
Research Article
A Novel Light Field Image Compression Method Using EPI
Restoration Neural Network

Jinghuai Liu ,1 Qian Zhang ,1 Ang Shen ,2 Ying Gao ,1 Jiaqi Hou ,1 Bin Wang ,1

and Tao Yan 3

1College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
2Distribution Grid Dispatching and Control Center, State Grid Qingdao Power Supply Company, Qingdao,
Shandong 266001, China
3School of Mechanical, Electrical & Information Engineering, Putian University, Putian, Fujian 351100, China

Correspondence should be addressed to Qian Zhang; qianzhang@shnu.edu.cn

Received 12 March 2022; Accepted 23 May 2022; Published 13 June 2022

Academic Editor: Wen Si

Copyright © 2022 Jinghuai Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different from traditional images, light field images record not only spatial information but also angle information. Due to the
large volume of light field data brings great difficulties to storage and compression, light field compression technology has
attracted much attention. The epipolar plane image (EPI) contains a lot of low rank information, which is suitable for
recovering the complete EPI from a part of EPI. In this paper, a light field image coding framework based on EPI restoration
neural network has been proposed. Compared with previous algorithms, the proposed algorithm further takes advantage of the
inherent similarity in light field images, and the proposed framework has higher performance and robustness. Experimental
results show that the proposed method has superior performance compared to the state-of-the-art both in quantitatively
and qualitatively.

1. Introduction

With the development of new technology, the three-
dimensional world can be more abundant and immersive
sampling. Light field imaging technology is one of the main
ways to collect three-dimensional scene information.
Objects and scenes in the real world can be represented by
the light field, which is widely used in refocusing, view syn-
thesis, depth estimation, three-dimensional reconstruction,
and so on. The all-optical function I = Pðx, y, z, θ, ϕ, ω, tÞ
was proposed by Adelson and Bergen [1], which was used
to describe the position, direction, time, and wavelength
information of light in three-dimensional space. Neverthe-
less, it was difficult to record and process this kind of high-
dimensional information. Levoy and Hanrahan [2] further
simplified the full-light model and proposed a four-
dimensional light field model Lðu, v, s, tÞ, where ðu, vÞ was
used to describe the angle information of the light field
and ðs, tÞ was used to describe the spatial information of

each angle of the light field. The four-dimensional light field
model is shown in Figure 1.

The light field images contain not only angular informa-
tion of light distribution but also spatial information, which
means that the light field contains a large amount of high-
dimensional redundant data. Raw data can range from
hundreds of megabytes to thousands of gigabytes depending
on light field sampling and capture equipment. For example,
the Lytro Illum (microlens array light field camera) can
collect light from 225 directions, generating about 1.82GB
of light field data [3]. In order to store, transmit, and
render light field images, a more efficient encoding
scheme is required.

The mainstream light field image coding methods are
closely related to video coding methods. For example, a sub-
aperture image stream compression scheme is proposed in
[4], which takes a subaperture image as a frame in a video
and encodes it with standard video compression methods.
Yet, only using video compression methods is not enough;
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it does not take advantage of the relationship between
nonadjacent subaperture images. Monteiro et al. [5]
optimized the intrablock prediction model of HEVC, not
only using the translation prediction model but also adding
the projection and bilinear transformation model. Jia et al.
[6] combine deep learning algorithms with HEVC.
Unsampled subaperture images are predicted by generation
adversarial networks from sampled subaperture images.
However, this deep learning-based framework relies heavily
on the previous training data. Once the content of light
field data changes, it will face a very time-consuming
retraining process.

