
Research Article
EEG-Based Multiword Imagined Speech Classification for
Persian Words

M. R. Asghari Bejestani , Gh. R. Mohammad Khani , V. R. Nafisi , and F. Darakeh

Electrical & IT Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Correspondence should be addressed to Gh. R. Mohammad Khani; mhmdreza46@yahoo.com

Received 30 April 2021; Revised 27 October 2021; Accepted 28 November 2021; Published 19 January 2022

Academic Editor: Yue Zhang

Copyright © 2022 M. R. Asghari Bejestani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This study focuses on providing a simple, extensible, and multiclass classifier for imagined words using EEG signals. Six Persian
words, along with the silence (or idle state), were selected as input classes. The words can be used to control a mouse/robot
movement or fill a simple computer form. The data set of this study was 10 recordings of five participants collected in five
sessions. Each record had 20 repetitions of all words and the silence. Feature sets consist of normalized, 1Hz resolution
frequency spectrum of 19 EEG channels in 1 to 32Hz bands. Majority rule on a bank of binary SVM classifiers was used to
determine the corresponding class of a feature set. Mean accuracy and confusion matrix of the classifiers were estimated by
Monte-Carlo cross-validation. According to recording the time difference of inter- and intraclass samples, three classification
modes were defined. In the long-time mode, where all instances of a word in the whole database are involved, average accuracies
were about 58% for Word-Silence, 60% for Word-Word, 40% for Word-Word-Silence, and 32% for the seven-class classification
(6 Words+Silence). For the short-time mode, when only instances of the same record are used, the accuracies were 96, 75, 79,
and 55%, respectively. Finally, in the mixed-time classification, where samples of every class are taken from a different record,
the highest performance achieved with average accuracies was about 97, 97, 92, and 62%. These results, even in the worst case of
the long-time mode, are meaningfully better than random and are comparable with the best reported results of previously
conducted studies in this area.

1. Introduction

Brain-Computer Interface (BCI) may be defined as a sys-
tem that translates brain signals into other kinds of outputs
[1]. Electroencephalography (EEG) signals are widely used
in the development of the BCI system as well as other
investigations regarding information extraction from the
brain [2–5].

BCIs are usually concentrated on motor imagery, speech
imagination, and image perception tasks. In motor imagery,
the imagination of the movement of the hands, feet, eyes,
tongue, or other muscles is examined. Usually, there are no
physical movements due to disabilities or even absence of
the whole body part. EEG signals are used to detect these
types of imagination and perform the suitable actions like
controlling a wheelchair or moving a robotic arm [6–10].

In speech imagination, also known as Silent-Talk and
Silent-Speech, the participants imagine the pronunciation
of a particular vowel [2, 11–13], syllable [14–17], or word
[18–22] in some defined time intervals. EEG signal during
these intervals is processed to determine the imagined
word [17, 19, 23–25].

For image perception tasks, the subjects are watching
some displayed pictures, for example, simple geometric
shapes (rectangle, circle, triangle, etc.), real pictures (per-
sons, animals, planets, objects, etc.), or even written words
and letters. The BCI output resembles the type of picture
(e.g., the picture is an animal or a planet), kind of the shape
(circle or triangle), the person’s name or characteristics
(known or unknown, male or female, friend or foe, etc.),
or whether the shown letter is what the subject has in his/
her mind or not. P300 Event Related Potential (ERP) is a
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well-known and useful feature of EEG signals for these kinds
of BCIs [26, 27].

In this study, we examined imagined word recognition
for six Persian words and the silence/rest state. The aim
was to achieve a suitable classifier structure, which can be
used with different number of classes (words), using a
minimum processing power for real-time applications. The
research process and a summary of some interesting results
obtained during the experiment are demonstrated in the
succeeding sections.

2. Material and Methods

2.1. Data Set

2.1.1. Subjects and Instruments. Five male subjects partici-
pated in the experiment. They were all healthy, right-
handed, and aged between 25 and 45 years. Although the
number of subjects is not so high, it is not necessary to
incorporate more subjects because all recordings, processing,
classifier training, and performance evaluations are done
individually for each subject. Interpersonal measures and
comparisons are used to assure consistency of the results
between different subjects.

To record EEG signals, we used an EEG-3840 EEG set
from Negar Andishgan LTD, Tehran, Iran. The system has
21 EEG channels along with 8 external, two ECG, and one
EMG channel. Sampling frequency (Fs) was set to 500
samples per second. EEG electrodes were positioned on sub-
ject’s head and kept in place by a string headset, based on the
10-20 standard (Figure 1).

2.1.2. Test Procedure. In order to acquire EEG signals dur-
ing silent talk (imagined word repetition), a test procedure
was designed. To implement the tests, we developed a
special software, called Test Generating Application (TGA).
Figure 2 illustrates time sequence of tests.

Each “test” consists of several (N t) “trials” of some (Nc)
chosen “words” (or classes) in a pseudorandom order. For
example, assume three words W= {red, blue, black} with 5
trials (Nc = 3, N t = 5). A single trial has exactly one instance
of each word in a random order, e.g., (blue, red, black) or
(red, black, blue) and so on. A test (T) is a concatenation
of 5 trials (a string of 15 words) like:

T= (blue, red, black, red, black, blue, blue, black, red,
black, red, blue, red, black, blue).

