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Background. Immune infiltrates in the tumor microenvironment have established roles in tumor growth, invasion, and metastasis.
However, the diagnostic and prognostic potential of immune cell signature in esophageal squamous cell carcinoma (ESCC)
remains unclear. Results. The proportions of 22 subsets of immune cells from 331 samples including 205 ESCC and 126
normal esophageal mucosa retrieved from TCGA, GEO, and GTEx databases were deciphered by CIBERSORT. Nine
overlapping subsets of immune cells were identified as important features for discrimination of ESCC from normal tissue in
the training cohort by LASSO and Boruta algorithms. A diagnostic immune score (DIS) developed by XGBoost showed high
specificities and sensitivities in the training cohort, the internal validation cohort, and the external validation cohort (AUC:
0.999, 0.813, and 0.966, respectively). Furthermore, the prognostic immune score (PIS) was developed based on naive B cells
and plasma cells using Cox proportional hazards model. The PIS, an independent prognostic predictor, classified patients with
ESCC into low- and high-risk subgroups in the internal validation cohort (P = 0:038) and the external validation cohort
(P = 0:022). In addition, a nomogram model comprising age, N stage, TNM stage, and PIS was constructed and performed
excellent (HR = 4:17, 95% CI: 2.22-7.69, P < 0:0001) in all ESCC patients, with a time-dependent 5-year AUC of 0.745 (95%
CI: 0.644 to 0.845), compared with PIS or TNM stage as a prognostic model alone. Conclusion. Our DIS, PIS, and nomogram
models based on infiltrated immune features may aid diagnosis and survival prediction for patients with ESCC.

1. Introduction

Esophageal cancer (EC) remains one of the most common
malignant tumors worldwide and ranks seventh and sixth
among all malignant tumors in morbidity and mortality,
respectively [1, 2]. Although esophageal adenocarcinoma
(EAC) is dominant in the United States, Europe, and other
western countries, esophageal squamous cell carcinoma (ESCC)
comprises more than 90% of EC cases in China [3]. Despite
recent advances in diagnostics and therapeutics, the 5-year
overall survival rate of EC remains 15-25% largely due to the
lack of screeningmeasures for early diagnosis and effective ther-

apeutic regimens [4, 5]. The majority of ESCC have metastatic
disease at initial diagnosis, leading to futile clinical management
[6]. As such, it is of utmost importance to identify biomarkers
for early detection, diagnosis, prognosis, and therapeutic inter-
vention of ESCC as well.

Genomic, epigenomic, and proteomic alterations intrinsic
to cancer cells have been extensively investigated and identi-
fied as driver agents in development and progression of ESCC
[7–9]. Notwithstanding the clinical relevance of these molecu-
lar features, few dysregulations are clinically targetable in
clinical care of ESCC. Instead, accumulating evidence also
demonstrates the tumorigenic role of cancer-cell-extrinsic
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factors [10]. The esophageal tumor tissues are populated with a
great variety of stromal and immune cell types that exert both
pro- and anti-tumorigenic effects. In ESCC, multiple studies
have reported correlations between prognosis and immune
cells and stromal components [11]. Furthermore, autoanti-
bodies against a panel of 6 tumor-associated antigens show
good performance for discrimination of early-stage ESCC from
normal controls, which indicates ESCC-specific immune
response arising in the setting of ESCC [5]. The tumor-
infiltrating immune cells are correlated with invasion, metasta-
sis, tumor stage, poor prognosis, and therapeutic outcomes.

The commonly used methods including immunohisto-
chemistry, immunofluorescence, flow cytometry, and cytometry
by time-of-flight mass spectrometry can only characterize lim-
ited types of immune cells based on preselected cellular markers,
such as CD8 cells, Treg cells, Th17 cells, and tumor-associated
macrophages (TAMs), thus providing limited knowledge of
the collective effects of these heterogeneous immune cells [12].
The tumor fate, however, is dictated by numerous specialized
cell types that interact in a highly coordinated manner
[13–16]. Although information of individual cell types was kept
in bulk transcriptomics data from tumor tissues, it is challenging
to decipher the individual cellular identity mingled together. To
estimate the immune cell proportions from bulk tumor samples,
multiple computational methods have been developed [12, 17].
For example, CIBERSORT is a computational algorithm to enu-
merate the relative proportions of immune cells using transcrip-
tional data from bulk tumor tissues [18].

In the present study, CIBERSORT was used to enumer-
ate the immune cellular composition of ESCC based on bulk
transcriptome data of ESCC and normal esophageal mucosa
samples from Gene Expression Omnibus (GEO), Genotype-
Tissue Expression (GTEx), and The Cancer Genome Atlas
(TCGA). Diagnostic and prognostic models were developed
and validated with good performance.