In this paper, we consider that there is a large amount of
low-rank information in EPI and propose an efficient light
field image compression method. Wu et al. [7] proposed
an algorithm framework for recovering a complete EPI from
a sampled EPI. We get inspiration from this and propose a
framework of light field image coding algorithm. Therefore,
we integrate this structure into the light field image coding
framework. Firstly, the optical field subaperture image is
sampled and encoded with VVC. Then, in the decoding
stage, the sampled subaperture image is transformed into
EPI form. Finally, a recovery algorithm module is used to
restore a complete EPI. The main contributions of this paper
are listed as follows:

(i) The paper presents a novel framework for the com-
pression of light field images by using the relation-
ship between subaperture images and EPI

(ii) The EPI is sampled and then restored to facilitate
the compression of the low-rank part

(iii) The proposed compression scheme presents a gen-
eralized solution for light field images

The remainder of this paper is organized as follows: In
Section 2, several relevant solutions about light field image
compression are described. Section 3 introduces the pro-
posed light field image coding framework. In Section 4, the
simulated experimental results and test conditions are pre-
sented. Ultimately, this paper is concluded in Section 5.

2. Related Work

Several coding schemes of light field images described in the
literature all take advantage of the redundancy of light field
images. These schemes depend on different image represen-

tation and coding techniques, and their basic methods can
be divided into three categories: transform-based coding,
pseudo video sequence coding, and prediction-based coding.

Some low-frequency signal coding schemes essentially
rely on the use of the transform, such as Discrete Cosine
Transform (DCT) [8] or Discrete Wavelet Transform
(DWT) [9]. After several micro images are stacked together,
3D-DCT is used to remove the spatial redundancy between
adjacent micro images. The resulting transformation coeffi-
cients are then quantified and entropy encoding. In [9], light
field images are decomposed into view images, and 3D-DWT
is performed on a group of view images. 2D-DWT is used to
transform the low-frequency part, and then, arithmetic cod-
ing is carried out, while the other high-frequency coefficients
are simply quantized and arithmetic coded. Since the light
field image can be regarded as a four-dimensional form, the
4D-DWT is used to compress the light field images in [10].
In [11], a light field coding method based on 4D-DCT is
proposed, which introduces four-dimensional quantization
and block traversal. In [12], each subview image is regarded
as the node of the graph, and the similarity between adjacent
views is regarded as the edge of the graph. At the coding end,
the optimal graph representation is obtained by minimizing
the sparsity and connectivity of the graph. According to the
graph representation, the reference viewpoint is selected,
and the light field image is compressed by graph transform.

Recently, HEVC is used to process light field data in
many solutions [13]. HEVC specializes in using internal
prediction tools to eliminate redundancy in traditional
two-dimensional images. Nevertheless, it does not carry
out specific processing according to the characteristics of
the light field image, so many researchers put forward corre-
sponding improvement measures. The method based on
pseudo video sequence was studied in [14], mainly changing
the order of subaperture images to deal with the redundant
interference between subaperture images. Various scanning
sequences, such as rotation sequence [4], raster scanning
sequence [14], horizontal zigzag, and U-shaped mixed scan-
ning sequence [15], are studied in the process of pseudo
video sequence generation. Liu et al. improved on HEVC
[16]; the prediction unit (PU) is divided into three different
categories, and different prediction models based on Gauss-
ian process regression are used for each category. In [17], a
new light field multiview coding prediction structure is
designed, which extends the interview prediction to a bidirec-
tional parallel structure, and analyzes the relationship
between the prediction structure and the coding perfor-
mance. Because of the high similarity between subaperture
images, Helin et al. [18] proposed a method of lossless com-
pression with correction for low-frequency images.

With the improvement of hardware performance, deep
learning technology has developed rapidly, attracting more
and more attention from researchers and has been applied
in many fields. For example, Coherence Constrained Graph
LSTM (CCG-LSTM) with Spatio-Temporal Context Coher-
ence (STCC) and Global Context Coherence (GCC) are
proposed to recognize group activities [19]. Skeleton-joint
Coattention Recurrent Neural Networks are proposed to
generate future motions based on the observed human
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Figure 1: Four-dimensional light field model.
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motions [20]. Expansion-Squeeze-Excitation Fusion Net-
works (ESE-FN) are proposed to recognize elderly activity
[21]. Chen et al. [22] proposed a prediction scheme based
on HEVC, in which a group of the sparse subaperture
images is encoded in a base layer. Other subaperture images
in the decoder are reconstructed by using interpolation. The
reconstructed image is then used to predict the entire light
field image, and a prediction residual is transmitted. In
[23], the author uses a convolutional neural network to pre-
dict all the views from the four corners, while the author in
[24] uses a DIBR (depth-image-based rendering) method,
by estimating the depth and using the depth-reference view
to predict the other views. In [25], firstly, a set of selected
subaperture images are taken as reference views and then
encoded into video sequences by HEVC and transmitted
to the decoder. Finally, the unselected image is recon-
structed from the decoded subset of the selected image by
using the low-frequency sparsity of the angular continuous
Fourier domain.

