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Purpose. We aim to develop and validate a machine learning model by enhanced MRI to determine the pathological grading of
meningiomas with unsupervised clustering image analysis method, which are multihabitat to reflect the inherent heterogeneity
of tumors. Materials and Methods. A total of 120 patients with meningiomas confirmed by postoperative pathology were
included in the study, including 60 patients with low-grade meningiomas (WHO grade I) and 60 patients with high-grade
meningiomas (WHO grade II and WHO grade III). All patients underwent complete head enhanced magnetic resonance scans
before surgery or any anti-tumor treatment. Enrolled patients in the group received surgical resection and obtained
postoperative pathological data. The patients in the training group (84 people) and the test group (36 people) were randomly
divided into two groups according to the ratio of 7 to 3. Multi-habitat features were extracted from MRI images based on
enhanced T1. Machine learning method was used to model, which was used to distinguish high-grade meningioma from
low-grade meningioma. At the same time, the obtained machine learning model was calibrated and evaluated. Results. In
patients with low-grade meningioma and high-grade meningioma, we found significant differences in Silhouette coefficient
(P<0.05). In the machine learning model, the area under the curve was 0.838 in the training group (sensitivity, 67.65%;
specificity, 88.82%) and 0.73 in the test group (sensitivity, 69.05%; specificity, 71.43%). After the analysis of calibration curve
and decision curve analysis, the model had shown the potential of great application value. Conclusions. Multi-habitat analysis
based on enhanced MRI (T1) could accurately predict the pathological grading of meningiomas. This unsupervised image-based
method could reflect the direct heterogeneity between high-grade meningiomas and low-grade meningiomas, which is of great
significance for patients’ treatment and prevention of recurrence.

1. Introduction

Meningioma is one of the most common intracranial
tumors, accounting for more than one-third of all primary
central nervous system tumors [1]. Meningiomas could be
usually diagnosed by accident and be generally considered
less malignant than other intracranial tumors [2]. Meningi-
omas originate from arachnoid cells located on the inner
surface of the dura mater, usually from meningeal precursor
cells derived from the mesoderm and neural crest. Among
meningiomas, most meningiomas belong to WHO grade I
benign tumors, and the recurrence rate is very low, while

nearly 5% are WHO grade II/III tumors, showing a higher
nature of invasion and recurrence [2, 3]. The diagnosis of
meningioma largely depends on radiology. For example,
imaging strongly suggests that in meningioma, biopsy is
not necessary [4]. Under normal conditions, asymptomatic
meningiomas grow linearly, with a growth rate of 2-4mm/
year, but there are also cases of constant volume and expo-
nential rapid growth [5], so it is very necessary to monitor
asymptomatic meningiomas. It is estimated that the 10-
year overall survival rate of nonmalignant meningiomas is
81.4%, while that of grade II meningiomas is 53%, and that
of grade III meningiomas is 0% [1]. The 5-year recurrence
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rate after total resection of grade I meningioma is 7-23%,
grade II meningioma is 50-55%, and grade III meningioma
is 72-78%[1, 2], which is a huge difference. At present, it is
difficult to accurately judge the pathological grade of menin-
giomas before surgery, but it is very important for patients to
choose treatment methods, formulate follow-up plans, and
guide prognosis.

Magnetic resonance imaging (MRI) is widely used in the
diagnosis of central nervous system diseases, including the
diagnosis and detection of diseases and many other aspects.
For the imaging research of meningiomas, some studies
[6–8] have been carried out by using the methods of multi-
parameter magnetic resonance imaging and radiomics.
And unsupervised clustering multihabitat [9–12] has been
widely used in the evaluation of tumor heterogeneity to
obtain the heterogeneity information within the tumor.
Habitat analysis is an important research method gradually
developed in the image field. In this study, we collected
preoperative enhanced MR images of patients with meningi-
omas of different pathological grades for multihabitat analy-
sis to reflect the differences in tumor heterogeneity levels
among patients with meningiomas of different grades and
help determine their pathological grades.