2. Materials and Methods

2.1. Patients and Datasets. This study used data in the public
domain. The transcriptome data GSE53625/GSE23400 that
comprise 179/53 human ESCC samples together with adjacent
normal tissue samples and clinical data were downloaded from
GEO (https://www.ncbi.nlm.nih.gov/geo/). The gene expres-
sion data of 92 ESCC samples from TCGA and 338 normal
esophageal mucosa tissue samples from GTEx were derived
fromUCSCXena (https://xena.ucsc.edu/). The expression level
of mRNA in TCGA and GTEx were normalized to log2ðTPM
+ 0:001Þ (TPM (transcripts per kilobase of exon model per
million mapped reads)) to improve the representation.

For prognostic analysis, eligible subjects were recruited
according to the following criteria: (1) histology confirmed
diagnosis of ESCC and (2) available follow-up of ≥3
months and prognostic information. As such, 101 ESCC
patients from GSE53625 and 51 patients from TCGA were
included in the present study. One hundred one patients
with ESCC were randomly divided into the training cohort
(71 patients) and internal validation cohort (30 patients).
Patients with ESCC from TCGA were used as an external
validation cohort.

2.2. Estimation of Immune Cell Infiltration. To quantify the
proportions of immune cells, the current study utilized the
CIBERSORT algorithm (http://cibersort.stanford.edu/),
which is a deconvolution algorithm to estimate the propor-
tions of 22 immune cell phenotypes based on a gene expres-
sion signature matrix of 547 genes representing each of 22
cells. These 22 infiltrating immune cells include naive B cells,
memory B cells, plasma cells, CD8 T cells, naive CD4 T cells,
resting memory CD4 T cells, activated memory CD4 T cells,
follicular helper T cells, regulatory T cells, gamma delta T
cells, resting NK cells, activated NK cells, monocytes, M0
macrophages, M1 macrophages, M2 macrophages, resting
dendritic cells, activated dendritic cells, resting mast cells,
activated mast cells, eosinophils, and neutrophils. CIBER-
SORT yields a P value for each sample using Monte Carlo
sampling, providing a measure of confidence in the results.
Generally, samples with P < 0:05 indicate that the inferred
fractions of immune cells calculated by CIBERSORT were
considered eligible for further analysis.

ESTIMATE (Estimation of Stromal and Immune Cells in
Malignant Tumor Tissues using Expression data) algorithm
generates the immune score that represents the infiltration
of immune cells in tissue, based on single sample gene set
enrichment analysis using gene expression data [19]. Several
reports have demonstrated that immune scores and stromal
scores produced by ESTIMATE algorithm could separate
normal cells from tumor cells through analyzing specific
gene expression signature of immune and stromal cells
[20–22]. The ESTIMATE outputs were reduced by a factor
of 1000 to be comparable with the CIBERSORT outputs.

2.3. Feature Selection. The objective of feature selection is to
identify the specific factors that are most effective in discrimi-
nating normal from cancerous tissues. Reduction of feature
number can alleviate the problem of overfitting. Another
important advantage of feature selection rather than other
dimensionality reduction techniques, such as principal compo-
nent analysis and wavelet transform, is that the original features
are maintained. Eligible samples were randomly separated into
the training and validation cohorts (7 : 3) using the “Sample”
function in R software. Two feature selection approaches
including LASSO and Boruta were used to assess the impor-
tance of intratumor infiltrated immune cells [23, 24]. LASSO
minimizes the sum of squared errors for ranking and selecting
variables in statistical models. Boruta is usually used for feature
selection from all relevant features on the basis of random
forest (RF) classifier.

2.4. Classifier Development. XGBoost (eXtreme gradient boost-
ing) [25, 26] is an ensemble learning algorithm based on gradi-
ent boosting tree and provides state-of-the-art results for many
bioinformatics problems. It uses the gradient boosting frame-
work and provides a parallel tree boosting technique, which
can solve a variety of problems with high accuracy. The super
parameters of XGBoost were determined by grid search and
10-fold cross-validation, including the number of iterations
(nrounds = 200), step size shrinkage used to prevent overfitting
(eta = 0:15), maximum depth of a tree (max depth = 3), mini-
mum loss reduction required to make a further partition on a
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leaf node of the tree (gamma = 0:25), parameters for ratio of
random subsampling characteristic (colsample bytree = 0:2),
and minimum sum of instance weight (hessian) needed in a
child tree (min child weight = 0:7). Compared with other
machine learning algorithms, XGBoost has certain unique
advantages. The most important strengths are that XGBoost
performs a second-order Taylor expansion for the objective
function and uses the second derivative to accelerate the conver-
gence speed of the model while training. Subsequently, we per-
formed survival analysis to obtain robust survival-associated
immune cells from that selected by diagnostic classifier.