The TGA program generates these random sets and pre-
sents them to the subjects by vocal and/or visual stimulators.
In the vocal mode, according to each word instance in the
test, a sound or voice is played via earphones. In the visual
mode, a shape or word will be displayed on the monitor.
The time interval between presenting two consecutive words
in a test is called instance time (Ti) and is constant during
each test. In visual mode, the time of display of each signal
is also a constant parameter (Td).

In this experiment, we used vocal stimulation to record
EEG signals of imagined words. Subjects were asked to sit
on a chair, close their eyes, and listen to the words played
on his earphone. When each word played completely, the

subject should repeat the word silently for at least 3 times.
Closing the eyes helps the subject to concentrate on test pro-
cedure. It also eliminates eye blinking, which is the most
major EEG artefact. To minimize other kinds of artefacts,
the subjects were also asked to be comfort but make no
movement by tongue, lips, eyes, or any other organs or mus-
cles. Also, an upper limit was considered for total test time,
because elongated test times leads the subjects to become
tired and lose their attention.

Subject’s EEG signal during every test were continuously
recorded and saved to a single file. Also, TGA generates
some synchronization signals, which indicates the type and
start times of each word instance. These signals were merged
into EEG data via external inputs of EEG-3840.

2.1.3. Data Set Structure. We selected six Persian words for
this experiment: { لااب،نییاپ،پچ،تسار،هلب،ریخ }. They are pro-
nounced as {(bʌlʌ), (pʌyɪn), (chæp), (rʌst), (bæle), (kheɪr)}
and are equivalents of {Up, Down, Left, Right, Yes, No},
respectively. These words have been selected for several rea-
sons, such as the following:

(i) They are complete and meaningful Persian words

(ii) They can be used for navigating a mouse/wheelchair
or filling a simple questionnaire form

(iii) Half of them (chæp, rʌst, and kheɪr) have only one
syllable, while the others have two

(iv) We can divide them into three pairs with opposite
meanings, i.e., {Up, Down}, {Left, Right}, and {Yes,
No}

(v) The pairs also have all three possible combinations
of syllable counts, (two, two), (one, one), and (one,
two)

(vi) The same pairing combines the two words, which
are usually used together

Another special item, the Silence, was also added to the
above word list to indicate the “rest” or “no word process-
ing” state of the brain.
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Figure 1: 21 electrode locations of the international 10-20 system
for EEG recording [28].
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Playing (or repeating) time for each of selected words
with normal speed is about 500 to 1000mSec, so we consid-
ered instance time to be 4 seconds (Ti = 4000). If we limit the
total test time to be about 4 minutes, then each test can
contain 60 word instances. Thus, the six words were divided
into three tests, each with two words and the Silence (Nc = 3)
and set Nt = 20 trials. Specifically, there were three tests:

(T1) W= {Up, Down, Silence}; Nt=20; Ti=4000
(T2) W= {Left, Right, Silence}; Nt=20; Ti=4000
(T3) W= {Yes, No, Silence}; Nt=20; Ti=4000
Each subject incorporated in five “sessions,” each in a

single day with at least a one-week interval. Each session
consisted of two “parts” separated by a short break. In any
part, all three tests were recorded so that all of the selected
words were used in every part.

Finally, the raw EEG data set consists of 30 records (5
sessions × 2 parts × 3 records) for every subject, containing
200 instances (5 sessions ∗ 2 parts ∗ 20 trials) for each of the
six selected words and 600 instances (200 ∗ 3 tests) of
“Silence.” Each record had19 EEG channels, with two
additional sync channels sampled at 500Hz with a 16-bit
accuracy.

2.2. Preprocessing. All the recorded data were preprocessed
in offline and EEG data for each word instance was saved
as a separate record in Pre-processed EEG Database. Prepro-
cessing consists of following steps (see Figure 3).

2.2.1. Low-Pass Filtering. Frequency bands of EEG signals
spans from DC to Gamma band (above 30Hz). Sampling
frequency (Fs) was set to 500Hz, thus the recorded EEG
signals had frequency components up to 250Hz, which is

far beyond the useful EEG frequency bands. In order to
suppress higher frequencies and specially the power line
noise (50Hz), we used a 0-32Hz low-pass filter (LPF).

2.2.2. Subsampling. After removing high frequency compo-
nents, we down sampled the EEG signals from 500Hz to
100Hz by replacing each five consecutive samples with their
average. This reduced the size of the recorded data to 1/5
of its original size and improved the speed of subsequent
processes.

2.2.3. Record Segmentation. As mentioned above, each con-
tinuous record of EEG signals, consisted of Ni = 20 instances
of two words and the Silence. In this step, EEG data of word
instances were separated from each other. This was done by
using the “Sync Data”, which was generated by TGA and
saved in separate channels of EEG signal.

Although all word instances were assumed to have the
same time length (Ti = 4 sec), EEG signals for each segment
were cropped (or padded with zeros) to have exactly the
same number of samples.

