β
of the M2N model are smaller than the ones attaching to
the normal or logistic counterparts, that is, the M2N model
returns parameter estimates with better precision. Conse-
quently, we can sustain that M2N model surpasses the nor-
mal or logistic ones in quality of the fit to the EHDS.

3.8. Performance of the Breusch-Pagan and M2N
Modification to the Regular DNLR Scheme Fitted on the
EHDS. The regression equation associating with a DNLR-
BP-M2N scheme becomes the following:

y = βxα + ϵ, ð33Þ

with ϵ ~M2Nðp, 0, σÞ. For a M2N distribution, the standard
deviation becomes the following:

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pσ2

1 + 1 − pð Þσ22
q

: ð34Þ

In order to adapt the model of Equation (19) for the het-
eroskedastic case, similarly to the Breusch-Pagan [47] test,
we modify the standard deviations σ1 and σ2, such that
one to one take forms σ1ð1 + kxÞ and σ2ð1 + kxÞ, to obtain
the following:

σ y xjð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p σ1 + 1 + kxð Þ½ �2 1 − pð Þ σ2 1 + kxð Þ½ �2

q
ð35Þ

or equivalently

σ y xjð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pσ2

1 + 1 − pð Þσ21 1 + kxð Þ
q

ð36Þ

The likelihood function of this model can be written as
follows:

L β, α, σ1, σ2, p, kð Þ =
Yn
i=1

p
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

1i
p exp −

1
2σ21i

vi − μið Þ2
� �(

+ 1 − pð Þ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

2i
p exp −

1
2σ22i

vi − μið Þ2
� �)

,

ð37Þ

where μi = βxαi and σji = σjð1 + kxiÞ, j = 1, 2.

Table 8: Estimated parameters, related statistics, and AIC value associating with a MEM-LogM2N scheme (cf. Equations (26) and (27))
fitted on the EHDS We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for
maximum loglikelihood and Akaike information index values one to one.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β 7:7446e − 06 1:4350e − 07 (7:4633e − 06, 8:0259e − 06) 54.0 <1:0 × 10−30

α 1:1106e + 00 2:9287e − 03 (1:1049e + 00, 1:1163e + 00) 379.2 <1:0 × 10−30

p 2:1182e − 01 7:0370e − 03 (1:9803e − 01, 2:2561e − 01) 30.1 <1:0 × 10−30

σ1 1:1682e + 00 2:2715e − 02 (1:1237e + 00, 1:2127e + 00) 51.4 <1:0 × 10−30

σ2 2:6053e − 01 3:0627e − 03 (2:5453e − 01, 2:6653e − 01) 85.1 <1:0 × 10−30

LogLikMx 49765.43

AIC -99520.85

Table 9: Estimated parameters, related statistics, and AIC value associating with a TAMA-M2N protocol (cf. Equations (30) and (31)) fitted
on the EHDS. We include parameter estimates with their estimated uncertainties, t value, p value, LogLikMx, and AIC stand for maximum
loglikelihood and Akaike information index values one to one. LogLikMxA and AICA correspond one to one to values of the LogLikMx and
AIC statistics expressed in direct arithmetical scales.

Parameter Estimate Std. err. CI (95%) t value p value

β0 -11.7704676 0.0185185 (-11.806764, -11.734171) -635.6 < 5 × 10−30

α 1.1108684 0.0029282 (1.105129, 1.116608) 379.4 < 5 × 10−30

p 0.7914487 0.0069130 (0.777899, 0.804998) 114.5 < 5 × 10−30

σ1 0.2614560 0.0030538 (0.255471, 0.267442) 85.6 < 5 × 10−30

σ2 1.1918691 0.0232128 (1.146372, 1.237366) 51.3 < 5 × 10−30

LogLikMx -6458.6

AIC 12927.2

LogLikMxA 49765.5

AICA -99521.0
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Table 10 presents the parameter estimates and fitting
statistics relating to a DNLR-BP-M2N scheme (cf. Equations
(33) and (37)) fitted on the EHDS. Figure 10 exhibits corre-
sponding spread plots. Figure 10(a) displays dispersion

about fitted Huxley’s power function form. Figure 10(b)
shows the scatter diagram of residuals against leaf area.
Figure 10(c) shows Q-Q M2N plot of the residuals on direct
arithmetical scales. Spreads about the mean response

0.2

0.15

0.1

0.05

0
0 2000 4000 6000 8000

W
eig

ht
 (g

)

Area (mm2)

(a)

100

50

0
0 2000 4000 6000 8000

150

Re
sid

ua
ls

Area (mm2)

(b)

150

100

50

0
0 10 20 30 40 50 60

Sa
m

pl
e q

ua
nt

ile
s

Theorical quantiles

(c)

0

–2

–4

–6

–8

–10

–12

Lo
g (

W
eig

ht
)

0 2 4 6 8 10
Log (Area)

(d)

–5

0

5

Re
sid

ua
ls

0 2 4 6 8

Log (Area)

(e)

–5

0

5

–5 0 5

Theorical quantiles

Sa
m

pl
e q

ua
nt

ile
s

(f)

Figure 9: Spread plots relating to a M2N-driven modification to the MEM (cf. Equations (26) and (27)) (upper panels) and those
corresponding to a TAMA-M2N composite (cf. Equations (30) and (31)) both fitted on the EHDS. (a) Dispersion around fitted Huxley’s
power function in direct scales. Line in log scales. (b) The scatter diagram of residuals against the logarithm of the area. (c) The Q-Q
M2N plot of the residuals on a geometric scale. (d, e, and f) Corresponding diagrams for a TAMA-M2N.
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function and that of residuals around the zero lines seem
fair. Compared to the fit of a regular DNLR scheme of Equa-
tions (8) and (9), the Q-Q M2N diagram appearing in

Figure 10(c) displays improvement regarding the expected
pattern for a heavy tailed distribution. But anyhow, an asym-
metrical heavy tailed spread persists. Table 5 explains the

Table 10: Parameter estimates of the DNLR-BP-M2N and the heteroscedastic [47] nonlinear model with the additive error term distributed
as the presently addressed mixture of two normal distributions (cf. Equations (33) and (37)). We include parameter estimates with their
estimated uncertainties, t value, p value, LogLikMx, and AIC stand for maximum loglikelihood and Akaike information index values one
to one.