In this study, the predictive model was implemented by
an R package called XGBoost (version 1.3.2.1), available
from https://cran.r-project.org. The parameters of XGBoost
can be optimized by grid search method with cross-
validation in the training cohort.

2.5. Performance Evaluation Metrics. To objectively evaluate
the performance of classifier, the following metrics, includ-
ing sensitivity (Sn), specificity (Sp), and overall accuracy
(Acc), are used in this study and calculated as follows:

Sn = TP
TP + FN

, 0 ≤ Sn ≤ 1,

Sp =
TN

TN + FP
, 0 ≤ Sp ≤ 1,

Acc =
TP + TN

TP + FP + TN + FN
, 0 ≤Acc ≤ 1,

ð1Þ

where TP, TN, FP, and FN indicate the true positives, true
negatives, false positives, and false negatives, respectively.
The values of Acc, Sn, and Sp reflect the robustness of the
classifiers.

In addition, the receiver operating characteristic (ROC)
curve plots the signature performance of true positive rate
(TPR = sensitivity) against false positive rate
(FPR = 1 − specificity). The area under the ROC curve (AUC)
is also used as performance evaluation in this study, which
can quantitatively and objectively measure the performance of
the proposed classifier. A perfect predictor is proved to have
an AUC = 1, and the random performance is AUC = 0:5.

2.6. Statistical Analysis. For each immune cell fraction, we
calculated the 75% quartile, median, and 25% quartile of
the normal and tumor groups. Group comparisons for con-
tinuous variables were performed using Wilcoxon-signed
rank test or Student’s t-test. Correlation analysis was per-
formed by package “corrplot” of R. The LASSO analysis
was carried out using “glmnet” package. Survival ROC was
plotted using “survivalROC” package. Decision curve analy-
sis was carried out with “rmda” package. A nomogram and
calibration plots were developed with “rms” package.
Kaplan-Meier survival analyses with log-rank tests were
applied using the “survival” package. Time-dependent
ROC (survival ROC) curves were applied to assess the prog-
nostic power of nomogram risk score. The above statistical
analyses were conducted using R software 4.1.0. All statisti-
cal tests were two-tailed, and P < 0:05 was considered statis-
tically significant.

3. Results

3.1. Eligible Samples. The present study involved 4 source
datasets, including GSE53625, GSE23400, TCGA-ESCC,
and GTEx. The overall proportions of immune versus non-
immune cells were estimated by CIBERSORT algorithm.
As the CIBERSORT P values anticorrelate with the abun-
dance of immune cells in bulk tissues, P < 0:05 was used as
a threshold to select the eligible samples for further analysis.

As such, 101 ESCC and 53 normal samples from
GSE53625, 53 ESCC and 48 normal samples from GSE23400,
51 ESCC samples from TCGA, and 25 normal esophageal
mucosa samples from GTEx were eligible for subsequent anal-
ysis. Demographic and clinicopathological characteristics of
patients with ESCC in GSE53625 and TCGA-ESCC (the corre-
sponding information unavailable for subjects from GSE23400
and GTEx) are shown in Table 1.

3.2. Proportions of Infiltrated Immune Cells. The proportions of
22 immune cells in ESCC and normal tissues evaluated by
CIBERSORT algorithm are shown in Supplemental Figure 1.
After Wilcoxon-signed rank test analysis, 13 of the 22
immune cells exhibited statistical differences between ESCC
and normal tissues. The proportions of activated memory
CD4 T cells, M0 macrophages, M1 macrophages, and
neutrophils were significantly higher in tumor tissues, whereas
naive B cells, memory B cells, plasma cells, regulatory T cells
(Tregs), gamma delta T cells, resting NK cells, monocytes,
resting mast cells, and eosinophils were less abundant in
tumor tissues than in normal tissues (Table 2 and Figure 1(a)).

In addition, ESTIMATE was used to calculate the scores of
StromalScore, ImmuneScore, and ESTIMATEScore for each
sample. We found that the StromalScore was significantly
increased in ESCC samples, whereas the ImmuneScore was sig-
nificantly decreased in ESCC samples (Table 2 and Figure 1(b)).
Furthermore, the correlation between StromalScore and Immu-
neScore was significant, with a correlation coefficient of 0.60.

Correlations among all 13 immune cells as well as Stro-
malScore and ImmuneScore are shown in Figure 1(c). We
observed positive correlations between gamma delta T cells
and ImmuneScore and StromalScore and ImmuneScore
with the correlation coefficients greater than 0.3. The nega-
tive correlation categories comprised M0 macrophages and
activated memory CD4 T cells, M0 macrophages and
gamma delta T cells, and M0 macrophages and Immune-
Score, with coefficient less than -0.3.