2.2.4. Artifact Detection and Filtering. EEG signals may
always be corrupted by various kinds of artefacts such as
blinking, eye movement, wanted or unwanted movements,
and so on. In our experiment, due to closed eyes during
EEG recording, the major artefacts of blinking and eye
movement have been minimized. Moreover, subjects had
been asked to control and avoid any additional movement
or muscle activity during recordings.

Besides all of these, average energy of EEG signals during
an instance has been considered as a measure of signal

EEG recording
starts

EEG recording
ends

Te
Ti

TGA plays
the first words

TGA plays the
second word

TGA plays the
last word

Subject silently repeats
the first word

Subject silently repeats
the second word

Subject silently repeats
the last word

Figure 2: Time sequence of a test’s record.
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Figure 3: Preprocessing steps.
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quality. Any instance with an energy much above or below
the overall average energy of whole recorded signal, has been
filtered out. Total number of rejected instances was less than
2% of all recorded EEG data.

2.3. Feature Extraction. The feature vector used in this
research was simply the amplitude of each single frequency
in selected EEG channels. The advantage of frequency-

related parameters is that they are less susceptible to signal
quality variations, which may be present due to electrode
placement or the physical characteristics of subjects [5].
Figure 4 shows the feature extraction steps.

2.3.1. EEG Channel Selection. Depending on the application
and features needed, only a selected set of EEG channels are
used for processing, which may be one, all, or any other

Feature
extraction

EEG channel
selection

Time segment
selection

Fast fourier
transform

Forming
feature vector

Output:
Feature vector

Frequency
range

Resample to
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Input:
Instance EEG

End

Figure 4: Feature extraction.
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Figure 6: (a) Training of binary SVM machines and (b) classification algorithm.
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combination of the channels. For the results presented in
this article, we have used 19 EEG channels from 21 available
EEG channels in 10-20 standard (see Figure 1). Channels A1
and A2 were not used because they are not actually scalp
EEG channels. Instead, they are often used for contralateral
referencing of all other EEG electrodes [28].

2.3.2. Data Time Segment Selection. The total time duration
for signals of each instance of a word was Ti (4 seconds).
The first portion of this time (Te, up to 500mSec) corre-
sponds to excitation (hearing the played word). Then, after
a small rest time (Tr), the subject repeats the word silently
for a few times. As illustrated in Figure 5, we only processed
the EEG samples for an interval Ts, starting after Tw from
beginning of the instance. Obviously, Tw ≥ Te + Tr and
Ts ≤ ðTi − TwÞ. Experimentally, we selected Tw = 1 and
Ts = 2:5 seconds.

2.3.3. Fast Fourier Transform (FFT). To compute frequency
components, we used absolute value of FFT of EEG signals.
Furthermore, the amplitudes of these absolute FFTs were
normalized by dividing them to their maximum value.

2.3.4. Resample to 1Hz Resolution. Time duration of the
signals is Ts, therefore, the initial resolution of their spec-
trum is 1/Ts. To normalize the length of feature vectors
against sampling frequency and duration of the signals, we
resampled FFTs to one Hertz resolution. This typically
reduces the length of feature vector. Besides, since the signals
were already filtered with a 32Hz low-pass filter, only first 32
values of this resampled FFTs had valid amplitudes.

2.3.5. Frequency Range Selection. Usually, not all of the signal
frequency range are used. For example, one may filter out
EEG Delta and Gamma bands by omitting first four and last
two values of resampled FFT, corresponding to frequencies
below 4Hz (0 to 3) and above 30Hz (30, 31). In this exper-
iment, all frequency components were used, except the first
(DC) value.

2.3.6. Forming Feature Vector. Finally, the selected FFT
values (of all selected channels) were concatenated to
form instance feature vector. If Nch channels and Nf

Table 3: Word-Silence classification accuracies in all the three
modes.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 95:7 ± 8:3

Long-time 57:5 ± 7:2

Mixed-time 97:1 ± 5:1

Table 1: Class words and their class number.

Class word bʌlʌ bæle chæp kheɪr pʌyɪn rʌst Silence

English equivalent Up Yes Left No Down Right Silence

Abbreviation U Y L N D R S

Class no (whole data set) 1 2 3 4 5 6 7

Class no (single records) 10…19 20…29 30…39 40…49 50…59 60…69 70…79

Classification performance report

2-class 3-class Multi-class

Word-silence Word-word Word-word-silence 6 words+silence

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Short
time

Long
time

Mixed
time

Figure 7: Organization of evaluation results.

Table 2: Feature extraction parameters.

Parameter Value

EEG channels 19 channels (all except A1 and A2)

Frequency range 1 to 32Hz

Tw 1 second

Ts 2.5 seconds

5BioMed Research International



frequency values were used, feature vector length would
be Lf =Nch ∗Nf .

2.4. Classifier Structure. We used binary (2-class) support
vector machines (SVM) as the basis of our classification
method. One SVM was trained to classify between 2 specific
classes consisting of a pair of selected words or a word and
the Silence. Let SVM (i, j) be the machine trained for two
classes i and j. Obviously, if an arbitrary feature set is pre-
sented to such a machine, it would be classified to one of
the trained classes (i or j), even though it may belong to
neither.