Parameter Estimate Std. err. CI (95%) t value p value

lnβ −1:1969494e + 01 1:7554895e − 02 (−1:2003901e + 01, −1:1935087e + 01) -681.8 2 × 10−16

β 6:3345341e − 06 1:1120208e − 07 6:1165821e − 06, 6:5524862e − 06 56.9 2 × 10−16

α 1:1441543e + 00 2:6137715e − 03 1:1390314e + 00, 1:1492772e + 00 437.7 2 × 10−16

p 0.77420 0.006906 (0.76067, 0.78774) 112.2 2 × 10−16

σ1 2:8736203e − 03 1:1726859e − 04 2:6437781e − 03, 3:1034625e − 03 24.5 2 × 10−16

σ2 1:6145331e − 04 4:2346650e − 06 1:5315352e − 04, 1:6975310e − 04 38.1 2 × 10−16

k 2:1505795e − 02 6:6892421e − 04 2:0194728e − 02, 2:2816862e − 02 32.1 2 × 10−16

LogLikMx 50992.90

AIC -101973.81
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Figure 10: Spread about mean response curve residual and QQ-normal plots of a DNLR-M2N-BP scheme (cf. Equations (33) and (37))
fitted on the Echavarría-Heras et al. [37] data. (a) Dispersion about fitted Huxley’s power function form. (b) The scatter diagram of
residuals against leaf area. (c) The Q-Q M2N plot of the residuals on direct arithmetical scales. A heavy tails pattern compatible to that
appearing in Figure 4(c) prevails.
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improvement of the quality of the fit in terms of the AIC
value achieved by the DNLR-M2N fit. In this table, we note
that there is a greater reduction when we change from the
normal distribution borne DNLR to the DNLR-M2N com-
posite; that is, we find an important change when going from
the normal to the M2N distribution, this of course due to the
heavy-tailed pattern that exists in the data.

3.9. Implementation of the TAMA-Poly(K): The Kth-Degree
Polynomial Modification to the Linear Systematic Term of a
Regular TAMA Scheme. With the aim of comparing the
reproducibility strength of a M2N-driven modification of a
TAMA scheme against that entailed by the Kth-degree poly-
nomial variation to a regular TAMA undertaken by
Echavarría-Heras et al. [37]. So, conceived scheme refers
through the symbol, TAMA-PolyðKÞ, and entails a form of
a complex allometry and normally distributed error com-
posite scheme in geometrical space. Formally, a TAMA-
PolyðKÞ scheme stands for a modification of the regression
model of Equation (2) that establishes through the following:

v = β0 + 〠
K

k=1
αku

k
i + ϵ, ð38Þ

with ϵ ~Nð0, σÞ, and so, the likelihood function of this
model is given as follows:

L β0, α, σð Þ =
Yn
i=1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp −
1
2σ2 vi − μið Þ2

� �
, ð39Þ

where α = ðα1,⋯, αKÞ and μi = β0 +∑K
k=1αku

k
i .

This time, the correction factor for retransformation
aims becomes the following:

CF = exp σ2

2

� �
: ð40Þ

Table 11 presents fitting statistics of a TAMA-Poly(6)
scheme (cf. Equations (38) and (39)) performing on the
EHDS. Figure 11(a) shows the spread about the systematic
term, in geometrical space of a TAMA-Poly(6) scheme fitted
on the EHDS. Figure 11(b) shows the scatter diagram of the
TAMA- Poly(6) residuals against the logarithm of the area.
Figure 11(c) displays the TAMA-Poly(6) associating Q-Q
normal plot of the residuals on a geometric scale. Even
though, fitted TAMA-Poly(6) systematic part seems to better
describe a phase-like heterogeneity shown in Figure 1(b), still
the Q-Q normal plot of Figure 11(c) displays a heavy tails
spread pattern. AIC values in Table 8 and Table 10 allow com-
parison of the TAMA-M2M and the TAMA-Poly(6) models
fitted on the EHDS. We can be aware of a difference ΔAIC
= 3139 favoring selection of the TAMA-M2M over the
TAMA-Poly(6) counterpart. This try conveniently explains
the failure of a polynomial-like complex allometry form to
normalize the distribution of residuals.

3.10. Assessment of Reproducibility Strength of Addressed
Methods. We present statistics that allow the assessment of
the reproducibility strengths of adapted allometric proxies
while projecting values for the assessment of reproducibility
strength of allometric proxies for observed monthly average
leaf biomass in shots reported in the EHDS (Table 12). We
provide AIC index and other model performance metrics,
such as the standard error of estimate (SEE) and mean
prediction error (MPE) [49–52]. Likewise, we include Lin’s
concordance correlation coefficient, denoted here through
the CCC symbol [53]. Agreement between allometrically

Table 11: Fitting results of a TAMA-Poly(6) regression protocol based on a 6th degree polynomial systematic term modification to the
regular TAMA scheme (cf. Equations (38) and (39)) performing on the Echavarría-Heras et al. [37] data set. We include parameter
estimates with their estimated uncertainties, t value, p value, LogLikMax, and AIC stand for maximum loglikelihood and Akaike
information index values one to one. LogLikMxA and AICA correspond one to one to values of the LogLikMx and AIC statistics
expressed in direct arithmetical scales.

Parameter Estimate Std. err. Confidence interval (95%) t value p value

β0 -11.748088 0.463156 (−1:26559e + 01, −1:084030e + 01) -25.365 <1:0 × 10−30

α1 6.112240 0.818839 (4.507316, 7.717164) 7.4645 <1:0 × 10−13

α2 -4.426333 0.547929 (-5.500274, -3.352392) -8.07829 <1:0 × 10−15

α3 1.516275 0.179640 (1.164181, 1.868369) 8.4406 <1:0 × 10−16

α4 -0.252736 0.030866 (-0.3132334, -0.1922386) -8.18816 <1:0 × 10−15

α5 0.020574 0.0026667 (0.015300, 0.025800 7.715 <3:0 × 10−8

α6 -0.0006561 9:13681e − 05 (−8:35182e − 04, −4:77019e − 04) -7.18084 <7:0 × 10−13

σ 0.523300 0.00362759 (0.516100, 0.5303) 144.2431 <1:0 × 10−30

LogLikMx -8025.2

AIC 16066.5

LogLikMxA 48198.9

AICA -96381.8
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projected and measured values will be defined as poor when-
ever CCC < 0:90, moderate for 0:90 ≤ CCC < 0:95, good for
0:95 ≤ CCC < 0:99, or excellent for CCC ≥ 0:99 [54]. Calcu-
lation of reproducibility measures for the TAMA-based

methods relied in retransformation of ensuing protocols
fitted in geometrical space. We also propose what we call a
relative absolute deviation (RAD) index value. To calculate
these statistics, we firstly obtain the absolute deviation
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Figure 11: Spreads in geometrical space produced by the TAMA-Poly(6) and the polynomial modified TAMA scheme proposed by
Echavarría-Heras et al. [37] when fitted on the EHDS (cf. Equations (38) and (39)). (a) Spread about fitted 6th degree polynomial
systematic term, in geometrical space. (b) The scatter diagram of residuals against the logarithm of the area. (c) The associating Q-Q
normal plot of the residuals on a geometric scale. Even though fitted systematic part seems to better describe a phase-like heterogeneity,
still a heavy tails spread pattern in the Q-Q normal plot shows up.