2. Materials and Methods

2.1. Patient. A total of 120 patients with meningiomas were
retrospectively analyzed from May 2016 to June 2019. And
all patients underwent preoperative enhanced MRI scanning
and successfully obtained pathological tissue samples. Our
entire experimental plan had been approved by the ethics
committee, in which the images and clinical data of patients
had been approved and exempted from informed consent.
In the process of processing the data, considering the sensi-
tivity and ethical requirements of the head data, we stored all
the data confidentially and unlabeled it to comply with the
relevant subject protection principles. The exclusion criteria
were as follows: (1) patients with a history of surgery, (2)
patients with a history of tumor embolism or gamma knife
surgery before MRI, and (3) patients whose T1-weighted
images were not clear enough to be analyzed. The patients
in the training group (84 patients) and the test group
(36 patients) were randomly divided into two groups
according to the ratio of 7 to 3.

2.2. MR Imaging. All patients underwent complete enhanced
MR scanning. T1-weighted, T2-weighted, and enhanced T1-
weighted imaging was imaged with a 3.0 MRI system (Signa,
HDxt, General Electric Healthcare, Milwaukee,WI, USA), with
an 8-channel array coil. Routine sequence imaging was per-
formed for all subjects and included axial T2WI (TR = 3520
ms, TE = 102ms, ETL = 20, matrix size = 320 × 256) and
FLAIR (TR = 8000ms, TE = 165ms, TI = 750ms, matrix size
= 256 × 192) and axial with coronal contrast-enhanced (CE)
T1WI after injection of contrast agent.

2.3. Habitat Generation and Feature Extraction. The work-
flow of the multihabitat is shown in Figure 1. We selected
the enhanced T1 image for processing. First, two medical

imaging diagnostic doctors with more than 5 years of expe-
rience outlined the overall edge of the tumor, and the two
found that it was time to introduce a third person who has
more than 10 years of experience in the diagnosis of the cen-
tral nervous system to judge the dispute. Although it was not
a radiomics study, we refer to the Image Biomarker Stan-
dardization Initiative [13] principles for image processing
methods. All tumor edge confirmation work was completed
through 3D slicer software (https://www.slicer.org/). After
obtaining the complete region of interest of meningioma,
multihabitat [14] was implemented through self-built code
in Python (3.8.5). K-means algorithm [15] was widely used
in unsupervised image segmentation, and our heterogeneous
region segmentation also adopts this kind of algorithm. In
this paper, we choose a clustering parameter with K equal
to three. We selected five clustering indicators to evaluate
the tumor intrinsic heterogeneity of meningiomas: (1) iner-
tia, within cluster sum of square error; (2) Calinski-
Harabasz Index; (3) Silhouette coefficient; (4) separation;
and (5) Davies-Bouldin Index.

2.4. Model Establishment. Through statistical judgment, we
screen out meaningful clustering features for final classifica-
tion. For the features of modeling, we adopt the Z-score
method to reduce the adverse effects on the model caused
by different feature distributions. For feature screening, we
choose many ways of parallel or serial, such as Lasso, PCA,
PCC, and analysis of variance. For the selection of machine
learning classifiers, we choose many ways, including linear
regression, linear regression, logistic regression, linear dis-
criminant analysis, naive Bayes, KNN, random forest, and
Gaussian regression. For the model, we used the experimen-
tal set for modeling and the verification set for verification to
explore the fitting degree of the machine learning model.

2.5. Statistical Analysis. MedCalc version 15.2.2 (http://www
.medcalc.org) and R (version 4.0.3) were used for analyses.
We extracted labels from the postoperative pathological
reports of patients with meningiomas, in which WHO grade
I was a low-grade meningioma, and WHO grade II and
grade III were a high-grade meningioma. For clustering
features, first judge the data type and select the correspond-
ing t-test or U-test. The ROC curve was used to evaluate the
model, and the decision curve analysis (DCA) curve and cal-
ibration curve of the model are calculated to further describe
the model. Bilateral P values less than 0.05 were considered
statistically significant.