For n-class classification, there would be nðn − 1Þ/2 of such
classifiers.Majority Rulewas used for winner selection. Besides
training, classification consists of the following steps (Figure 6):

(i) The unknown feature set is presented to all binary
classifiers

(ii) If a relative majority of the classifiers vote for a sin-
gle class k, then class k wins and the features are
assigned to this class

(iii) If two classes, namely k and l, had the samemaximum
vote counts, then the class voted by SVM (k,l) wins
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Figure 8: (a) Confusion matrix for [32 72] classification and (b) estimated classification accuracies for each Word-Silence pair in record
No 2. The last value is the global performance.
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(iv) If more than two classes had the same maximum
vote counts, then output class is undefined and the
input feature would be tagged to belong to special
class “Unknown”

Note that if we assume that every binary classifier has a
relatively good performance, then this Majority Rule is also
the Rule of Specialists. For example, in the special classifica-
tion case of two words and the silence (W1, W2 and S), if
the input sample is from the S class, then the two machines
SVM (W1, S) and SVM (W2, S) will realize it and the sample
will be correctly assigned to S, regardless of the vote of SVM
(W1, W2) machine. On the other hand, if the input belongs
to one of the words’ classes, then the former two machines
reject the S and vote for W1 and W2, respectively. Now
the third machine, the words specialist SVM (W1, W2),
would determine the correct class.

2.5. Evaluation Procedure

2.5.1. Performance Measurement. To evaluate our classifier,
Monte-Carlo cross-validation was used. EEG data of proper
classes were fetched from “Pre-processed EEG Database”
and their features were extracted.

In each round (r) of the Monte-Carlo simulation,
instant feature sets were randomly divided into two parti-
tions: the train set, with approximately 70% of samples
and the test set, with the rest 30%. As usual, SVMs were
trained with train set data and used to classify features
in the test set. A confusion matrix (Cr) was formed with
known (true) classes as rows and resulted classes from
the classifier as columns, so that the number in (i, j)-th
element of the matrix is the number of features from class
i, classified as class j. As mentioned above, in the case of
multiclass classification, an extra column, “Unknown”,
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Figure 9: Performances of Word-Silence classifiers in long-time mode with their global average.
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should be added to Cr. In every iteration, the accuracy of
classification was computed:

Ar =
Number of correct classifications
Total number of classifications

=
trace Crð Þ
sum Crð Þ ,

ð1Þ

where trace (Cr) and sum (Cr) are sums of main diagonal and
all elements of Cr, respectively. When all the Monte-Carlo
iterations were done, the final confusion matrix can be
computed by the sum of all iteration matrices:

C = 〠
Nr

r=1
Cr: ð2Þ

In (2), Nr is number of Monte-Carlo iterations. The final
classification accuracy and its standard deviation were
estimated by the following:

A =
1
Nr

〠
Nr

r=1
Ar and σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nr

〠
Nr

r=1
A − Arð Þ2

s

ð3Þ

Alternatively, A can be calculated by eq. (1), with Cr
replaced by C. Values of Ar were kept in a column vector
called Class Measures (Mc) for further evaluation extensions.

2.5.2. Data Representation. For simplification, all names (the
words or class names, EEG channel names, records, etc.)
were coded with integer numbers. These codes have been
used in all figures and tables of this report.

Recording parts were numbered in chronological order
so that the first part of first session (the oldest part) is called
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Figure 11: Short-time Word-Word classification: (a) accuracies estimated for record no. 7 and (b) confusion matrix (average).
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part-0 and the second part of the last session (the newest) is
part-9. Similarly, every word was presented in 10 records,
one record in every part, except the silence, which was pres-
ent in all records. So, we may refer to part numbers of a
word as “record number.” We also considered all instances
of silence in a part as a single record.

Table 1 shows the class names and their code numbers.
As seen in this table, each word has up to 11 class numbers.
If all instances of a word in the whole database is considered,
the code will be a single digit number (from 1 to 7 for
six words and the silence). When only samples from a
specific record have to be referenced, the code should
be followed by the part number. For example, instances
of word “kheɪr “(class 4) in the second record (part no
1) have class no 41.

2.6. Classification Modes. EEG signals are not stationary,
therefore the time differences between the recording times
of EEG signals can directly affect the performance of classi-

fication. Based on recording time difference of inter- and
intraclass samples, three modes of classification were distin-
guished in this research:

(i) Long-time classification where all instances of a class
in whole database are involved

(ii) Short-time classification where only instances of the
same record (or part) are used

(iii) Mixed-time classification where samples of every
class are taken from a different record

In the first mode, the difference in the recording time of
samples of the same class spans from a few seconds to sev-
eral weeks. This is the time during which the EEG signals
of a subject were recorded. The same is true for interclass
time differences.