Table 12: Statistics for the assessment of the reproducibility strengths of the presently acquired allometric proxies while projecting monthly
averages of observed eelgrass leaf biomass in shoots as reported in the EHDS. We include Akaike information criterion (AIC) index, Lin’s
concordance correlation coefficient ðCCCÞ, standard error of estimate (SEE), mean prediction error (MPE), and relative deviation (RD).
Comparison restricts to better performing proxies identified in arithmetical scales as well as the retransformed TAMA-Poly(6) scheme.

Model Table AIC CCC SEE MPE MPSE RD

MEM 1 -94745.76 0.9174 0.0039 15.02 16.74 0.1410

MEM-loglogistic 4 -97297.3 0.9432 0.0033 12.65 13.94 0.1158

DNLR-BP-logistic 6 -84528.9 0.9864 0.0016 6.48 7.96 0.0015

MEM-LogM2N 7 -99520.8 0.9712 0.0024 9.2443 10.53 0.0801

DNLR-BP-M2N 9 -93309.8 0.9827 0.0019 7.28 8.67 0.0550

TAMA-Poly(6) 10 -96381.8 0.9896 0.0023 8.9115 10.74 0.0826
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between the overall mean of monthly averages of observed
leaf biomass values and the corresponding one derived allo-
metrically, and then, we divide by the overall mean of
monthly averages of observed individual leaf biomass values.

According to Tables 1 and 3 for the normal distribution
produced models, it was the MEM one which performed the
better. Nevertheless, a MEM row in Table 12 allows asses-
sing the feasibility of assuming that the basic error random
variable ϵ distributes normally. As we can be aware of, the
MEM row implies the less accurate proxies for monthly
average leaf biomass in shoots .Certainly among the com-
pared methods, the MEM one arrangement returned the
smaller CCC entry and the greater SSE, MPE, MPSE, and
RD values. We can also ascertain that enhancing complexity
of error structure to contemplate a M2N distribution led to a
remarkable reproducibility strength of MEM-LogM2N.
Moreover, a difference between a CCC value of the
TAMA-Poly(6) slant and the MEM-LogM2N one is of only
ΔCCC = 0:0184: Moreover, giving to the SEE, MPE, and RD
values the MEM-LogM2N construct shows equivalent
reproducibility strength than the TAMA-Poly(6), but the
MEM-LogM2N performs slightly better according to the
MPSE statistics. Besides, the difference in CCC values
between the TAMA-Poly(6) and the DNLR-M2N-BP
amounts to only ΔCCC = 0:0069. This is in spite of the fact
that the DNLR-BP-M2N composite associates with the larg-
est AIC. Therefore, focusing on the proper error structure
determined higher reproducibility features of the M2N-
borne protocols.

3.11. Simulation Study. In this section, we carry out a study
aimed to evaluate the performance of the proposed protocol
under a known scenario. For this aim, we adapt a simulation
procedure based on the multiplicative allometric model with
a mean response of the Huxley power function type and
error term according to a logM2Nðp, 0, σÞ distribution.
The joining formulation is given by Equation (26). The pro-
cedure yields pairs including the foliar area values xi in the
EHDS and simulated values of their corresponding leaf bio-
mass replicates yij, j = 1, 2,⋯, rðiÞ. To produce the leaf bio-
mass replicates, we use the formula:

yij = β xið Þα exp ϵij
� �

, ð41Þ

where β and α with are the values of the allometric parame-
ters given in Table 8 and for a fixed xii = 1, 2,⋯,m , and for
j = 1, 2,⋯, rðiÞ,ϵ ij drawn from a M2Nðp, 0, σÞ distribution

with σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pσ2

1 + ð1 − pÞσ2
2

p
for p ,σ1 and σ2 as listed in

Table 8. The EHDS compose n = 10450 pairs of measure-
ments of leaf area and related weight. The number of differ-
ent leaf area values recorded in the sample is m = 2295 .
Therefore, the vector ðrð1Þ, rð2Þ,⋯, rðmÞÞ satisfies ∑m

1 rðiÞ
= n.

Once we produced the n simulated data pairs, we gener-
ated samples obtained by randomly removing ten pairs out
of the simulated pool. We returned the extracted data so
we could deal with the complete collection of simulated data
before getting the following sample. The process iterated

until the completion of a number of 1000 random samples.
For the ith sample, we achieved a fit of the model of Equa-
tions (26) and (27) to obtain a vector ðβsi, αsi, psi, σ1si, σ1siÞ
of estimated parameters. Then, we acquired the root mean
squared errors (RMSE) of so estimated parameters and their
reference values ðβ, α, p, σ1, σ2Þ listed in Table 8. Calculation
of RMSE values achieved through the formula:

RMSE θsð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

� �
〠
n

i=1
θsi − θð Þ2

s
, ð42Þ

where θ stands for the value of a reference parameter and θs
for its estimated value through the simulation procedure.
Correspondingly θsi stands for the proxy of θs deriving from
the associating ith sample of data pairs drawn from the sim-
ulated pool.

We present the statistics resulting from simulation runs
in Table 13. Figure 12 allows visual assessment of reproduc-
ibility features of the mean response function fitted from
simulated data. Table 14 allows a comparison of referred
reproducibility strength in quantitative grounds. Entries in
Table 13 demonstrate that reference values of the allometric
parameters in the model of Equations (25) and ((26)) can be
efficiently approximated through the addressed simulation
procedure. Histograms in Figure 2(a) and Figure 2(b) sug-
gest consistency of an M2N distribution for both the EHDS
and the simulated data set. We can also be aware from
Figure 12(c) and Figure 12(d) that the simulation procedure
failed to reproduce the domed-like spread at the beginning
of the distribution in the EHDS. This fact readily explains
the drop in AIC deriving from simulated data. It also
strengthens a perception of a lack of standardization in data
gathering while conforming to the EHDS sample. Spreads
around the mean response function fitted from simulated
data (blue lines) show fairness for both the EHDS and the
simulated data. Whatever bias among projections produced
by mean response curves explains by the lack of the referred
domed-like spread in simulated data. The closeness of repro-
ducibility index values in Table 14 corroborates this judg-
ment. Altogether, the result of addressed simulation runs
allows confirming the fairness of the offered M2N-based
allometric analysis protocol.