In addition, increased proportions of plasma cells and rest-
ing mast cells, decreased proportion of follicular helper T cells,
and increased scores of StromalScore and ESTIMATEScore
were found in male patients. In the category of alcohol use,
the proportions of memory B cells, plasma cells, and gamma
delta T cells were significantly decreased in ESCC patients with
alcohol exposure (Supplemental Figure 2). With regard to T
stage category, the higher the T stage was, the higher scores of
StromalScore, ImmuneScore, and ESTIMATEScore were
found in ESCC. In categories of N stage and TNM stage, the
percentage of gamma delta T cells was positively correlated
with disease status (Supplemental Figure 3).
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Table 2: Different proportions of immune cells and scores determined by CIBERSORT and ESTIMATE algorithms, respectively, in normal
and tumor tissues of ESCC.

Elements Tumor mean Normal mean Fold change (T/N) P value

Naive B cells 0.0092 0.0298 0.3087 0.0005

Memory B cells 0.0165 0.0324 0.5093 0.0021

Plasma cells 0.0955 0.1245 0.7671 0.0072

CD8 T cells 0.1339 0.1459 0.9177 0.1571

Naive CD4 T cells 0.0011 2:6E − 05 NA 0.1250

Resting memory CD4 T cells 0.0846 0.0994 0.8511 0.0584

Activated memory CD4 T cells 0.0658 0.0141 4.6667 1:3E − 08
Follicular helper T cells 0.0165 0.0141 1.1702 0.7114

Regulatory T cells (Tregs) 0.0295 0.0435 0.6782 0.0011

Gamma delta T cells 0.0101 0.0312 0.3237 8:6E − 06
Resting NK cells 0.0014 0 NA 0.0365

Activated NK cells 0.0630 0.0703 0.8962 0.0629

Monocytes 0.0525 0.0942 0.5573 8:9E − 07
M0 macrophages 0.0776 0.0124 6.2581 3:4E − 16
M1 macrophages 0.1169 0.0396 2.9520 2:0E − 16
M2 macrophages 0.0897 0.0798 1.1241 0.2369

Resting dendritic cells 0.0378 0.0385 0.9818 0.5005

Activated dendritic cells 0.0070 0.0011 6.3636 0.0501

Resting mast cells 0.0621 0.1015 0.6118 6:5E − 07
Activated mast cells 0.0151 0.0092 1.6413 0.7812

Eosinophils 0.0112 0.0181 0.6188 0.0051

Neutrophils 0.0030 0.0002 15.0010 0.0045

StromalScore 0.5942 0.3689 1.6107 0.0032

ImmuneScore 1.1312 1.3004 0.8699 0.0118

ESTIMATEScore 1.7255 1.6693 1.0337 0.9394

Note: P values were calculated by the Wilcoxon-signed rank test.

Table 1: Demographic and clinicopathological characteristics of eligible patients from GSE53625 and TCGA-ESCC.

Characteristic GSE53625 (n = 101) TCGA-ESCC (n = 51)

Gender (%)
Female 23 (22.8) 4 (7.8)

Male 78 (77.2) 47 (92.2)

Age (mean (SD)) 59.19 (8.1) 57.67 (9.5)

Tobacco use (%)

No 38 (37.6) 20 (39.2)

Yes 63 (62.4) 30 (58.8)

NA 0 (0) 1 (2.0)

Alcohol use (%)
No 44 (43.6) 16 (31.4)

Yes 57 (56.4) 35 (68.6)

T stage (%)
I-II 80 (79.2) 19 (37.3)

III-IV 21 (20.8) 32 (62.7)

N stage (%)
No 49 (48.5) 28 (54.9)

Yes 52 (51.5) 23 (45.1)

TNM stage (%)
I-II 49 (48.5) 31 (60.8)

III-IV 52 (51.5) 20 (39.2)
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3.3. Candidate Features as Biomarker for ESCC. Using 101
ESCC and 53 normal samples from GSE53625 as the training
cohort, the proportions of 13 immune cells and 2 ESTIMATE-

Scores, derived from CIBERSORT and ESTIMATE, respec-
tively, were used as input features for classification of ESCC
and normal tissues. These features were subjected to
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Figure 1: Distribution and correlations of immune cells between tumor and normal tissue. (a) Box plot of 22 immune cell types from
CIBERSORT between normal and tumor tissues. The blue and red colors represent tumor and normal tissues, respectively. Inner box
plot shows the 75% quartile, median, and 25% quartile. (b) Box plot of 3 scores from ESTIMATE. (c) Correlation analyses among all 13
immune cells as well as StromalScore and ImmuneScore in ESCC samples from GSE53625. The blue and red colors indicate the positive
and negative correlations, respectively. P values were calculated by the Wilcoxon-signed rank test. ns: P ≥ 0:05; ∗: P < 0:05; ∗∗: P < 0:01;
∗∗∗: P < 0:001.
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Figure 2: Continued.