In the second mode, intraclass time difference is at most
as short as a test time (4 minutes). The interclass difference
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Figure 12: Long-time Word-Word classification: (a) accuracies of all classifiers and (b) confusion matrix (all classifiers average).
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would be at most equal to duration of a recording part which
was kept in about half an hour.

In the third mode, the intraclass times is the same as the
second mode, while the interclass time is typically many
days (about an hour at least and some months at most).

3. Results Evaluation

We tried several classification cases with our captured data
sets, selected feature extraction methods, and designed
classifiers. Some interesting results are presented below.
First, the results of the simplest case of a 2-class classification
are reported, then 3-class case, and, finally, some examples
of the results in multiclass classifications are mentioned. In
all cases, the above three classification modes are considered
(Figure 7).
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Figure 13: Mixed-time Word-Word classification: (a) accuracies estimated for record no. 1 vs record no. 2 and (b) average confusion matrix
(all classifiers).

Table 4: Results of classification in Word-Word case.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 74:5 ± 20:4

Long-time 59:5 ± 7:5

Mixed-time 96:4 ± 8:0

Table 5: Results of classification in Word-Word-Silence case.

Classification mode
Classification accuracy

(mean ± standard deviation)
Short-time 78:9 ± 13:9

Long-time 39:5 ± 5:4

Mixed-time 92:0 ± 11:1

10 BioMed Research International



To avoid making the manuscript lengthy, feature extrac-
tion parameters are kept constant during this report. The
selected set of parameters are shown in Table 2. It is almost
optimal [29], but there may be other combinations, which
produce comparable results. Furthermore, otherwise speci-
fied, the results are average of all subjects.

3.1. Two-Classes Type. First, we examined the simple case of
a two-word classification. In this case, there was only one
SVM which was trained with features extracted from two
specific classes. Different combinations of classes and/or
feature parameters were examined.

3.1.1. Word-Silence. This type of classification is important
for discriminating talking/not-talking states, especially in
real-time silent-talk applications. Table 3 summarizes some
results of classifying EEG signals corresponding to silent
repeating of a single word, chosen from the above six-word
set, and the “Silence” case.

(1) Short-Time Classification. To explain the accuracies in
Table 3, we start with classifying between two classes 32
and 72 (instances of the word “Left” and the Silence in
record no. 2, or L2 and S2, see Table 1). Here, we only work
with EEG data of subject no. 1. When validating this SVM
classifier by the Monte-Carlo cross-validation method,
confusion matrix (Cr) is calculated in each iteration, and
accuracy (Ar) is estimated by eq. (1). At last, the final confu-
sion matrix (C) is obtained by eq. (2) and all (Ar) are
concatenated to form a column vector named Mc (see
Section 2.5.1).

Figure 8(a) shows a typical confusion matrix (C) for this
classifier. The values in this matrix were calculated from the
results of 30 Monte-Carlo iterations. Element colors are
graphical illustrations of their values. As mentioned, the
value in row i and column j is the percent of samples from
class i, classified as class j. For example, 94.3% of total test
samples of the word “Left” were correctly identified, but
5.7% of them were falsely classified as “Silence.” From eq.
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Figure 14: Short-time Word-Word-Silence classification, (a) accuracies estimated for record no. 7, (b) Confusion matrix of the worst case in
record 7 (17, 57, 77).

11BioMed Research International



(3) and data in Mc, the average accuracy for this classifier
was A = 96:2% with a standard deviation σ=5.6%.

We repeat the same procedure for all the six words in
record no. 2 (classes 12, 22, 32, 42, 52, and 62 against class
72) and concatenate all (Mc) into a matrix M. The average
accuracy for each word classifier and its standard deviation
can be estimated from columns of M. We can also calculate
the global mean and standard deviation for all data inM as a
measure of performance for the task of discriminating a
word from silence in this record. These values are shown
in error-bar of Figure 8(b). In this figure, green circles show
classifier’s average accuracy and red bars indicate the stan-
dard deviation around the mean. The last bar is the global
mean and standard deviation. The horizontal dashed blue
line shows the chance level accuracy, which is 50% for
balanced binary classification. Regarding the definition of
classification modes (Section 2.6), this is a short-time classi-
fication because only instances of words and silence in the
same record are used.

A better estimation for the accuracy can be obtained by
averaging the performances over all records and all subjects.
This is the value recorded as the accuracy of short-time
Word-Silence classification, in the first row of Table 3
(95:7 ± 8:3%).

(2) Long-Time Classification. In the long-time mode, all
instances of a word and silent from each particular subject
are used to train and test the classifier. Figure 9 shows the
performances of classifiers in this case. As seen, the classi-
fiers have generally a poor performance and in some cases
they even did not better than chance. The global accuracy
is weakly above 50%, thanks to the relatively good perfor-
mance of (1, 7, 5, and 7) classifiers.

(3) Mixed-Time Classification. In mixed-time mode, every
class data should be picked from a separate record of the

same subject, e.g., the word “Up” of the third record
(class no. 12) and “Silence” from the second record (class
no. 71). Hundreds of such classifiers can be defined for
every subject. Figure 10 shows performances for some
of these Word-Silence classifiers in mixed-time mode
using EEG data of subject no. 1. As may be expected,
classification performance in this mode is generally better
than both previous modes. In some cases, accuracy
reaches to 100%, and, in a worst case, it remains above
80%. The global average accuracy is also slightly better
than the short-time mode.