Monteiro et al. [5] proposed a two-stage block high-
order prediction model by using eight degrees of freedom
geometric transformation. In [26], a minimum mean square
error estimation method based on scalable kernel is pro-
posed to accelerate the prediction process of light field image
coding. Based on the inherent nonlocal spatial redundancy
of low-frequency images, a coding method combined with
local linear embedding is proposed in [27]. Monteiro et al.
[28] proposed a method based on locally linear embedding
and a compensation prediction method. In [24], a sparse
predictor is used to predict multiple reference points. The
disparity compensation wavelet coding technology is applied
in [29]. Huang et al. [3] studied content consistency and
structure consistency to achieve efficient light field compres-
sion at a low bit rate.

As mentioned above, according to the characteristics of
light field images, the above methods combine 4D-DCT, lin-
ear approximation, convolutional neural network, and other
methods with traditional video coding algorithms to achieve
the purpose of compression of light field images. However,
there are some problems with this approach. For example,
the linear relationship between nonadjacent subaperture
images is not properly handled, the coding complexity is
high, and the data need to be trained in advance and time-
consuming. In this paper, the relationship between subaper-
ture images can be linked by EPI, which can be restored
from a partial EPI. Therefore, we can compress the light field
image by the characteristic of EPI.

3. Proposed Coding Solution

As EPI contains both angle information and spatial informa-
tion of light field, the light filed image compression method
proposed in this paper focuses on processing of EPI. As
shown in Figure 2, EPI consists of pixels of the same number
of rows of each subaperture image. We consider sampling
the EPI in coding and then recovering the original EPI in
decoding, so as to reduce the amount of data transferred.
Since the parallax between adjacent subaperture images of
dense light field is less than 1 pixel, the sampling of EPI

meets the Nyquist sampling rate, and the original EPI can
be restored according to the all-optical function.

Due to the characteristics of light field image, it contains
not only spatial domain information but also angular domain
information. The light field EPI connects the spatial informa-
tion of the light field with the angle information in its own
way. VVC is optimized on the basis of HEVC and obtains
the maximum coding gain as far as possible by improving
every link of coding. VVC can save about 50% bit-rate com-
pared with HEVC at the same quality. Therefore, this paper
starts with EPI, builds an image coding network based on
EPI enhancement, and combines it with the existing video
coding standard VVC to obtain a more efficient compression
coding scheme for light field images.

Wu et al. [7] proposed a light field image reconstruction
network. Its main idea is to add blur before recovering sam-
pled images using CNN and remove blur after upsampling,
which can make reconstructed images have better quality
than those without the process of “blur-restoration-
deblurring.” Based on this framework, this paper constructs
a more suitable frame for light field image coding. Due to
different problems to be solved, Wu et al.’s problem is to
reconstruct the light field with high angular resolution from
the light field with low angular resolution, and they do not
know the true value of the light field with high angular reso-
lution to be reconstructed in advance. However, in this paper,
the original high-resolution light field is sampled and
reduced to the light field with low angular resolution. This
process is then reconstructed into the original high-
resolution light field, the values of which are known. There-
fore, in this paper, two-dimensional kernel function is used
to blur the original high-resolution EPI of the light field,
instead of the one-dimensional function used after sampling.
In this way, the blur can be carried out in two-dimensional as
a whole, instead of in one-dimensional direction, so that the
reconstructed light field image quality is higher.

