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Often more than one category of lesions in patients’ gastrointestinal tracts need to be found in the endoscopic examination.
Therefore, there is a need to establish an efficient synchronous real-time computer-aided detection (CADe) system for
multicategory lesion detection. This paper proposes to build a system with a multiclass detection model based on the YOLOv5
to detect multicategory lesions synchronously in real-time. Two joint detection CADe systems using multiple single-class
detection models with the same structure in parallel or series are established for comparison. A retrospective dataset containing
31117 images from 3747 patients is used in this study. To train the model, various online data augmentation methods and
multiple loss functions are used. The proposed CADe system can synchronously detect cancers, gastrointestinal stromal
tumours, polyps, and ulcers from different quality input images with 98% precision, 89% recall, and 90.2% mAP. The detection
speed is 47 frames per second with a 0.04 s latency on a PC workstation. Compared to the two joint detection CADe systems,
the proposed system is more accurate with faster speed and lower latency. Two extra experiments indicated that the lesion
detection model based on YOLOv5x could provide better performance than other common YOLO structures and that different
accuracy metrics and lesion categories have different requirements for the number of training images. The proposed
synchronous real-time CADe system with the multiclass detection model can detect multicategory lesions with high accuracy
and speed and low latency on limited hardware. It expands the clinical application of CADe in endoscopy and uses expensive
labelled medical images more efficiently than multiple single-category lesion models for joint detection.

1. Introduction

Diseases of the gastrointestinal tract are common in humans
[1]. Early examination and treatment can significantly
improve their effects [2]. The endoscope is the main instru-
ment used to diagnose and treat gastrointestinal lesions in a
clinic [3]. Owing to the large number of images generated
during the endoscopy, finding all the lesions accurately and
timely is difficult. Using computer-aided detection (CADe)
system to assist doctors in endoscopy can reduce the rate
of misdiagnosis and increase the rate of detection to improve
efficiency [4].

Classical CADe systems mainly use the active-window
method with artificially designed features [5, 6]. However,
it is unreliable and time-consuming to extract complex path-
ological features. Deep learning has better feature extraction
and classification capabilities [7–9]. It significantly improves

the performance of CADe systems [10]. Nowadays, CADe in
endoscopy can accurately detect single category lesions in
real-time using deep learning models [11–14].

However, there may be more than one category of
lesions in a patient’s gastrointestinal tract, which should be
detected during an endoscopy [15]. This requires the CADe
system to detect multiple lesion categories synchronously in
real-time. Using multiple single-category lesion detection
models parallelly or serially to compose such a system will
further raise the hardware requirements with the increase
of lesion category without a limit for real-time detection.
This will in turn increase the system’s building cost. A multi-
category lesion detection model may have better detection
speed and latency with limited hardware resources. How-
ever, whether it can obtain similar accuracy or not remains
unanswered. YOLO is a series of one-stage detection models
with a good balance between speed and accuracy [16]. These
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models have shown good performance in single-category
lesion detection under endoscopy [13, 14, 17–19]. However,
a detailed study on the synchronous real-time detection of
multicategory lesions is required.

This paper proposes a scheme to use a multicategory
lesion detection model based on YOLOv5 [20] to establish
a multicategory lesion CADe system. It can realize synchro-
nous low-delay real-time detection in limited hardware
resources. The study also tested two CADe systems for mul-
ticategory lesion joint detection using multiple single-
category lesion detection models with the same structure.
The models used in all three systems are trained on a large
and complicated local dataset. Compared with the two joint
detection systems, the proposed system obtains better speed
and latency on a PC workstation and achieves higher accu-
racy, which proves that using a multicategory lesion detec-
tion model is more effective for detecting multicategory
lesions in expensive endoscopic images. To the best of our
knowledge, this is the first study on synchronous real-time
multicategory detection for gastroscopy. It can help
researchers establish more efficient CADe systems for
endoscopy.