3.1.2. Word-Word. For this case, there was also one SVM
machine, trained with feature vectors of instances of a
selected pair of words. The procedure and results in this case
were the same as Word-Silence, with the silence replaced by
a word. Three classification modes were considered, but
since there were several words which can be picked up for
the second class, the total number of possible combinations
was much more than the previous case.

(1) Short-Time Classification. In this case, words instances of
a recording part were compared together. In each part, there
were15 (6∗5/2) possible combinations. Figure 11(a) shows
the accuracies estimated for record no. 7of subject no. 1.
There were seven classifiers with relatively good perfor-
mance (80-90%), three were moderate (60-80%), and the
other five had poor accuracies (50-60%). Three of the weak-
est results belonged to classifiers (17, 57), (27, 47) and (37
67), specifically classifiers with words (Up, Down), (Yes,
No) and (Left, Right). Note that these are the words which
were paired into three designed tests T1, T2,and T3 (sec.
2.1.3) and therefore had the smallest interclass time differ-
ence, nearly the same as their intraclass distance (a few
seconds up to less than 4 minutes).
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Figure 15: Short-time Word-Word-Silence classification confusion matrix (overall average).
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The confusion matrix for this type of classification is
shown in Figure 11(b). Global average accuracy was about
74.2 percent with a relatively large standard deviation (σ=
20.1), which means a possible but not so reliable classification.

(2) Long-Time Classification. Using the long-time data
reduces the total iterations needed to estimate Word-Word
classification performance for each subject to 15. The results
are illustrated in Figure 12(a). Although the accuracy levels
have decreased compared to Figure 11(a), the graph shapes
are roughly the same: three classifiers with chance level accu-
racies, a few in middle, and a majority in higher levels of
accuracy. The smallest accuracies belonged to the same
classifiers working on words which were paired in tests.

Figure 12(b) is the average confusion matrix for all clas-
sifiers. The average accuracy is about 60% with a standard

deviation equal to 7.5 which again has a breaking higher per-
formance than random classification.

(3) Mixed-Time Classification. In mixed time, each word in a
record are compared with other words in another record.
Classification results of words in record no. 1 against record
no. 2 of subject no. 1 have been shown in Figure 13(a).
Nearly all classifiers have excellent performance compared
with other classification modes (90-100%). The overall
accuracy, calculated by averaging over thousands word/
record combination was 96.4% with σ=8.0. Average confu-
sion matrix is shown in Figure 13(b).

Table 4 summarizes overall accuracies for Word-Word
classification in all the three modes. Compared with the cor-
responding values for Word-Silence classification, accuracies
were only slightly reduced in long- and mixed-time modes.
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Figure 16: Long-time estimated Word-Word-Silence classification, (a) accuracies, (b) confusion matrix.
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In the short-time mode, performance reduced noticeably
due to low accuracies in discriminating words which were
paired in tests.

3.2. Three Classes. In the three-class classification, there are
three possible classes (C1, C2, and C3) and the classifier con-
sists of three binary SVMs, (C1, C2), (C1, C3), and (C2, C3).
If a sample with unknown class C is presented to the three
SVMs, then with the majority rule which we have selected
for the classifier (see Section 2.4), there would be only two
possible states:

(i) If two classifiers agree on their common class (Cx)
then the unknown sample will be assigned to this
class (C = Cx). Of course the third machine cannot
agree with this choice

(ii) If every SVM has its own choice, not common to
any other machine, then the sample C will remain
unknown and will be assigned to the class of
“Unknowns” (C0)

An important case of this classifier type is the two words
and silence classifier (WWS). Table 5 shows the summarized
results for three-class WWS classification in all three modes.

3.2.1. Short-Time Classification. Figure 14(a) shows the clas-
sification results of WWS classification on EEG data from
record no. 7 of subject no. 1. The Word-Word classification
results of this record were shown in Figure 11(a). The shape
of the two curves are very close together, but the accuracies
in WWS case are slightly greater than the two-class case with
the same words. Furthermore, the chance level in three class
case is about 33% compared with 50% in binary classifiers.
These made the resulting performance to be much better
than Word-Word classifier.

Besides the overall good quality of classification, the
worst cases were again the classifiers which worked on the

words with the minimum interclass time difference.
Figure 14(b) shows confusion matrix of the worst classifier
in record no. 7, the (17, 57, 77) or more clearly the (U7,
D7, S7) classifier. It is clear that the classifier almost dose
not distinguish between the two words but has a good per-
formance for the silence.

The global average accuracy was calculated for all short-
time mode WWS classifiers of all records whose results
indicated a rate of 78.9± 13.9% which is shown with its con-
fusion matrix in Figure 15.

3.2.2. Long-Time Classification. Here the classifiers are
defined over three different words in the whole recordings.
Figure 16(a) shows the accuracies of all 15 classifiers in this
category. The accuracies were generally low (all below 50%)
and in some cases were close to random decision. The over-
all accuracy was above the chance by a very narrow margin
(39.5% with σ=5.4). Figure 16(b) is the average confusion
matrix of all classifiers.