3.12. Summary of Results. We extended the approach by
Montesinos-López et al. [36] to consider a setup where a
mixture of normal distributions drives stochasticity of the
error term of the regular TAMA fit. Present data composes
(n = 10,410) pairs of measurements of eelgrass leaf biomass
and corresponding area adapted from a sample originally
reported in Echavarria-Heras et al. [37] by removing two
data pairs that we considered as unduly outliers (Figure 1).
Moreover, at a first glance, we can be aware that present data
stands for bigger an extent and variability than contemplated
by Montesinos-López et al. [36] (Figure 2).

By looking at a relatively fair spread about the systematic
parts of fitted MEM, TAMA, and DNLR-BP schemes
(Figure 3(a)), (Figure 4(a)), and (Figure 5(a)), it is reason-
ably assuming the reliability of Huxley’s model in detecting
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the actual trend in present data. But in spite of this fact, the
Q-Q lognormal and Q-Q normal diagrams, respectively,
shown in Figure 3(c), Figure 4(c), and Figure 5(c), reveal that
a normal distribution assumption for the random variable ϵ
that determines the error terms to the MEM, TAMA, and
DNLR-BP fits (Equations (2), (6), and (10) one to one) does
not support a suitable model for the variability pattern
inherent to the EHDS. To highlight the relevance of convey-
ing a proper error structure, it is worth stating that assuming
an additive error model in direct scales (Equation (10)) did

not provide suitability of fit. Indeed, the ensuing DNLR-BP
model resulted in a noticeably larger AIC value ðAIC = −
84528:9Þ than its MEM equivalent ðAIC = −94745:76Þ: Sup-
posedly, the DNLR-BP should entail the same reproducibil-
ity features as a MEM counterpart. Nevertheless, when fitted
to present data, an inherent multiplicative error structure of
the MEM entailed a better performance, independently of
the BP adaptation for heteroscedasticity that strengthened
the additive DNLR scheme. Moreover, agreeing to
Table 15, the DNLR-BP composites registered the most

Table 13: Values of the reference parameters β, α, p ,σ1, and σ2 obtained by fitting the model of Equations (25) and (26) to the EHDS
(EHDS row) and the corresponding ones; βs, αs, ps, σ1s, andσ1s deriving from simulated data (simulated row). We include RMSE values
calculated through Equation (42) (RMSE row) and the RMSE relative to reference parameter values (relative RMSE row).

Parameter α β σ1 σ2 p

EHDS 7:7446e − 06 1:1106e + 00 1:1682e + 00 2:6053e − 01 2:1182e − 01
Simulated 9:5647e − 06 1:1111e + 00 3:2352e − 01 3:2352e − 01 2:0045e − 01
RMSE 3:5543e − 09 6:3267e − 05 6:8730e − 05 6:9691e − 05 9:0712e − 03
Relative RMSE 0.03716098 0.00569383 0.02124381 0.02154086 4.53564111
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Figure 12: Results of the simulation study. (a, b) Histograms associating with the EHDS and to simulated data one to one. (c) The spread of
leaf biomass values relative to the mean response curve obtained by fitting the model of Equations (25) and (26) to the EHDS (red lines) and
that produced by fitting the named model to simulated data (blue lines). (d) Equivalent spreads corresponding to simulated data.
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significant absolute values for the ΔAIC entries among the
different methods.

The logistic distribution can reasonably model a higher
dispersion than the normal one [36]. But, heavy tails displayed
in the Q-Q loglogistic diagram of Figure 6(c) refer to an unfair
MEM-loglogistic fit (Equation (9)). Equally, the Q-Q logistic
plot of the residuals of a TAMA-logistic fit (Figure 6(f)) on
geometrical space showing heavy tails also points to an incon-
sistent TAMA-logistic (Equation (13)) fit. Comparing AIC
values among the MEM-logistic (AIC = −97297:3) and the
DNLR-BP-logistic (AIC = −94549) favors the MEM-logistic
(Table 15). Therefore, even switching to a logistic distribution,
a perception of the unsuitability of an additive error structure
maintains. Certainly, Figure 7(c) displays a heavy-tailed pat-
tern, asymmetrical as in a DNLR-BP fit (cf. Figure 5(c)).
Again, such an asymmetrical spread Figure 7(c) for the
DNLR-BP-logistic scheme could explain by the attempt to
model the actual heteroscedastic spread of Figure 1 through
a BP-logistic adapted DNLR additive error model. And on
top of that, Lai et al. [40] observation of biased direct nonlinear
regression for large covariate values could also be pertinent. In
any event, the spreads in the Q-Q loglogistic in Figure 6(c) and
QQ-logistic plots in Figure 6(f) and Figure 7(c) bear that
assuming a logistical distribution-driven error term also turns
out to be unfeasible.

The MAD technique adapted by Echavarria-Heras et al.
[28] delivered a quality-controlled data set missing about
25% of the total replicates in the crude EHDS. But, even
though the MAD procedure removed a large share of the
original data, the spread in Figure 8(a) and Figure 8(b) sug-
gests the unreliability of a TAMA protocol when fitted to
processed data. Still, regardless of an apparent curvature
indicated by these spread plots, Figure 8(c) depicts a sym-
metric heavy tails arrangement. Therefore, that unravels that
a TAMA fit failed to normalize the residual dispersion on
processed data. Consequently, due to this fact and being
aware of the fitting results of the protocols addressed so
far, a conclusion seems indubitable. If the aim is to explore
the possibility of maintaining Huxley’s model-like system-
atic term in the analysis of the EHDS, we definitely ought
to adapt the error driving random variable ϵ to conform to
a symmetric distribution with zero mean and heavy tails.
This perspective endorses consideration of a mixture of
two normal distributions with zero mean and different devi-
ations as a reasonable model for the randomness of ϵ:

Table 15 allows comparison of the fits based on an M2N
distribution to those related to the normal or logistic ones on
the arithmetic scales, using the Akaike information criterion,
which entails the M2N-shouldered models as better suited
than the remaining ones. For instance, for composites
involving a MEM, the reliability of fits remarkably improved
when we switched from normal to logistic and then to a
M2N model for the random variable ϵ, (i.e., MEM
(AIC = −94745:76), MEM-loglogistic (AIC = −97297:3),
and MEM-LogM2N (AIC = −99520:8)). Similarly, Tables 2,
5, 9, and 11 display the AIC statistics associated with fits in
geometrical scales, showing that the TAMA-M2N entailed
the best fit even when compared to the TAMA-Poly(6)
arrangement (i.e., TAMA (AIC = 17702:4), TAMA-Poly(6)
(AIC = 16066:5), TAMA-logistic (AIC = 15150:9), and
TAMA-M2N (AIC = 12927:2)). Likewise, Tables 3, 6, and
10 show that for the DNLR-borne protocols, the quality of
fits also improved when moving from normal to logistic
and then to a M2N distribution (DNLR-BP (AIC = −84528:9),
DNLR-BP-logistic (AIC = −94549), and DNLR-BP-M2N
(AIC = −93309:8)). Moreover, the QQ-LogM2N plot shown
in Figure 9(c) resulting from a fit of the MEM-LogM2N
scheme (Equations (26) and (27)) already displays a fair
spread. Similarly, Figure 9(f) showing the Q-QM2N diagram
corresponding to a TAMA-M2N fit (Equations (30) and
(31)) indicates a spread unswerving to assumed M2N distri-
bution. Tables 1–6 and 8–10 reveal that the relative standard
errors of the estimates of the parameters α and β of the M2N
model are smaller than those added to the normal or logistic
counterparts. Moreover, reproducibility index values listed in
Table 12 explain the advantage of the M2N distribution for a
driving of good reproducibility strength of projections of
averages of leaf biomass. This distribution enhanced the suit-
ability of the DNLR-based methods even though the error
structure implied by this protocol turned on unsuited. Indeed
entries in Table 12 confirm that the DNLR-M2N-BP con-
struct beats the TAMA-Poly(6) alternate in SEE, MPE,
MPSE, and RD statistics. Additionally, comparison of CCC
values in Table 12 unravels that the reproducibility power
of a DNLR-BP-M2N rates equivalent to the one calculated
for a TAMA-Poly(6) arrangement. Therefore, the M2N
model outstrips its normal or logistic partners in the quality
of the fit on the EHDS.

The statistics in Table 13 demonstrate that fitted refer-
ence values of the allometric parameters in the model of
Equations (25) and (26) can be efficiently approximated
through simulation procedures. Whatever bias among pro-
jections produced by mean response curves portrayed in
Figure 12(b) and Figure 12(c) explains since the simulation
procedure failed to reproduce a domed-like spread for the
smaller leaf biomass values shown in the EHDS. In any
event, differences in spreads among the EHDS and its simu-
lated pool could provide further support to our judgment of
a lack of systematization while gathering the former sample.
Nevertheless, the closeness of reproducibility index values in
Table 14 sustains a judgment that bias appointed by named
differences in spreads bears irrelevant for practical purposes
such as the allometric projection of leaf biomass values.
Altogether, the result of addressed simulation runs allows

Table 14: Reproducibility strength of allometric proxies of eelgrass
leaf biomass values in the EHDS produced by the model of
Equations (25) and (26) fitted to real data (EHDS row) compared
to corresponding values arising from named model fitted to
simulated data (simulated data row). We include Akaike
information criterion (AIC) index, Lin’s concordance correlation
coefficient ðCCCÞ, standard error of estimate (SEE), and mean
prediction error (MPE).

Agreement index AIC CCC SEE MPE

EHDS -99520.8 0.9495 0.0065 0.9940

Simulated data -103320.71 0.9382 0.0075 1.1383
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confirming the fairness of the offered M2N-based allometric
analysis protocol.

This study confirms a view by Montesinos-López et al.
[36] that clinging to the appropriate error structure can offer
the reliability of Huxley’s model given a particular data set.
Indeed, as we demonstrated here, it is possible to enhance
the goodness-of-fit in allometric examination by holding
up to Huxley’s original theoretical perspective, that is, with-
out recurring to the customary complex allometry and nor-
mal distribution approaches. It is also worth emphasizing
that the presently offered analytical approach allows keeping
the parsimonious structure of Huxley’s model, thereby facil-
itating the exploration of a time invariance of the ensuing
allometric relationship between eelgrass leaf biomass and
area. This feature is paramount to genuinely nondestructive
assessments of leaf biomass being relevant to eelgrass
conservation.

4. Discussion

Huxley’s power function model (cf. Equation (1)) beholds
great relevance in biology. It offers a theoretical basis for
static allometry that is conceived as the assessment of scaling
relationships among individuals of a species, e.g., between
one organ and total body size [55–57]). Huxley’s model also
provides a formal scheme for studies on evolutionary allom-
etry that addresses scaling relationships between the sizes of
organs of individuals across species [58–60]. And from a
purely empirical perspective, whenever a time invariance of
the parameters α andβ upholds, Huxley’s model can pro-
duce convenient nondestructive surrogates of the values of
a given allometric response y by using previously fitted esti-
mates and currently taken measurements of a descriptor var-
iable x [61–63].

One relevant research subject circumscribing Huxley’s
model concerns the interpretation of the parameters α
andβ. For instance, Huxley stated that the intercept lnβ of
the line deriving by log transformation on both sides of
Equation (1) was of no particular importance. Still, the slope
αwas sufficient to mean static allometry on its own [2, 64].
Furthermore, Huxley’s perspective prevails in ongoing
research as the valid theoretical standpoint for static allome-
try [59, 60, 65]. Another vital research subject around Hux-
ley’s model concerns the accuracy of estimates of the
parameters α andβ, which also relates to the suitability of

the analytical scheme to get them. Supporters of the tradi-
tional perspective tie to a notion that an allometric response
expressed through Equation (1) adapts to a multiplicative
growth pattern in the direct scales of data (cf. Equation
(2)) which also backs the TAMA (cf. Equation (6)) as the
ordinary way to acquire estimates of α andβ [40, 43, 60,
66–73]. But, other opinions sustain that a TAMA approach
produces biased results, claiming that since the power func-
tion fostering Huxley’s model is intrinsically nonlinear, the
analysis should instead rely on a DNLR scheme (cf. Equation
(8)) [74–77]. Moreover, there are settings where Huxley’s
model fails to produce a consistent fit. Exploring the reasons
undermining the predictive power of this paradigm also
endures a prime research subject. One attempt to address a
lack of fit in Huxley’s model adopts a standing that steers
away from covariation among different traits, conceiving
allometry as aligned on the covariation between size and
shape [78, 79]. From this standpoint, the analysis must rely
upon regression schemes that include a systematic term
expressed through modifications of Huxley’s power func-
tion. So conceived variants engender constructs recognized
as multiple parameter complex allometry forms (e.g., [75,
80–84]). Yet, since power series offer convenient representa-
tions of analytic functions, it turns reasonable to extend the
complexity of Huxley’s model to adapt polynomial regres-
sion schemes in geometrical space [37, 71, 85–88]. But,
embracing complex allometry attempts nurtures one of the
most irreconcilable disagreements among schools of allome-
tric examination. Indeed, for supporters of a TAMA way,
examinations based on complex allometry constructs identi-
fied in the direct scales of data lose interpretation of biolog-
ical theory to honor statistical appropriateness [59, 60, 73].
Besides defenders of traditional allometry claim that Huxley
himself offered an approach to extending complexity while
maintaining the original theoretical essence of static allome-
try. Indeed, when exploring the spread in the log-log plot of
chela mass vs. body mass of fiddler crabs (Uca pugnax),
Huxley acknowledged a breakpoint that was explained by
an abrupt change in relative growth of the chela and
assumed to take place around the time crabs reached sexual
maturity [1, 2, 89]. The idea of a biphasic breakpoint-
determined biological scaling conveyed the notion of non-
log-linear allometry [90–95]. Extension of Huxley’s original
idea of a biphasic scaling led to considering multiple break-
points which in turn spawned the notion of polyphasic log-