6 BioMed Research International



importance evaluation by two feature selection algorithms,
LASSO and Boruta. The 15 selected features in order of impor-
tance by LASSO comprised naive B cells, memory B cells,
plasma cells, activated memory CD4 T cells, monocytes, M0
macrophages, M1 macrophages, resting mast cells, and Stro-
malScore (Figures 2(a) and 2(b)). Figure 2(c) shows that 13
green features identified by Boruta algorithm contributed sig-
nificantly to classification of ESCC. These 13 candidate fea-
tures comprised naive B cells, memory B cells, plasma cells,
activated memory CD4 T cells, regulatory T cells (Tregs),
gamma delta T cells, monocytes, M0 macrophages, M1 mac-
rophages, resting mast cells, neutrophils, StromalScore, and
ImmuneScore. The 9 common features identified by both
LASSO and Boruta algorithm were deemed as candidate bio-
markers for ESCC in this study, which were exactly equivalent
to features selected by LASSO. The correlations of these 9 fea-
tures are shown in Figure 1(c), in which M0 macrophages
were strongly correlated with activated memory CD4 T cells
with a correlation coefficient of -0.32. The correlations
between other features were not significant.

3.4. Diagnostic Signature for ESCC. In the training cohort of
101 ESCC tissues and 53 normal tissues, we calculated the
diagnostic immune score (DIS) using XGBoost method.
For differentiation of ESCC from normal tissues, the cutoff
score of DIS was determined by ROC curve. Using a DIS
cutoff score of 0.603, an AUC of 0.999 was attained for clas-
sification of 154 tissue samples in the training cohort, with
Sn and Sp of 0.981 and 0.999, respectively (Figure 2(d),
Table 3). In the internal validation cohort of 53 ESCC tissues
and 48 normal tissues from GSE23400, the DIS also showed
robust performance for discrimination of ESCC from tissue
samples with an AUC of 0.813 (Figure 2(e)). Consistently,
in the external validation cohort (51 ESCC tissue from

TCGA-ESCC and 25 samples from GTEx), the AUC was
0.966 (Figure 2(f)). Our data highlights that both immune
infiltrate and nonimmune stromal components have clinical
implication for ESCC diagnosis.

3.5. Prognostic Signature for ESCC.All 101 ESCC patients with
survival data were randomly assigned to the training (70%,
with 71 samples) and validation (30%, with 30 samples)
cohorts in the present study. In the training cohort, naive B
cells, M0 macrophages, resting mast cells, and StromalScore
were significant prognostic factors among the 9 candidate bio-
markers for ESCC by univariate Cox proportional hazard
regression analysis (Supplemental Table 1). Multivariate Cox
proportional hazard regression analysis showed that naive B
cells and plasma cells were independent prognostic factors
for patients with ESCC after adjusting potential confounding
factors (Figure 3(a)). For risk score calculation by integrating
the independent prognostic factors, the prognostic immune
score (PIS) for each individual was calculated using Cox
proportional hazards model in the training cohort. The
formula for PIS calculation was as follows: PIS = ðnaive B
cells × 27:71Þ + ðplasma cells × ð−5:50ÞÞ.

The cutoff value of PIS for prognostic predication of
patients with ESCC was determined using the “survminer”
package. Using a cutoff value of PIS of -0.357, ESCC patients
in the training cohort were divided into the high- and low-
PIS groups. The Kaplan-Meier survival analysis showed that
the median survival times of high-PIS and low-PIS sub-
groups were 28.6 months and >60 months, respectively
(Figure 3(b)). Log-rank test showed that the survival times
of ESCC patients in these two groups were significantly dif-
ferent, with a hazard ratio of 2.0 for patients with high PIS
(95% CI: 1.06 to 3.70, P = 0:028, Figure 3(b)), and similar
results were observed in the internal validation cohort

External validation cohort
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Figure 2: Feature selection and predictive performance of the DIS. (a) LASSO coefficient profiles of the fractions of 15 immune cell types.
(b) Tenfold cross-validation for parameter selection in the LASSO model. (c) Results of Boruta analysis in the training cohort. Color coding
according to green = selected, yellow= tentative, and red = rejected. ROC curves of DIS in the (d) training, (e) internal validation, and (f)
external validation cohorts. Note: DIS: diagnostic immune score; AUC: area under the ROC curve.