3.2.3. Mixed-Time Classification. Figure 17 shows some
results for mixed mode three class WWS classification. The
words combinations was the same as Figure 13(a) where
the first word was picked from record no. 1 and the second
word comes from record no. 2 of subject no. 1. Silence sam-
ples were from record no. 5.

As seen in most cases, the classification accuracy was
well above 85%. When second word was taken from class
no. 12 the accuracy reduced to about 75% and if the word
was from class no. 52 the accuracy again decreased further
to 60-70%. This shows a low performance for (12, 75) and
(52 75) SVM machines. The average accuracy in about
85% which is much lower than 98% of Word-Word case.

Figure 18(a) shows a scatter of accuracies of several
thousands of WWS classifiers with a unique combination
of classes. Figure 18(b) is the overall confusion matrix of
classifiers. The global average accuracy of all classifiers was
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Figure 17: Mixed-time Word-Word-Silence classification accuracies estimated with words from records no. 1 and 2 and silence form record
no. 5.
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about 92% which is not as good as Word-Silence and Word-
Word classifiers but is still a good result. Note that in about
0.6 percent of cases a feature set could not be classified.

3.3. Multiclass Classification

3.3.1. Short-Time Classification. As the first example for
multiclass classification, here we take a quick glance at the
classification of all the seven classes in a single record. Obvi-
ously, this is a short-time classification mode with seven
classes. The classifier has 21 SVM machines which will select
the output class by the Majority Rule. Figure 19(a) presents
the confusion matrix of such classifier for all words in record
no 8 of subject no. 1. The average accuracy was about 55%.
The silence had the maximum single class accuracy (about
95%), but no other single word accuracy exceeded 50%.
The largest error rates were between the words paired into
a test, as seen, for example, in discrimination of L8 and R8.

Note that the random selection accuracy in this classifier
was1/7 or about 14 percent. Figure 19(b) is the average
confusion matrix for all records. The average accuracy was
again about 55% and ranged from 47.5% to 65.1% for single
records.

3.3.2. Long-Time Classification. This case is similar to the
short-time case except that similar words from all records
are tagged as a single class. The accuracy of classification
in this case was about 32%. Although this accuracy is about
2 times the chance level, it cannot be considered a good
result. Once again, the highest error rate belonged to “Left”
and “Right” classes. Figure 20 shows the confusion matrix
of this classifier.

3.3.3. Mixed-Time Classification. For the classification of all
the seven classes in mixed-time mode, we should choose
every class sample from a different record. Since there are
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Figure 18: Mixed-time Word-Word-Silence classification: (a) accuracies of thousands of WWS classifiers with unique combination of
classes and (b) average confusion matrix for all classifiers.
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hundreds of thousands of ways (10!/3! = 604800 per subject)
to do this, the full estimation of classification accuracy by
averaging all possible cases is impractical. Therefore, to cal-
culate the confusion matrix shown in Figure 21, we used
the average of 100 randomly selected permutations for each
subject.

The overall accuracy was more than 88 percent, which is
much better than both short-time and long-time modes.

Another interesting case of mixed-time multiclass classi-
fication was classifying the instances of a word in a record
against the same word in other records. Figure 22(a) shows
the confusion matrix of a classifier for the word “Up” in
records no. 1 to 9 of subject no. 1. Note that how good the
words in different records are distinguished. Figure 22(b) is
a 14-class classifier of all 7 words in two different records.
We can see that the two records have almost completely

Ave accuracy = 54.5 ± 8.1
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Figure 19: Confusion matrix of multiclass classifier of all words in a record: (a) record no. 8 and (b) average of all records.

Ave accuracy = 33.2 ± 2.3
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Figure 20: Confusion matrix for long-time classification of all 7 words.
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separated so that second and third quarters of the graph is
almost empty. Consequently, in each part, words of a
record are classified with a confusion pattern very similar
to classifying the same record alone (compare patterns in
Figure 19(a) with lower right section of Figure 22(b)).

4. Discussion

At first, it is worth noting that all presented algorithms and
parameters, are the results selected after the evaluation of
many (hundreds in some cases) possible substitutions. For
example, many combinations of EEG-Channel collection
and montages, tens of feature extraction methods and
parameters, and a few classifier types and parameters are
evaluated. Some had poor absolute results like Artificial
Neural Networks (ANN) as classifier or raw EEG signal
amplitudes as features. Some had weaker results than those
reported here, e.g., Principle Component Analysis (PCA)
features with a Minimum-Distance classifier [30], or using
Banana montage for EEG signals [31]. Some did not fulfil
our requirements, for example, Random Forest Classifier
(RFC) needs to be separately configured and trained for each
class combination. Also some combinations or parameters
did not notably affect the performance and were left in their
default values or set to an arbitrary value, like SVM
machines basis function which was “Linear” by default (in
MATLAB® version we used) or ordering of channels in
EEG signal.