The whole workflow of the light field image compression
coding framework proposed in this paper is shown in
Figure 3. Firstly, the original light field image is transformed
into EPI form; EPI is blurred by two-dimensional kernel
function. Secondly, EPI is downsampled. Finally, VVC

Figure 2: EPI generation method. Stacking a row of subaperture
images, the cross section is the epipolar plane image.
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encoder is used to encode the selected sampled light field
image, and EPI recovery network is used to recover the sam-
pled light field image for the noncoded part.

The overall framework of the EPI recovery model is
shown in Figure 4. The input is the EPI after blur processing
and then sampling. First, the pixels to be restored are initial-
ized by bilinear interpolation, and low-frequency details are
recovered by three-layer convolutional network. Then, a
deblur module is used to recover the high frequency detail
features. Finally, the noise generated in the deblur process
is removed through three-layer convolutional network, and
the restored EPI is obtained.

Bilinear interpolation is used to initialize the pixels to
be restored, which is convenient for subsequent convolu-
tional neural network processing. The three-layer convolu-
tional network is used to recover low frequency details of
EPI. The first layer contains 64 convolution kernels with
a size of 1 × 5 × 5 for feature extraction. The second layer

contains 32 convolution kernels with a size of 64 × 3 × 3
for nonlinear mapping. The last layer contains a convolu-
tion kernel with a size of 32 × 3 × 3 for detail reconstruc-
tion. The activation function between the first and
second layers is ReLU. Using ReLU is more efficient than
other activation functions, does not have the problem of
gradient disappearance, and prevents over fitting. The
EPI is filled with zeros before each convolution to keep
the input and output sizes the same. In the deblur module,
Wiener filtering is used to deblur. Use arithmetic encoding
SNR parameter. Finally, a three-layer convolutional net-
work is used to deal with the noise generated in the pro-
cess of deblur. The first layer contains 64 convolution
kernels of size 1 × 5 × 5. The second layer contains 32 con-
volution kernels of size 64 × 3 × 3. The last layer contains a
convolution kernel of size 32 × 3 × 3.

In order to ensure the high quality signal recovery and
perceived quality of CNN, this paper adopts the mean
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Figure 3: The framework of light field image coding. Firstly, the light field images are selected by the select module. The selected subaperture
images are converted into EPIs through the rearrange module. Restore the EPIs through the restoration module. Finally, the selected
subaperture image and the residual value are transmitted to the VVC encoder.
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square error loss function in the model. The formula of loss
function is defined as follows:

L = 1
n
〠
n

i=1
Ei − E′i

�� ��2, ð1Þ

where n represents the number of trained EPI, E represents
the original EPI, and E′ represents the EPI for detail recov-
ery through convolutional neural network.

4. Experimental Results

In order to verify the performance of the proposed light
field image coding framework, the coding efficiency of light
field image is tested. A set of comparative experiments are
designed to verify the performance of the proposed

method. The light field image compression coding algo-
rithm proposed in this paper is compared with the method
proposed by Liu et al. [13], Chen et al. [22], and Jia et al.
[6]. During the experiment, the standard deviation of
Gaussian blur kernel was set as 0.83, and the selected sub-
aperture image after blur was constructed into pseudo
video sequence according to sinuous array. VVC coding
software VTM-12.2 was used to compress and encode
pseudo video sequence, and the coding method was set as
“Random Access.” In the initialization parameter setting
of convolutional neural network, the total number of itera-
tions of training is set as, and the learning rate is set as
0.01. Each iteration, the learning rate attenuates to one-
tenth of the original. The batch size is set to 64, and the
momentum parameter is set to 0.9. The Gaussian distribu-
tion function with mean value 0 and standard deviation is
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Figure 5: Experimental comparison of subaperture image restoration: (a) original subaperture image; (b) repaired subaperture image; (c)
residual images; (d) magnify the residual images.
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used to initialize the convolution kernel of the convolu-
tional neural network.