3. Results

3.1. Clinical Characters. We retrospectively recruited 120
patients with meningiomas, including 56 males and 64
females, 60 patients with low-grade meningiomas (grade I)
and 60 patients with high-grade meningiomas (grade II
and III). More information could be summarized in
Table 1. There was no significant difference in clinical char-
acteristics between the training group and the validation
group (P > 0:05).
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3.2. Clustering Parameters and Machine Learning Model. For
all clustering parameters, we performed the operation of
confusion matrix (for the label with different pathological
grades). The detailed description of each parameter is shown
in Table 2.

Through the screening and dimensionality reduction of
clustering features, we had successfully obtained a machine
learning model based on inertia, Calinski-Harabasz Index,
Silhouette coefficient, and Davies-Bouldin Index. We used
Gaussian process as the classifier. Gaussian process com-
bines the features to build a joint distribution to estimate
the probability of the classification. The machine learning
model had shown a great ability to distinguish different
levels of meningiomas (Figure 2). We also calculated its
calibration curve (Figure 3) and DCA curve (Figure 4).
Through the calibration of the model, we can visually
describe the fitting degree of the model. As shown in
Figure 4, the decision curve of our model is all on the
horizontal axis, and there is no “negative return” area,
which is considered to be one of the good clinical applica-
tion values.

4. Discussion

In this study, unsupervised clustering was used to evaluate
the heterogeneity of meningiomas at different pathological
levels for enhanced magnetic resonance image (T1), and a
machine learning model for regression prediction was estab-
lished. For the multihabitat method based on K-means, we
have successfully divided the subregions of enhanced mag-
netic resonance images. Unsupervised clustering parameters
were used to participate in the establishment of the machine
learning model. The final machine learning model could bet-
ter distinguish high-grade meningiomas from low-grade
meningiomas.

Compared with low-grade (benign) meningiomas, high-
grade (atypical or anaplastic) tumors have invasive biologi-
cal behavior, increased risk of recurrence, and increased
mortality [16]. The classification of meningioma preopera-
tive prediction is crucial because it affects various treatment
plans, including surgical resection strategies. According to
the guidelines issued by the European Association of
Neuro-Oncology, meningiomas found accidentally and
speculated radiologically can be treated only by observation
[4], so judging the pathological grade also plays an impor-
tant role in the formulation of follow-up observation strate-
gies. Due to the limitations of biopsy, in some cases, the
histological grade may not be determined. At the same time,
according to previous cohort studies, it is found that the cor-
relation between clinical information such as age and gender
and tumor grade is weak [16], and it is difficult to have a sin-
gle clinical feature to predict the pathological grade of
tumor. Previous studies [17–20] have focused on the imag-
ing characteristics of meningiomas, diffusion and perfusion
imaging, amide proton imaging, and PET to reflect the grad-
ing of meningiomas. However, there are great limitations in
its grading value and application scenarios. In this paper, we
found that clustering parameters and the machine learning
model were related to the grading of meningiomas, which
may be related to the tumor heterogeneity represented by
the three signal areas of MRI, and it is also consistent with
previous studies that high-grade meningiomas show more
complex texture patterns [21] than low-grade meningiomas
on MRI. A previous study [22] also showed that irregular
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Figure 1: The workflow of the multihabitat.

Table 1: The clinical characteristics of meningiomas.

Characteristic Training group (n = 84) Test group (n = 36)
Age (average year) 52.3 52.9

Gender

Male 40 16

Female 44 20

PR

Positive 39 16

Negative 45 20

Ki-67

Positive 34 17

Negative 50 19

WHO grading

Grade I 41 19

Grade II 34 13

Grade III 9 4
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tumor boundaries were associated with high-grade meningi-
omas, which was consistent with our results.

Medical imaging can provide full volume evaluation of
the continuous nature of tumors by generating spatial reso-
lution maps of subunits called “voxels” [23–25]. Malignant
tumors have complex biology and show significant spatial
variation in gene expression, biochemistry, histopathology,

and macro structure. Cancer cells not only evolved from
clones of single progenitor cells to more aggressive and treat-
ment resistant cells but also showed branching evolution, so
that each tumor developed and retained multiple different
subclonal populations. There was a wide consensus among
various theories of tumor formation that there are
differences between tumor cells, progenitor cells, and cells

Table 2: Distinguishing ability of clustering parameters.