2. Materials and Methods

2.1. Dataset. A large and complicated dataset was collected
from the hospital for retrospective study in this work. It con-
tains 31117 images from 3747 patients without private infor-
mation. Experienced doctors manually annotate 27241
lesions in images into four categories: cancer, ulcer, polyp,
and gastrointestinal stromal tumour (GIST). The number
of images and lesions are shown in Table 1. All images are
unmodified and taken by multiple operators using Olympus
260 series endoscopes. The sizes, aspect ratios, and quality of
these images are not selected. Some examples of low-quality
images in the dataset are shown in Figure 1. The annotated
bounding box (bbox) area ratios also have a significant dif-
ference. Due to the statistic of the ratio of the target bbox
over the entire image area in the dataset, the ratio less than
0.04 is defined as the little target, and the ratio greater than
0.25 is defined as the large target, and the rest are medium
targets. The distribution of targets is shown in Figure 2. Such
a dataset makes the model more difficult to train but more
robust in reality.

The images in the dataset are numbered and assigned to
a training set, validation set, and test set according to the
archiving order. The training set contains 3600 images of
each category lesion and 3600 negative samples, a total of
18000 images. The validation set contains 1200 images of
each image type, totalling 6000 images. All the other 7117
images are included in the test set. The distribution of the
category of lesions in these sets is shown in Figure 3, which
can be considered balanced. Negative samples included in
the dataset ensure that the model would not be overconfi-
dent, which is confirmed by other studies [21].

2.2. Synchronous Multicategory Lesion Detection System. The
proposed multicategory lesion detection system (MDS) is
shown in Figure 4. It can synchronously detect cancers,

polyps, GISTs, and ulcers in gastroscopy. This system can
also obtain low latency and high FPS using limited hardware
resources.

Single images are streamed into a YOLOv5-based multi-
class detection model (MDM, see Figure 5) to detect multi-
category lesions after being preprocessed by scaling and
padding to 640 × 640. The HardSwish function [22],
expressed in Equation (1), is used as an activation function
in the model. The model outputs prediction vectors contain-
ing the corner coordinates of detected bboxes of lesions, the
categories of lesions, and the confidence scores. IoU-based
non-maximum suppression is used to postprocess the pre-
diction vectors. The system converts the vectors into bboxes,
selects the one with the highest confidence from multiple
overlapping bboxes as the final result, and draws it in the
image.

HardSwish xð Þ = x
min 6, max 0, x + 3ð Þð Þ

6
: ð1Þ

2.3. Multicategory Lesion Joint Detection Systems. MDS is
compared with multiple single-category lesion detection
models to detect multicategory lesions jointly. A single-
class detection model (SDM) is trained for each lesion cate-
gory. Four SDMs are run parallelly or serially to replace the
MDM in MDS to obtain two modified systems. According to
the running order of SDMs, the two systems are named mul-
ticategory lesion parallel detection system (MPDS) and mul-
ticategory lesion serial detection system (MSDS). The system
runs SDMs parallelly for MPDS and serially for MSDS to
generate prediction vectors. Running N SDMs in parallel
needs N times the computing resources of one model to
obtain similar speed and latency. Running N SDMs in series
needs the same computing resources as one model but
nearly N times the running time and latency. The prepro-
cessing and postprocessing in the two systems are identical
to MDS.

2.4. Training Strategy for the Lesion Detection Model. All the
systems are implemented on Python 3.8 and PyTorch 1.8,
and the models are trained on a workstation equipped with
NVIDIA RTX3090 24GB. The training processes are shown
in Figure 6.

This study uses various online data augmentation
methods in training to improve the robustness and suppress
the negative impact of low-quality images. The methods and
parameters used are listed in Table 2. Only one category
lesion label is reserved when training an SDM. Others are
set to empty as negative samples. When training an MDM,
all labels are reserved.

Table 1: The number of images and lesions in the dataset.