Table 15: Akaike information criterion values for comparison of the different protocols in direct scales contemplated in the present
examination. AIC values appear in the intersection of rows for models and columns for the distribution of fundamental error random
variable ϵ. For the TAMA, TAMA-logistic, TAMA-M2N, and TAMA-Poly(6) models fitted in geometrical space, we use the
corresponding AICA values listed in Table 2, Table 5, Table 9, and Table 11 one to one. The ΔAIC entries to each AIC represent the
difference in the AIC of each method relative to the smallest AIC value, that is, the one associated with the TAMA-M2N composite.

Model-Dist. ϵð Þ Normal ΔAIC Logistic ΔAIC M2N ΔAIC
MEM -94745.76 -4775 -97297.3 -2301 -99520.8 0

TAMA -94745.8 -4775 -97297.2 -2301 -99521.0 -0.2

DNLR-BP -84528.9 -14992 -94549 -4972 -93309.8 -6211.2

TAMA-Poly(6) -96381.8 -3410
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linear allometry [96–102]. Broken-line regression techniques
[37, 103–108] could deliver identification of breakpoints in
polyphasic log-linear allometry schemes. Nevertheless, by
relying upon nonlinear regression, broken-line schemes
require starting values for the break-point estimation, so
local maxima and inferences on estimates could make imple-
mentation difficult [107, 109]. Then, even though polyphasic
log-linear allometry adapts complexity by composing sub-
models, each one bearing Huxley’s original theoretical envi-
sioning, parameter estimation difficulties could make this
approach problematic. Likewise, addressing complex multi-
parametric allometric forms could return overfitting, i.e.,
the statistical error of overestimation of the covariate’s influ-
ence on determining the variability of the allometric
response. So, in the tradeoffs to gaining reproducibility
strength, overfitting could only offer an approach that over-
emphasizes empirical relevance, useful in reference only to
the current data but not necessarily `to any other data sets.
The present results illustrate an approach that enhances
the reproducibility strength of Huxley’s model while getting
around overfitting associating with multiparameter complex
allometry forms.

Maintaining Huxley’s model within allometric examina-
tion offers relevant advantages for eelgrass conservation.
Hamburg and Homann [110] used an allometric relation-
ship to express leaf dry weight in eelgrass as a function of
length and corresponding width. Solana-Arellano et al.
[111] demonstrated that such a two-dimensional allometric
dependence derives by assuming the validity of Huxley’s
laws of proportional growth between the leaf dry weight
and the corresponding length and width one by one. More-
over, the leaf architecture in eelgrass approximates the
related area as the product of the length times the associated
width. Then, it is possible to call in Huxley’s original setup
and express eelgrass leaf dry weight as an allometric
response of the linked area [112]. Likewise, the belt-shaped
leaf expansion in eelgrass makes the corresponding length
a good allometric descriptor of the dry weight [36]. Substan-
tiation of these approaches allows the adaptation of allome-
tric methods for the nondestructive estimation of aerial
eelgrass biomass. These assessments are essential in remedi-
ation endeavors given current anthropogenic influences that
threaten eelgrass permanence. But, given the general outline
above, eelgrass allometric assessment methods based on
Huxley’s model are the subject of influences that affect their
accuracy, precision, and pertinence. Remarkably, a quest for
improving fit suitability of the sustaining Huxley’s power
function may suggest addressing multiparametric complex
allometry forms pertinent, thereby drifting away from the
theoretical perspective of Huxley’s model of simple allome-
try [37]. It is worth emphasizing that focusing on Huxley’s
power function embraces parsimony that facilitates a concise
exploration of an invariability property of the allometric
parameters α and β, a condition upon which nondestructive
assessments of eelgrass leaf biomass hinge in an essential
manner.

Furthermore, the spread of present eelgrass leaf biomass
to area data suggests strengthening the view by Montesinos-
López et al. [36] of focusing on the suitability of error distri-

bution to amend a lack of fit of Huxley’s model. Indeed, it is
worth recalling that the present data (EHDS) conforms to an
extensive sample of (n = 10410) pairs of similar measure-
ments to Montesinos-López et al. [36] data (MLDS) ðn =
537Þ, both collected at the Punta Banda estuary. They were,
moreover, sampling to acquire the EHDS spanning over a
complete year cycle, while MLDS stands for only one month.
Therefore, as Figure 1(a) portrays, the Echavarria-Heras et al.
[37] data set conforms to a remarkably more significant var-
iability than that corresponding to the Montesinos-López
et al. [36] sample (Figure 2(a)). Moreover, considerable var-
iability in the EHDS could explain a lack of fit of a TAMA
try reported by Echavarria-Heras et al. [37] and which we
corroborated here. According to what these authors pointed
out, our analysis of the EHDS also lets us become aware of
apparent curvature in geometrical space. Likewise, we
observed heterogeneity among dispersion patterns associ-
ated with the pools of smaller and larger leaves in the sample
by analyzing the residual plot. Therefore, agreeing to a cus-
tomary slant, in researching the EHDS, looking for complex
allometry and a normal distribution approach seemed
reasonable. But instead of attempting to amend TAMA’s
inconsistency based on a broken-line protocol or, more
specifically, through a polynomial regression scheme as sug-
gested in Echavarria-Heras et al. [37], we considered it ade-
quate to keep Huxley’s form of the systematic component
while embedding the error term to nonnormal distribution,
just as Montesinos-López et al. [36] devised when advocat-
ing for a logistic distribution-borne error term. But, for pres-
ent data, residual dispersion accompanying a logistically
distributed error term in geometrical scales could not
improve a heavy tails pattern conforming to the normality
of residues. We have to stress two points because the logistic
error adaptation of TAMA by Montesinos-López et al. [36]
failed to fit the present data well. First of all, as we have
already pointed out, the EHDS is considerably larger in sam-
pling dates, number of replicates, and number of processing
participants than the MLDS. As a result, we stress that the
present analysis deals with data expressing a significantly
greater variability than that Montesinos-López et al. [36]
dealt with. Second, heterogeneity of spread patterns among
smaller and larger leaf sizes is more pronounced in the
EHDS than it is in the MLDS. Perhaps this fact could explain
the unsuitability of a unimodal distribution as a model for
the random variable ϵ shaping the error term in present
examination. Accordingly, at analyzing present data, a mix-
ture of two normal distributions having a common zero
mean but different standard deviations turned on suitable.
The present review demonstrates that resultant allometric
proxies of monthly averages of eelgrass leaf biomass exhib-
ited similar reproducibility strength to those derived from
the TAMA-Poly(6) scheme endorsed by Echavarría-Heras
et al. [37].