7BioMed Research International



(HR = 2:94, 95% CI: 1.01 to 9.09, P = 0:038, Figure 3(c)) and
in the external validation cohort (HR = 8:33, 95% CI: 1.03 to
50.0, P = 0:022, Figure 3(d)).

The Kaplan-Meier survival analysis of esophagus adeno-
carcinoma (EAC) cohort in TCGA showed that there was no
significant difference between the low- and high-PIS groups
(HR = 2:04, 95% CI: 0.564 to 7.69, P = 0:26, Supplemental
Figure 4(a)), consistent with the distinctive molecular
phenotypes manifested by ESCC and EAC.

3.6. Prognostic Nomogram for ESCC.The independent prognos-
tic factors for overall survival of ESCC among clinicopathologi-
cal features (gender, tobacco use, alcohol use, T stage, N stage,
and TNM stage) as well as PIS were determined by univariate
Cox regression analyses, andN stage and TNM stage were iden-
tified to be the independent factors associated with prognosis of
ESCC (Supplemental Table 2). Seeking to improve the accuracy
of prognostic classification, a prognostic nomogram model was
constructed to incorporate independent clinicopathological
features with prognostic relevance and PIS in the prognostic
model (Figure 4(a)). The calibration curves for the nomogram
of 2-, 3-, and 5-year survivals showed good agreement
between prediction and the actual observation in all samples
(Figures 4(b)–4(d)). The mean standard errors of 2-year, 3-
year, and 5-year survivals were 0.146, 0.220, and 0.276,
respectively. The Kaplan-Meier survival curves demonstrated
that ESCC patients in the high-risk group had significantly
worse overall survival than those in the low-risk group
(HR = 4:17, 95% CI: 2.22 to 7.69, P < 0:0001, Figure 5(a)).
Figure 5(b) shows that the distribution of nomogram scores
involved survival time and survival status, indicating good
performance of the nomogram model. A time-dependent
ROC analysis revealed the AUC for TNM stage, PIS, and
nomogram model at 5-year were 0.656 (95% CI: 0.556 to
0.755), 0.689 (95% CI: 0.579 to 0.798), and 0.745 (95% CI:
0.644 to 0.845), respectively (Figures 5(c) and 5(d), Table 4).
The 5-year AUCs of the nomogram model outperformed
TNM stage or PIS as a prognostic model alone (P = 0:006 and
P = 0:693, respectively), indicating that this nomogram model
is a more reliable prognostic index.

4. Discussion

Esophageal cancer, including ESCC that is more prevalent in
China, is clinically challenging and requires multidisciplinary
care that comprises surgery, chemotherapy, radiotherapy,
and immunotherapy [4]. Despite these efforts, recurrence
and metastasis still ensue and render ESCC patient dismal
clinical outcomes [4, 11]. Therefore, identification of a novel
biomarker signature for diagnosis and prognosis as well as

for therapeutic interventions holds promise for tailored care
of ESCC. Based on the deconvolution of bulk transcriptome
data of ESCC, 9 overlapping immune features identified by
LASSO and Boruta algorithms were used for DIS calculation
followed by effective discrimination of ESCC from normal
esophageal mucosa tissue. Two immune cell types, namely, B
naïve cells and plasma cells, identified by univariate and mul-
tivariate Cox proportional hazard regression analyses as inde-
pendent prognostic factors, were used to construct a
prognostic model that classify ESCC patients into high- and
low-risk patients with significant differences in clinical out-
comes. Furthermore, a nomogram model integrating age, N
stage, TNM stage, and PIS shows robustness in predicative
accuracy of prognosis for ESCC.

The initiation and development of malignancy are
closely linked to inflammation, which fosters proliferation,
survival, and migration during neoplastic progression [27,
28]. For example, elevated plasma levels of C-reactive pro-
tein are associated with reduced disease-free survival of
breast cancer patients [29]. Furthermore, current smoking
or prior heavy smoking that links to chronic lung inflamma-
tion is significantly associated with an increased risk of
recurrence and mortality in breast cancer patients [30, 31].
In mice, lung inflammation induced by either tobacco smoke
exposure or nasal instillation of lipopolysaccharide awakens
dormant cancer cells [32]. Notably, chronic inflammation is
an integral proportion of tumor microenvironment of ESCC
evidenced by local infiltration of multiple immune cells and
elevated circulated C-reactive protein [33]. In tumor micro-
environment (TME), there exists a variety of immune and
stromal cells that restrain or accelerate tumor growth.
Mounting evidence indicates that infiltrating immune cell
populations are associated with tumor growth, cancer pro-
gression, and clinical outcome in multiple cancers [34, 35].
Among the tumor-infiltrating immune cells, immune sup-
pressor cells (T regulatory cells and M2 macrophage) are
generally associated with poor prognosis, whereas cytotoxic
T cells (CD8+ T cells, NK cells, and γδ T cells) are correlated
with improved survival [11, 13–16, 28, 34, 35].