Illusion Cancer GIST Polyp Ulcer
Negative
sample

Number of images 6238 6239 6227 6207 6206

Number of lesions 7483 6239 7183 6336 —
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These models are trained from weights pretrained on the
COCO dataset [24]. Using pretrained weights in endoscopic
image analysis can improve the accuracy and save training
time [25, 26]. All layers are not frozen. The initial learning
rate is 0.01. The warmup strategy [27] is adopted to decay
the learning rate to 0.001 in the form of cosine. The opti-
mizer uses SGD momentum, and the momentum parameter
is set to 0.937. This study uses Box loss, Conf loss, and Class
loss to optimize the model. Box loss is calculated based on
CIoU [28] written as Equation (2). Conf loss and Class loss
are calculated by cross-entropy written as Equation (3).
Since the SDMs do not judge the lesion category, their Class
losses are always set to 0. Due to the large value of Box loss
in training, its weight is adjusted to 0.1. The weights of the
other loss functions are 1.0 to make the training process
smoother. This study uses mini-batch to set the batch size
as 72 to obtain a better training effect. Under the above set-
tings, these models are close to convergence after training for
1000 epochs.

LossBox = 1 − IoU +
ρ2 b, bgt
� �

c2
+ αv,

IoU =
Box ∩ Boxgt

Box ∪ Boxgt
,

α =
v

1 − IoU + v
,

v =
4
π2 arctan

wgt

hgt
− arctan

w
h

� �2

,

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð2Þ

LossConf/Class = mean l1,⋯lnf g,
ln = − yn ∗ log pnð Þ + 1 − ynð Þ ∗ log 1 − pnð Þð Þ,

(

ð3Þ

where the Boxgt and Box are the bbox of ground-truth and
prediction, respectively. ρ2ðb, bgtÞ is the distance between
the centre points of the Boxgt and Box. c is the diagonal
length of the smallest box covering the Boxgt and Box. wgt

and w are the width of the Boxgt and Box. hgt and h are
the height of the Boxgt and Box, respectively. yn and pn are
the label and prediction, respectively.

2.5. Metrics. This study uses multiple objective metrics to
evaluate accuracy and speed performance. The precision,

recall, and mAP are used to evaluate the accuracy, and the
frame per second (FPS) is used to evaluate the detection
speed.

Presicion =
TP

TP + FP
, ð4Þ

Recall =
TP

TP + FN
, ð5Þ

mAP = 〠
confidence threshold=1

confidence threshold=0
Presicion × Recall, ð6Þ

where TP, FP, and FN are true positive, false positive, and
false negative, respectively. When IoU ≥ 0:9, the prediction
is considered to have detected a lesion.

3. Results

3.1. Multicategory Lesion Detection Performance. The
models with the highest accuracy on the validation set were
selected to test on the test set to examine the performance of
MDS, MPDS, and MSDS. These systems were run on an
NVIDIA TITAN V 12GB to simulate a PC workstation.
The input image was scaled to 640 × 640 by padding, and
the batch size was set to 1.

In the test, the detection speed of the MDS is 47 FPS, the
latency is 0.04 s, the MPDS is 17FPS and 0.07 s, and the
MSDS is 13FPS and 0.1 s. Therefore, only the MDS can

Figure 1: Examples of low-quality images in the dataset. The formats of images are various, and there may be various artefacts, such as
highlights and blur. The aspect ratios are also not the same.
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Figure 2: The distribution of different target sizes in the dataset.
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run in real-time on a PC workstation. The load of running
MDS is approximately 55% on the GPU and 100% on one
CPU core, while the MPDS is 80% on the GPU and 65%

on four CPU cores, and the MSDS is 65% on the GPU and
100% on one CPU core. It can be observed that the MDS
and MSDS need similar hardware resources, but the MPDS
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Figure 3: The number of different lesion categories in the dataset. (a) Training set. (b) Validation set. (c) Test set.

, 

Figure 4: The synchronous multicategory lesion detection system for gastroscopy. The system is designed to run with limited hardware
resources.