Echavarría-Heras et al. [37] also advocated the advan-
tages of a median absolute deviation-based data cleaning
procedure to remove inconsistent replicates in the present
data set. Indeed, we have stressed the significant heterogene-
ity in the variability of present leaf biomass replicates above.
Perhaps such a spread ties to the participation of multiple
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data processing agents. Compared to Figure 1(a), the spread
plots once data cleaning presented in Echavarría-Heras et al.
[37] and Figure 8 here undoubtedly display a heteroscedastic
pattern consistent with Huxley’s model of simple allometry
(cf. Equation (2)). Nevertheless, adjusting to a coherent
spread to such a model was achieved only upon removing
about 25% of the total number of replicates. Deletion of
apparently undue replicates seems excessive, thereby ques-
tioning the pertinence of data cleaning at all as a suitable
model improvement device. Then in analyzing the EHDS,
data processing deems dubious even though Huxley’s power
function stands for the sound biological paradigm, masked
by an overwhelming variability of replicates. It is worth add-
ing that the markedly different spreads among smaller and
larger leaf sizes in Figure 2(b) for the MLDS could have
made it reasonable to call in data cleaning procedures. Nev-
ertheless, as Montesinos-López et al. [36] demonstrated, a fit
of a TAMA-logistic scheme in crude data turned on reliable.
Furthermore, our results show that a revision of the com-
plexity of error structure was enough to unmask the actual
Huxley’s power function-driven systematic trend despite a
noticeable variability in crude data. Indeed, adapting the
complexity of the error term distribution proposed here
makes it unnecessary to call in data processing approaches
to amend the reproducibility strength of a failing TAMA
try. Then present results strengthen a perception of the
appropriateness of the procedure suggested by Montesinos-
López et al. [36]. Thus, it is possible to amend a lack of fit
of a TAMA attempt without recurring to a non-log-linear
complex allometry setup.

5. Conclusions

We have demonstrated that adapting the complexity of error
structure could get around relying on multiple-parameter
complex allometry forms as a mechanism to amend a lack
of fit of Huxley’s model. Maintaining this paradigm at the
core of regression schemes aiming to identify scaling rela-
tionships offers a way to avoid the overfitting that could
associate with using complex allometry-based amendments.
For instance, inconveniencies could impair the corrobora-
tion of the time invariance of the parameters of the allome-
tric relationship that substantiates nondestructive eelgrass
aerial biomass assessments. Even though a lack of normality
of residuals in the allometric examination is profusely
acknowledged (e.g., [92, 113–116]), it is perhaps a drive to
take advantage of the well-established assortment of statisti-
cal methods based on the normal distribution that mainly
explains refraining from developing analytical tools con-
forming to alternative residual dispersion models. Given
the present findings, it is pertinent to emphasize the advan-
tages of the approach suggested by Montesinos-López et al.
[36]. Certainly, allometric proxies for eelgrass leaf biomass
produced by Huxley’s model and normal mixture distribu-
tion composite delivered a reproducibility strength derived
from complex allometry and normal distribution alternates
[37]. But, intending to achieve empirical pertinence while
keeping the parsimony entailed by Huxley’s model, the pres-
ent approach relies upon an error distribution assumption

that requires elaboration from a theoretical perspective of
allometry itself. Indeed, the problem of selecting the suitable
regression model in allometry entails a statement about
error structure. This problem remains unaddressed because,
in allometry, error structure essentially depends on the
inherent biological model and could not be resolved from
statistical criteria alone [17–118]. Perhaps the differences
in spread patterns among smaller and larger leaf sizes that
display in Figure 1(b) and Figure 2(b) could be the entrance
to the path to providing a meaning to the involvement of a
normal mixture distribution. To get substance to such an
adaptation, we should rely on Huxley’s quotation of break-
point allometry itself. Indeed, the spread of present data in
geometrical scales and corresponding to the MLDS suggests
such a pattern. Indeed, it is reasonable to extend Huxley’s
original breakpoint idea so that we can justify the envision-
ing of a similar complexity of an error structure. Concisely
for present data, we could assume that each of the pools of
leaf sizes splitting by an identified breakpoint fits a parame-
trized normal distribution differently. The spreads of the col-
lections before and after the breakpoint identified in the
present data [37] corroborate suggested heterogeneity. Nev-
ertheless, such a justification could spell a too simplistic
rationale for embedding the mixture of two normal distribu-
tions in the allometric realm. But given the advantages that
the present approach entails in identifying and validating
traditional static allometry schemes for eelgrass conserva-
tion, it is worth exploring further substantiation and also
the possibility of expanding its applicability elsewhere.
Therefore, addressing further research on the subject is
encouraged, and we particularly plan to undertake these
tasks in upcoming contributions.

Appendix

A. Model Performance Metrics

In addition to the AIC and CCC statistics, model assessment
here takes into account on the SEE, MPE, and MPSE indices
that rely on statistics of squared and absolute deviations of
observed to predicted values. Agreeing to Parresol [119],
SEE, MPE, and MPSE statistics as model performance met-
rics were first utilized by Schlaegen [120] and afterwards
by Lin [53].