In this paper, “People,” “Bikes,” “Fruits,” and “Flowers”
in Stanford light field data set are selected for the experi-
ment. In order to facilitate the observation of experimental
results, this paper presents the original image of one of the
subaperture images in each light field before the experiment,
the restored result image after the experiment, and the resid-
ual image of the two images. The experimental results are
shown in Figure 5. The original subaperture image is on
the far left, followed by the restored subaperture image.
The residual image is obtained by subtracting the pixels of
the original subaperture image and the restored subaperture
image. It can be seen from the figure that most areas of the
residual image are black, indicating that the residual value
of the image is very small, and the difference between the
restored subaperture image and the original subaperture
image is very small; that is, the image restoration effect of
the EPI restoration model is good. In order to facilitate the
observation of the difference between the original subaper-
ture image and the restored subaperture image, the pixel
value of the residual image is enlarged to obtain the right-
most residual enlarged image. It can be seen that the differ-
ence is mainly concentrated in the edge part of the object in
the subaperture image.

Peak signal-to-noise ratio (PSNR) is the average value of
all subaperture images, and its formula is defined as follows:

PSNR = 1
7 × 7〠

7

u=1
〠
7

v=1
PSNR u½ � v½ �: ð2Þ

The peak signal-to-noise ratio of each subaperture image
is calculated as follows:

PSNR u½ � v½ � = 10 ∗ log10
2n − 1ð Þ2
MSE

" #
,

MSE = 1
s × t

〠
s

i

〠
t

j

SAIr i½ � j½ � − SAIo i½ � j½ �ð Þ2,
ð3Þ

where H and W are the spatial resolution of each sub-
aperture image, SAIr and SAIo represent reconstructed
subaperture image and uncompressed subaperture image,
respectively, and n indicates the bit depth.

The light field image compression coding algorithm is
proposed in this paper and the rate-distortion curves of
Liu et al. [13], Chen et al. [22], and Jia et al. [6], under the
light field data set “People,” “Fruits,” “Bikes,” and “Flowers.”
The rate-distortion curves of “People,” “Fruits,” “Bikes,” and
“Flowers” are shown in Figures 6–9, respectively. It can be
seen from the figure that the performance of the light field
image compression and coding algorithm proposed in this
paper is superior to that proposed by Liu et al., Chen et al.,
and Jia et al. Table 1 shows the rate-distortion performance
in terms of BD-PSNR rate for each light field image. As can
be seen from Table 1, the average BD-PSNR and average
BD-BR of the light field image compression coding algo-

rithm proposed in this paper are 2.02 dB and -39.47%,
respectively. Compared with the light field image compres-
sion and coding algorithm proposed by Chen et al., the aver-
age BD-PSNR increases by 0.64 dB, and the average BD-BR
decreases by 15.58%. Compared with the light field image
compression algorithm proposed by Jia et al., the average
BD-PSNR is improved by 1.08 dB, and the average BD-BR
is reduced by 24.87%. Experimental results show that the
proposed image compression coding algorithm can ensure
the image quality while reducing the bit rate.

In order to prove the improvement of the proposed
module over the method proposed by Wu et al., an ablation
experiment was added in this paper. One group directly uses
the network built by Wu et al. on the basis of VVC coding;
the other group uses the network structure improved in this
paper. We also conducted experiments on “People,” “Fruits,”
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“Bikes,” and “Flowers” light field data sets. The experimental
results are shown in Table 2. The improved light field image
coding performance is better than the method proposed by
Wu et al.

5. Conclusion

In this paper, a new light field image coding algorithm
framework is constructed. In order to ensure that the quality
of the original light field EPI is recovered from the sampled
light field EPI, the light field EPI is blurred first and then
sampled. The sampled EPI was transformed into pseudo
video sequence, which was encoded by the VVC reference
software VTM-12.2. The unselected light field EPI is recon-
structed by EPI recovery network model. In order to test the
performance of the light field image compression, compared
with the light field image compression and coding algorithm
proposed by Liu et al., Chen et al., and Jia et al., the bit rate is
relatively reduced, and the image quality is relatively higher,
which confirms the superior performance of the light field
image compression.
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