CBH

Figure 5: Structure of the lesion detection model based on YOLOv5. All models in this paper use the same design.
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needs many times. For MPDS, the hardware pressure and
speed lower than the theory may be due to other hardware
bottlenecks.

The accuracy of the model used in the system represents
the system’s accuracy, as shown in Table 3. For all lesions,
MDM has higher accuracy with 98% precision, 89% recall,
and 90.2% mAP, whereas that of SDM is 95.5%, 88.5%,

and 88.3%, respectively. The accuracies of the two types of
models for GIST and polyp are similar. However, the accu-
racy of MDM is significantly better for the other two catego-
ries of lesions, especially in cancer.

For GIST, polyp, and ulcer, the MDM has achieved over
97% precision and over 94% recall, which are extremely
high. The model can detect some targets missed in the anno-
tation for these categories, as shown in Figure 7. However,
MDM and SDM have a low recall for cancer with many false
detections, as shown in Figure 8(a). The reason may be that
cancer has more complex features than the others to be
learned in a similar number of lesions in the training set.
The other three categories have only a negligible number
of missed predictions. Their features of which are usually
quite different in the dataset, as shown in Figures 8(b)–8(d).

(a) Train of multiclass detection model

Label

(b) Train of single-class detection model

Figure 6: The training processes of detection models (a) MDM for MDS and (b) SDM for MPDS and MSDS.

Table 2: Data augmentation parameters in training.

Augmentation Parameter

Transformation in
HSV colour space

Transform range in hue: ±1.5%
Transform range in saturation: ±70%
Transform range in value: ±40%

Translation Range: ±10%
Scale Range: ±50%

Flip
Probability of flip up-down: 50%
Probability of flip left-right: 50%

Mosaic [23] Number of images: 4

Table 3: Detection performance of all lesion detection models.

Precision Recall mAP
Model MDM SDMs MDM SDMs MDM SDMs

All 98% 95.5% 89% 88.5% 90.2% 88.3%

Cancer 95.4% 91.7% 66.3% 63.7% 67.3% 62.9%

GIST 99.9% 98.5% 96.9% 97.9% 98.7% 98.6%

Polyp 99.3% 97.5% 98% 98% 99% 98.3%

Ulcer 97.5% 94.3% 94.8% 94.6% 96% 93.4%
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Figure 7: MDM can detect some unannotated lesions. The first line
is the label, and the second line is the model prediction.
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This study also evaluated the performance of MDM on
different size targets defined in the “Dataset” section, as
shown in Figure 9. It can be observed that the model has
high accuracy for different size lesions. However, the model
has higher accuracy for larger targets, which may be because

larger lesions contain more features and are therefore easier
to be detected.

3.2. Performance Comparison of Different YOLO Model
Designs. In addition to YOLOv5x, this paper compared the
performance of YOLOv5l, YOLOv4 [23], and YOLOv3-
SPP based on MDS. The training and testing are the same
as the “Training Strategy for the Lesion Detection Model”
section, and the results are listed in Table 4. It can be found
that the model based on YOLOv5x is significantly better
than others in accuracy and can also be run in real-time.
YOLOv5x can provide better detection capabilities.

3.3. The Influence of Train Image Number. The number of
training images affects the accuracy and robustness of the
deep learning model significantly. It may be one of the rea-
sons why the model cannot detect cancers better. However,

(a) (b)

(c) (d)

Figure 8: Typical detection failure examples of each lesion category. The lesion in (a) is labelled as cancer which is detected as an ulcer
because of the vitiligo. The lesions labelled in (b–d) are false positive.
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Figure 9: The accuracy of MDM for different size target lesions.
The target size is bigger, and the accuracy is higher.

Table 4: Performance of different YOLO model designs.