Table 6 shows a summary of average accuracies in all
classification types and modes described in this report. As
seen in each column of this table, the minimum accuracy
for each type of classification accrues in long-time mode,

where the data of a relatively long-time interval were merged
together. This is mainly due to the fact that EEG signals are
not stationary and their statistics (or properties) change
along the time. In long-time mode, samples from different
times and with different properties are got together in a sin-
gle class. The complexity and diversity of such large classes,
causes the SVM machines to not precisely distinguish
between them. This is evident in increased learning time of
the machine as well as its learning accuracy. Hence, it can
be concluded that we should not use (too) old EEG data in
a silent-talk BCI application.

In the 2-class classification, for the short-time mode,
relatively better accuracies were obtained, especially in the
Word-Silent classification. This means that the pattern of
brain waves, when it is busy with a word imagination (or
perhaps any other), the task is much different from its back-
ground (idle) processes. So, if the subject cannot concentrate
on his/her task, then the system performance will degrade in
this (and generally all) type of classification. In the Word-
Word classification, the large variance (20%) is due to the
high correlation of EEG signals in too close time intervals,
at least with some different but near tasks. This is a major
shortcoming of the most imagined speech BCIs.

Finally, in the mixed-time mode, the best accuracies
were obtained because in this mode we did not use both
too far and too near signals.

Since the chance level was 50% in the 2-class, 33.3% in
3-class, and 14.3% in 7-class (balanced) classification, all
accuracies were meaningfully above random classification (p
value < 0.05), even in the worst case of the long-time mode.

In other modes, the accuracies, if not better, were com-
parable with the best reported values. For example, AlSaleh

Ave accuracy = 88.2 ± 4.8
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Figure 21: Confusion matrix for mixed-time classification of all 7 classes.
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Ave accuracy = 81.0 ± 4.4
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Ave accuracy = 60.8 ± 5.1
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Figure 22: Confusion matrix of mixed-time multiclass classifications: (a) a single word in different records and (b) all words in 2 records.

Table 6: Summary of average accuracies in all classification types and modes.

Classification mode
Classification accuracy (mean ± standard deviation)

Word-Silence Word-Word Word-Word-Silence 6 Words+Silence

Short-time 95:7 ± 8:3 74:5 ± 20:4 78:9 ± 13:9 55:2 ± 8:8

Long-time 57:5 ± 7:2 59:5 ± 7:5 39:5 ± 5:4 32:0 ± 2:1

Mixed-time 97:1 ± 5:1 96:4 ± 8:0 92:0 ± 11:1 88:2 ± 4:8
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et al. reported an average maximum accuracy equal to 87.4%
for 5 words classification over 9 subjects [32]. According to
the reported data accusation schema, their classification
method belonged to Mixed-time mode defined in this paper.
Therefore, this value should be compared with 92 or 88
percent accuracies of 3 and 7-class types in Table 6.

DaSalla et al. had maximum accuracy about 78% for two
class (vowel-silence) with three subjects [11]. In a similar
manner, Brigham and Kumar achieved 68.8% for two sylla-
bles and seven subjects [16], compared to 74.5% for two
words classification in our work.

Cooney et al. have published the results of their work
on binary classification of word pairs [33]. Two different
convolutional neural networks (CNN) and a baseline lin-
ear discriminant analysis (LDA) classifier were examined.
15 word pairs were constructed from six Spanish words
of the EEG data set provided by Coretto et al. [34].
Despite of much smaller acquisition time, the data set
can be considered as our long-time mode. Accuracies were
62.37% and 60.88% for deep and shallow CNNs and
57.80% for LDA classifier compared with 59.5% in our
work. Also D-Y. Lee et al. reported 45% accuracy for the
classification of the six words in Coretto’s data set [22].

In another recent work using deep learning approaches,
Panachakel et al. reported an average classification accuracy
of 57.15% on 11 prompts of the KaraOne data set [35]. The
prompts include seven phonemic/syllabic prompts (iy, uw,
piy, tiy, diy, m, n) and four words (i.e., pat, pot, knew, and
gnaw). Each prompt was presented 12 times for a total of
132 trials [36]. The recording time span was 30 to 40 minutes
for each subject and therefore the classification is more similar
to our short-time multiclass mode with 55.2% accuracy.

5. Conclusion

In this paper, we reported the results of a simple and extensible
multi-class classifier working on self-recorded EEG signals
during silent speech. Six complete and useful Persian words
were the main classes, with the rest or silence for detecting
talking/not-talking states. Although it seems that the language
by itself may not change the way of human brain processing
during speech, exploring Persian words in silent talk is new
to literature in this domain of research. Also, the use of fre-
quency spectrum as a feature and SVMs as the classifier have
been reported in some papers, but the combination of this fea-
ture set (normalized to a constant length regardless of signal
durations and sampling rates) and the purposed classifier
has not been seen in previous studies.

Introducing classification modes, according to the time
difference of EEG signals, is a new idea for discussing differ-
ent accuracy values obtained in this and other related schol-
arly explorations. We made an attempt to expand this
concept drawing on many other papers, which worked on
imagined speech classification.
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