We now give concerned formulae.
Akaike information criterion (AIC):

AIC = −2l bθ� �
+ 2p: ðA:1Þ

Lin’s concordance correlation coefficient (CCC):

CCC = 2ρσYσX
μX − μYð Þ2 + σ2Y + σ2Y

, ðA:2Þ

being ρ the Pearson’s correlation coefficient. The CCC
index estimates through the following:
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dCCC = 2SYX
�Y − �X
� �2 + S2Y + S2X

, ðA:3Þ

with

�Y = 1
n
〠yi, �X = 1

n
〠xi,

S2Y = 1
n
〠 yi − �yð Þ2, S2X = 1

n
〠 xi − �xð Þ2,

SXY = 1
n
〠 xi − �xð Þ yi − �yð Þ:

ðA:4Þ

Standard error of estimation (SEE):

SEE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠 yi − ŷið Þ2

n − pð Þ

s
: ðA:5Þ

Mean prediction error (MPE):

MPE = tα
SEE/�yð Þffiffiffi

n
p /

ffiffiffi
n

p
× 100: ðA:6Þ

Mean percent standard error (MPSE):

MPSE = 1
n
〠 yi − ŷið Þ

ŷi

  × 100: ðA:7Þ

The AIC index permits evaluating the operation of dif-
ferent entrant models that fit a given data set. The model
with the smallest AIC value is judged the best among com-
petitors. The AIC index proves a settlement between the
goodness-of-fit of a model and its complexity, which express
through linked log-likelihood and number of parameters as
a way to penalize inclusion of unnecessary ones. Since it
bases on information entropy, an AIC index is frequently
understood as an estimate of the information lost when a
model is used to represent the process that generates the
data. Lin’s concordance correlation coefficient (CCC) evalu-
ates how well one variable (Y) reproduces another (X); in
other words, it represents a measure of the similarity (or
agreement) between the two variables. The standard error
of estimation (SEE) bears a global evaluation of goodness-
of-fit of a model to observed data, since it measures the accu-
racy of (ŷi) predictions produced by a fitted regression
model. This index takes nonnegative values. When SEE
attains its minimum value, of zero, the observed values of
the response coincide with the fitted mean response func-
tion, meaning that the model displays exact reproducibility
of observed values. The MPE, which is now used to deter-
mine the goodness-of-fit of a model, is a standardized ver-
sion of the coefficient of variation CV = ðSEE/�yÞ × 100
expressed as a percentage, as proposed by Schlaegen [120].
The MPSE backs a measure of the average absolute relative
error, expressed as a percentage. This model assessment
index was recommended by Schlaegen [120] and Meyer
[121] as a measure of the absolute deviation of the expected
and predicted responses, relative to the size of the prediction

(jyi − ŷijŷi) expressed as a percentage average. For additional
information on the use of the aforesaid statistics in allome-
tric examination, the reader is referred to [122].

B. Comparison of Models Based on the
AIC Index

In this appendix, we provide an explanation to the AICA
entries in Tables 2, 5, 7, 9, and 11. To do so, we abide by
the notation convention ðu, vÞ = ðln x, ln yÞ to understand
the transformation that carries a point ðx, yÞ in arithmetical
space into one ðu, vÞ in logscales.

In allometry, we ought to compare different models
based on the AIC index, where some models are fitted in
the arithmetic space and others in log scales. Whenever a
model was fitted in log scales, we denote its log-likelihood

through the symbol logGðbθÞ. If we want to compare such a
model with another one fitted in the direct scales of data,
we are required to transport the likelihoods and log-
likelihoods from log scales to arithmetical ones, because
allometric data intrinsically associate there. Particularly, we

denote the statistics resulting from transferring logGðbθÞ to

the arithmetical space by means of the symbol logAðbθÞ.
The conversion of concurring log-likelihood logGðbθÞ into

its arithmetical space equivalence logAðbθÞ achieves through
the relationship:

logA bθ� �
= logG bθ� �

− 〠
n

i=1
vi, ðB:1Þ

where bθ stands for the set of estimated parameters for a
given model.

Equivalently, once a model fitted in geometrical space
attains an AIC value, we make it correspond to its equivalent
statistics in direct scales which we denote through AICA.
Necessarily, the AICA derives from the log-likelihood

expressed in direct scales logAðbθÞ, that is,
AICA = −2 logA bθ� �

+ 2p: ðB:2Þ

We explain how Equation (A.7) derives for the case in
which the y as a random variable is lognormally distributed
with log-mean μ and log-deviation σ, that is, y ~ lognormð
μ, σÞ .Under such an assumption, v is a normally distributed
having mean μ and deviation σ, that is, v ~Nðμ, σÞ. We
begin by establishing the relationship between the loglikeli-
hoods in the arithmetic and geometric scales. Since we have
assumed that y ~ lognormðμ, σÞ, the expression for the like-
lihood function in arithmetic scales logAðθÞ becomes the fol-
lowing:

logA θð Þ =
Yn
i=1

1ffiffiffiffiffiffi
2π

p
σyi

exp −
1
2

log yið Þ − μ

σ

� �2
" #

, ðB:3Þ
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being θ = ðμ, σÞ: Correspondingly, we have that the likelihood
logGðθÞ on the geometric scales sets by the following:

logG θð Þ =
Y 1ffiffiffiffiffiffi

2π
p

σ
exp −

1
2

vi − μ

σ

� �2� �
: ðB:4Þ

Since vi = log ðyiÞ, i = 1, 2,⋯, n, then we have the follow-
ing:

logA θð Þ =
Yn
i=1

1
yi

×
Yn
i=1

1ffiffiffiffiffiffi
2π

p
σ
exp −

1
2

log yið Þ − μ

σ

� �2
" #

,

ðB:5Þ

or equivalently,

logA θð Þ = 1Qn
i=1yi

� � × Yn
i=1

1ffiffiffiffiffiffi
2π

p
σ
exp −

1
2

vi − μ

σ

� �2� �
:

ðB:6Þ

Therefore,

logA θð Þ = logG θð Þ × 1Qn
i=1yi

� � : ðB:7Þ

To obtain the relation between the log-likelihoods logAðθÞ
and logGðθÞ, we take logarithms on both sides of Equation
(B.6) which yields the following:

logA θð Þ = log logA θð Þf g = log logG θð Þ ∗ 1
πyi

	 

, ðB:8Þ

or equivalently

logA θð Þ = log logG θð Þf g + log 1
πyi

� �
, ðB:9Þ

which finally sets the following:

logA θð Þ = logG θð Þ+〠log yið Þ: ðB:10Þ
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Supplementary Materials

We provide MATLAB and R codes for the related identifica-
tion tasks (Computer_codes.doc). Each code description
includes comments referring to the paper section it relates
to and what it generates (table of fitted parameters, figure,
or reproducibility index). MATLAB 2016a or later version

and RStudio are required. The set of observed data (referred
by means of an EHDS acronym in the manuscript) could be
available from the corresponding author-provided accep-
tance of a fair use agreement. However, we readily include
the set of processed data resulting from the MAD procedure
referred on Section 3.6 (dpro.text) and the simulated data in
Section 3.11 (dsim_10410.text) that allow testing the perfor-
mance of the codes. (Supplementary Materials)
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