Model Precision Recall mAP FPS

YOLOv5x 0.985 0.885 0.898 47

YOLOv5l 0.903 0.887 0.881 51

YOLOv4 0.897 0.843 0.826 54

YOLOv3-SPP 0.879 0.831 0.802 69
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its impact needs to be clarified. This study explored the
impact of the YOLOv5x based on MDS by setting the num-
ber of each lesion train image to n (n = 500, 1000, 1500,
2000, 2500, 3000, and 3500). Other settings are the same as
above. The results are shown in Figure 10. It can be found
that the number of training images affects different metrics
of different lesions differently. For all lesion categories, the
number of images hardly affects the precision after exceed-
ing 2500 for each category. After exceeding 2000 images,
other accuracy metrics improve negligibly for GIST, polyp,
and ulcer but continue rising significantly for cancer. It sup-
ports the previous assumption that cancers have more com-
plex features to be learned, making the number of training
images insufficient.

4. Discussion

For multicategory lesion detection, this study proposes and
establishes a synchronous real-time CADe system using
MDM basing YOLOv5 named MDS and two joint detection
systems with multiple SDMs named MPDS and MSDS.

MDS can detect cancers, GISTs, polyps, and ulcers from sin-
gle images with 98% precision, 89% recall, and 90.2% mAP
better than MPDS and MSDS. MDS significantly outper-
forms MPDS and MSDS by achieving 47 FPS with 0.04 s
delay on a PC workstation. It is the only one in three systems
realizing online detection. The results indicate that using
MDM is more meaningful and efficient for costly labelled
endoscopic images. This study also explores the influences
of the model design and the training image number on the
MDS performance.

The existing works [15, 29] about multicategory lesion
detection mostly focus on intestinal lesions and lack of
detailed study of performance. Compared with them, this
study achieves real-time and more accurate detection on a
large and complicated dataset and studies some factors that
affect performance. The performance comparison of the
MDM and SDMs is also a novelty.

The model structure used in all systems is identical to
facilitate the performance comparison. Modifying the struc-
ture of SDMs may improve the speed or accuracy. However,
it is not easy to improve both simultaneously. If SDM uses a
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Figure 10: The effect of the number of training images on MDS accuracy metrics of each lesion category. The effects on the precision, recall,
and mAP are shown in (a), (b), and (c), respectively.
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more efficient structure, the model can be easily modified
and trained on a dataset for multicategory lesion detection.
In summary, compared with the systems combining multi-
ple SDMs directly, the advantages of the CADe system with
an MDM are comprehensive in both accuracy and speed.

Better speed is an expected advantage, but the higher
accuracy is worth discussing. It is generally believed that a
binary classification is easier than classifying more catego-
ries. However, the MDM is more accurate in the test, which
may be due to some similar features of different lesion cate-
gories interfere with the SDM. This makes it difficult to
judge whether these lesions belong to the target or not.
The MDM eliminates the interference as much as possible
through multicategory label supervision. It is similar to the
auxiliary learning [30] for each category.

The dataset used is designed as a quantity balance of
multiple lesion categories, which can eliminate the prefer-
ence of models and fairly evaluate the detection performance
of different categories. However, there should be differences
in the distribution of four diseases in practice. This will not
affect the conclusion of system designs from a technical per-
spective shown in this paper; however, it may affect the
CADe performance in the clinic. As far as we know, there
is a lack of research on the distribution of these lesions under
gastroscopy, and the existing works, including the clinical
studies of CADe, have not considered it. Therefore, it is dif-
ficult to design a dataset close to clinical distribution at pres-
ent. In the future, if more extensive and large-scale clinical
image data can be obtained in subsequent research, we will
further explore the impact of lesion distribution on CADe
performance from a clinical perspective.

5. Conclusions

The constructed system can run on limited hardware and
detect multicategory lesions accurately and synchronously
in real-time. It can further expand the application of CADe
in clinic and more efficiently use expensive-labelled medical
images. We expect that this work will be a pioneering refer-
ence for future studies and researchers. The system can
detect GISTs, polyps, and ulcers with extremely high accu-
racy, and the next step will be to examine its clinical effec-
tiveness. The ways of improving the accuracy of cancer
detection will also be explored in future works. In addition,
we also hope to improve clinical applicability by detecting
more categories or adding new features.
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