In recent years, various computational algorithms have
been developed to estimate the immune components within
TME using bulk transcriptome data [12, 17, 36–39]. The
present study employed CIBERSORT to estimate the frac-
tions of 22 immune cell subsets using transcriptome data
from public domain. Among the ESCC and normal esopha-
geal tissue samples with CIBERSORT P < 0:05, the propor-
tions of 13 individual immune cell fractions in tumor
tissues were significantly different from those in normal tis-
sues. In TME of ESCC, the immunostimulating cells includ-
ing γδ T cells, mast cells, and B cells were underrepresented,

Table 3: Performance metrics of diagnostic immune score for discrimination of tumor from normal tissue in different datasets.

Dataset Sn Sp Acc AUC

Training cohort (GSE53625) 1.000 0.981 0.993 0.999

Internal validation cohort (GSE23400) 0.717 0.875 0.792 0.813

External validation cohort (TCGA-ESCC and GTEx) 0.843 0.960 0.882 0.966

Note: Sn: sensitivity; Sp: specificity; Acc: overall accuracy.
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Figure 3: Continued.
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whereas the immunosuppressive cells, including M0 and M1
macrophages and neutrophil, were more abundant in ESCC
compared with normal esophageal tissues. By leveraging these
different immune features with XGBoost, we built a DIS that
distinguished ESCC from normal squamous mucosa with reli-
able accuracy. Our results demonstrate that tumor immune
infiltrates play oncogenic roles in pathogenesis and progres-
sion of ESCC and serve as novel potential biomarkers for
detection and diagnosis of ESCC.

Although CIBERSORT P values represent the total infil-
trated immune cells in TME, no prognostic effect was observed
in the highly infiltrated subset (CIBERSORT P < 0:01) com-
pared with the subset lacking immune infiltration (CIBER-
SORT P > 0:05) in the context of ESCC (Supplemental
Figure 4(b)). Nevertheless, a total of 8 immune cells including
naive B cells, CD8 T cells, regulatory T cells, gamma delta T
cells, activated NK cells, M0 macrophages, resting dendritic
cells, and resting mast cells were significantly correlated with
clinical outcomes of ESCC patients by the univariate Cox
regression analysis. Notably, ESCC patients with higher
fractions of M0 macrophage showed poorer overall survival
(Supplemental Figure 4(c)). Tumor-associated macrophages
(TAM), the major component in TME, are functionally
classified in two different subtypes, i.e., M1 and M2
macrophages, which show distinct effector molecules on
plasma membrane. Generally, M1 and M2 macrophages
assume tumoricidal and protumor functions, respectively, in
the evolution of malignancy [40, 41]. Higher proportions of
M2 macrophages contribute to an immunosuppressive
microenvironment and have been associated with therapeutic
resistance and poor prognosis in multiple cancers, including
both ESCC and EAC [11, 42, 43]. Targeting macrophages, in
particular M2 macrophages, improved antitumor immunity
through reprograming of immune cells [44]. In line with this,
we also found negative correlation between ESCC prognosis

and M0 and M2 macrophages, indicating the skewed
differentiation of M0 towards M1 polarization. Additionally,
higher proportions of resting memory CD4 and γδ T cells, in
addition to M0 and M2 macrophages, were also found to be
negative prognostic markers of clinical outcome. In contrast,
greater infiltration of plasma cells, CD8 T cells, activated NK
cells, and resting mast cells was correlated with improved
prognosis. In immune-oncology, the cytotoxicity exerted by T
and NK cells has been well recognized and received the
greatest attention. On the other hand, the role of B
lymphocytes has begun to be appreciated in the context of
host-tumor interaction over the last decade. Through
antibody-dependent cell cytotoxicity and complement cascade
activation, B and plasma cells can kill cancer cells and are
correlated with improved cancer outcome. In contrast, tumor-
promoting roles have also been found in multiple cancers [42,
45, 46]. Based on the prognostic relevance of immune features
generated by CIBERSORT, multivariable Cox regression
approach was used to select the key prognostic features for
PIS building. The ESCC patients with low PIS have favorable
outcomes compared with those with high PIS. To further
improve the predicative accuracy for prognosis, we also
established a nomogram model, which integrate age, N stage,
TNM stage, and PIS, with improved performance compared
with PIS and TNM stage as a prognostic model alone.