AUC (95% CI) Specificity Sensitivity Youden index

Inertia 0.597 (0.504-0.685) 46.67% 73.33% 0.20

Calinski-Harabasz Index 0.596 (0.502-0.684) 41.67% 76.67% 0.183

Silhouette coefficient 0.754 (0.668-0.828) 83.33% 56.67% 0.40

Separation 0.571 (0.477-0.661) 46.67% 71.67% 0.184

Davies-Bouldin Index 0.674 (0.583-0.757) 48.33% 80.0% 0.283
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Figure 2: ROC of the machine learning model: (a) the performance of the training group; (b) the performance of the validation group.
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Figure 3: Calibration curve of the machine learning model: (a) the calibration curve of the training group; (b) the calibration curve of the
validation group.
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between tumors. This genetic heterogeneity combined with
spatial variation in different environments can lead to a
variety of regional differences in matrix structure, oxygen
consumption, energy metabolism, and growth factor expres-
sion. Therefore, with the development of different regions of
the tumor, each region has spatially different blood perfu-
sion, hypoxia, cell proliferation, apoptosis, and other charac-
teristics [26–28]. Compared with benign meningiomas, the
high-grade meningiomas [29, 30] are characterized by
genomic instability, which indicates that regional changes
in chromosome structure may be an important feature of
recurrence, treatment resistance, and invasiveness. An
innovative study [28] combining the spatial transcription
information of meningiomas shows that although the MRI
signals of high-grade meningiomas and low-grade meningi-
omas are generally the same, the signals of high-grade
meningiomas are more variable. The above research shows
that the MRI-based heterogeneity of meningiomas is related
to the regional transcriptome differences of tumor tissues, in
which the regions with high signal are rich in developmental
gene expression, and these gene expression programs may be
the basis of meningioma cell proliferation and tumor recur-
rence. Meningiomas with high proliferative potential may
show a highly heterogeneous distribution of proliferating
cells in tumors, and this heterogeneity may produce irregu-
lar shapes. In our experimental protocol, our unsupervised
classification of red areas (high signal areas) is always located
at the edge of the tumor, which is considered to be related to
tumor cell proliferation and infiltration [31]. The data-
driven method [14, 32–34] successfully distinguishes sur-
vival tumors from nonsurvival tumors using multiparameter
MRI and verifies the method against H&E histology [35].

Different from traditional radiomics, we unsupervised
the three-dimensional tumor voxels into subregions and
analyzed their internal or mutual relationships to explain
the spatial heterogeneity. While fully considering the
internal differences of their subclassifications, clustering
parameters are designed to evaluate the correlation or
eccentricity of different subgroups (spatial subregions). For
different parameters, they represent different perspectives
to evaluate the heterogeneity components within tumors,
which is undoubtedly consistent with previous studies
[36–39]. In addition to the absolute characterization of
tumors, we pay attention to the direct internal relations of

different subregions, and their ability to respond to internal
relations is stronger than direct indicators. Although many
factors were considered in the study design, there were some
deficiencies in this study (retrospective study). First of all, for
the lack of control over information sources, one of the com-
mon problems of retrospective research is that we cannot
design relevant data collection methods or other confound-
ing factors in advance. Secondly, for the processing of brain
MRI images, segmentation technology is one of the key tech-
nologies [40], but due to the limitations of experimental
conditions, our preprocessing methods and segmentation
methods are not accurate and automatic. Third, our research
data is single center, which will undoubtedly weaken the per-
suasion of the results, which undoubtedly needs to be further
explored in the real world of large samples and multicenters.

5. Conclusions

Multihabitat analysis based on K-means by enhanced MRI
could distinguish high-grade meningioma from low-grade
meningioma accurately. This unsupervised image-based
method could reflect the direct heterogeneity between differ-
ent grade meningiomas, which is of great importance for
patients’ treatment and prevention of recurrence.
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