On aggregate, our data argue that the infiltrated immune
populations in TME are heterogeneous in terms of pheno-
type and function, which play divergent roles in the develop-
ment and progression of ESCC. The dichotomy in immune
functions was supported by the evidence of negative or pos-
itive correlations with cytolytic activity, which was closely
correlated with expression of GZMA, GZMK, and PRF1
[47]. Thus, the functional state of immune cells in TME
per se, rather than the abundance, is the determinant of
immune response against cancer.

External validation cohort
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Figure 3: Multivariate Cox proportional hazard regression analysis and survival analysis. (a) Forest plots show significant survival-related
immune cells based on multivariate Cox regression analyses. Kaplan-Meier curves for overall survival grouped by PIS in the (b) training, (c)
internal validation, and (d) external validation cohorts. Note: P values were calculated by log-rank test. HR: hazard ratio; CI: confidence
interval; PIS: prognostic immune score. ∗: P < 0:05; ∗∗: P < 0:01.
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Figure 4: Nomogram predicts survival probability in ESCC patients. (a) Nomogram based on clinicopathological features (age, N stage, and
TNM stage) and PIS predicts 2-, 3-, and 5-year survivals in ESCC patients. Nomogram evaluated by calibration curves of (b) 2 years, (c) 3
years, and (d) 5 years. The grey lines represent an ideal evaluation, whereas the blue lines represent the performance of the nomogram. PIS:
prognostic immune score; OS: overall survival.
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Although both ESCC and EAC (some cases if not all) arise
from esophageal squamous epithelium, they have remarkable
distinctions in terms of histology, geographic patterns, time
trends, etiological factors, and molecular features [7, 48]. Fur-

thermore, tumor immune infiltrates in ESCC are completely
different from those in EAC [49]. Strikingly, genetic studies
revealed that multiple mutation-associated driver genes are
shared among ESCC, lung squamous cell carcinoma, and head
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Figure 5: Prognostic performance of nomogram risk score. (a) Kaplan-Meier survival curve of patients with different nomogram risk score.
(b) The nomogram risk score distribution. Green and red dots represent risk scores for low- and high-risk patients, respectively. The
relationship between survival status and risk score. The abscissa represents the number of samples, and ordinate is the survival time. Red
and green dots represent dead patients and alive patients. (c) The time-dependent AUCs of 2-, 3-, and 5-year nomogram risk score for
all samples. (d) The time-dependent AUCs of TNM stage, PIS, and nomogram risk score on 5 years for all samples. Note: PIS:
prognostic immune score.

12 BioMed Research International



and neck squamous cell carcinoma [7]. Nevertheless, several
previous studies that explored the roles of tumor immune
infiltrates did not separate ESCC from EAC.Our PIS for ESCC
failed to discriminate EAC with diverse clinical outcomes, fur-
ther supporting that ESCC and EAC are histologically and
molecularly distinct diseases and arguing against the combina-
tion of ESCC and EAC as esophageal cancer for mechanistic
investigation and clinical trials. This is the main strength of
this study.

Our study also has limitations. As we all know, ESCC is
prevalent in China contrasting with EAC more frequent in
western countries. Nevertheless, genetic aberrations are remark-
ably distinct between ESCC cases from USA and southern
China [50–52]. Furthermore, American ESCC that occursmore
common in blacks compared with whites in the United States
[53] shares only 30% differential gene expression with Chinese
ESCC, indicating that demographic factors such as genetic
ancestry could account for variation of genetic phenotype.
Therefore, our PIS derived from Chinese ESCC is not likely fea-
sible for ESCC from other sources, especially western countries.
This is themain limitation of this study. Second, in this work, all
data were from public databases and the clinical utility of our
DIS and PIS was not verified in independent clinical ESCC sam-
ples. Third, some factors, including living environment, drink-
ing habits, family history, and microbial infection, were
incomplete for ESCC patients in this study, whichmight under-
estimate the value of our diagnostic and prognostic models.

5. Conclusion

In summary, the present study demonstrates the diagnostic
and prognostic potential of our DIS and PIS based on the
differential distribution of infiltrated immune cells enumer-
ated by deconvolution of transcriptome. A nomogram
model integrating clinicopathological characteristics and
immune signature shows improved accuracy for prognostic
classification over TNM stage or PIS as a prognostic alone,
which warrants prospective studies to validate.
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Table 4: Time-dependent AUCs of overall survival with TNM stage, prognostic immune score (PIS), and nomogram score for all samples.

AUCs (95% CI)
2 years 3 years 5 years

TNM stage
0.649

(0.564-0.734)
0.661

(0.575-0.747)
0.656

(0.557-0.756)

PIS
0.595

(0.492-0.695)
0.642

(0.541-0.745)
0.689

(0.579-0.798)

Nomogram score
0.705

(0.612-0.799)
0.736

(0.646-0.825)
0.745

(0.644-0.845)
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