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Predicting the polyproline type II (PPII) helix structure is crucial important in many research areas, such as the protein folding
mechanisms, the drug targets, and the protein functions. However, many existing PPII helix prediction algorithms encode the
protein sequence information in a single way, which causes the insufficient learning of protein sequence feature information. To
improve the protein sequence encoding performance, this paper proposes a BERT-based PPII helix structure prediction algorithm
(BERT-PPII), which learns the protein sequence information based on the BERT model. The BERT model’s CLS vector can fairly
fuse sample’s each amino acid residue information. Thus, we utilize the CLS vector as the global feature to represent the sample’s
global contextual information. As the interactions among the protein chains’ local amino acid residues have an important influence
on the formation of PPII helix, we utilize the CNN to extract local amino acid residues’ features which can further enhance the
information expression of protein sequence samples. In this paper, we fuse the CLS vectors with CNN local features to improve the
performance of predicting PPII structure. Compared to the state-of-the-art PPIIPRED method, the experimental results on the
unbalanced dataset show that the proposed method improves the accuracy value by 1% on the strict dataset and 2% on the less
strict dataset. Correspondingly, the results on the balanced dataset show that the AUCs of the proposed method are 0.826 on the
strict dataset and 0.785 on less strict datasets, respectively. For the independent test set, the proposed method has the AUC value of
0.827 on the strict dataset and 0.783 on the less strict dataset. The above experimental results have proved that the proposed
BERT-PPII method can achieve a superior performance of predicting the PPII helix.

1. Introduction

Cowan et al. firstly discovered a special protein secondary
structure the polyproline II (PPII) helix [1] which differs from
the conventional protein secondary structure such as α-helix,
β-pleated sheet, and random coil. The PPII helix consists of
almost 3~8 amino acid residues, and it occupies only about
2% in the protein. The PPII helix has special biological charac-
teristics and plays a crucial role in biochemical fields such as
signal transduction, cell movement, and immune response
[2, 3]. There are many interactions between the PPII helix
and proteins or nucleic acids, such as SH3, WW, EVH1,
GYF, UEV, and inhibitor proteins, which interact with the
PPII helix [4–6]. Meanwhile, the PPII helix relates to many

difficult diseases, such as the Alzheimer’s disease and Parkin-
son’s disease [7, 8]. Thus, it is very important to correctly pre-
dict the PPII helix. At present, the prediction of conventional
secondary structures has made great achievements. But, a few
researchers focused on the prediction of PPII helix. Further-
more, the PPII helix is very rare, which makes it become diffi-
cult to predict the PPII helix.

Anfinasen et al. [9] proposed the famous conclusion that
protein sequence determines its spatial structure on the basis
of experiments in 1961. Similarly, PPII structure is the same.
The protein structure determination methods can be divided
into two categories: traditional research methods of protein
structure analysis and computational biology prediction
methods. The traditional research methods use the X-ray
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crystal diffraction technology and the nuclear magnetic res-
onance imaging technology to predict the protein structure.
It is hard for human to recognize, and the determination
time is long. To solve the above problem, researchers pro-
posed to predict PPII helices using protein sequence data
in the bioinformatics field. However, the sequence based
prediction models manually extract the features, and it usu-
ally leads to an inferior prediction result. Fortunately, the
deep learning networks have powerful built-in feature
extractors and have been widely used to extract protein fea-
ture information [10–12].

Recently, the researchers proposed to further improve the
proteins features by using the natural language processing
(NLP) technology. Proteins and languages are similar in con-
cept [13], and Ofer et al. have descripted the relationship
among the natural language processing, machine learning,
and protein sequences. Ofer considers the protein sequence
as an unknown language. Correspondingly, the amino acid is
a word in biological vocabulary, and the biological sequence
(such as DNA sequence and protein sequence) is text informa-
tion. More and more natural language processing (NLP) tech-
niques have been applied to solve the sequence prediction
problems in bioinformatics [14–17].

The Bidirectional Encoder Representation from Trans-
formers (BERT) [18] is a simple but powerful language
model. We can pretrain BERT with the natural language
corpus and use the trained BERT to transfer learning the
biological sequences. Ho et al. [19] proposed the FAD-
BERT model to predict the flavin adenine dinucleotide
(FAD) binding sites, which can overcome the problem of
insufficient feature learning caused by the shortage of train-
ing data. Charoenkwan et al. [20] used BERT4Bitter model
to predict bitter peptides without system designing and fea-
ture coding selection. BERT4Bitter model automatically
generate feature descriptors based on the original protein
sequence. Li et al. [21] used the pretrained BERT model
to learn both the protein sequence features and the amino
acid hydrophilic features. As a result, it can improve the
performance of predicting the missense mutations in pro-
tein sequences. To improve the encoding performance, Ali
Shah et al. [22] utilized the pretrained BERT language
model to extract the protein sequences features, which
can effectively distinguish the three kinds of glucose trans-
porter families. Le et al. [23] regarded DNA sequence as a
natural language sentence and used BERT model to repre-
sent the DNA sequence information. It can capture the
information which is equivalent to human language.
BERT-m7G model [24] used the BERT model to convert
RNA sequence information into feature matrix and select
the optimal feature based on an elastic network. Finally,
BERT-m7G model can effectively improve the prediction
performance of RNA N7-methylguanosine.

As a special protein structure, many methods have been
proposed to predict the PPII helix. Siermala et al. [25] firstly
used the feed-forward neural network and back propagation
algorithms to predict PPII helix structure. The prediction
accuracy in reaches 75% on the datasets which has been
eliminated more than 65% redundant sequences. Wang
et al. [26] proposed to predict the PPII helix based on the

support vector machine, and the prediction accuracy
reached 70% on the dataset that further reduced homolo-
gous protein sequences. Lu et al. improved the artificial neu-
ral network [27] by jointly using the adjacent amino acid
residue information and the one-hot encoding. Thus, Lu
simultaneously use the improved artificial neural network,
the support vector machine (SVM) [28], and the genetic
neural network [29] to predict the PPII helix. O’Brien et al.
[30] predict the PPII helix structure based on bidirectional
recurrent neural network (BRNN). Its takes into account
that the formation of PPII helix is affected by the remote res-
idues, and other sequences are compared with the sequence
to obtain a position-specific scoring matrix (PSSM) contain-
ing evolutionary information as a feature representation.

The existing PPII helix structure prediction methods
usually adopt one kind of protein sequence code and only
use the local or global protein sequence features. This will
lead to an inferior performance. To solve the above prob-
lems, this paper uses the pretrained BERT model to improve
the performance of protein sequences code. Each protein
sequence is regarded as a sentence, and each amino acid is
regarded as a word. This paper predicts the PPII helix struc-
ture by jointly using the local and global features. The flow-
chart of this algorithm is shown in Figure 1.

The proposed algorithm mainly includes three steps:
learning global features, learning local features, and feature
fusion.

(1) In the learning global features, we segment the pro-
tein amino acid sequences into many datasets with different
sizes of sliding windows [34]. To further get the input of the
BERT model, we separate each protein sequence sample into
the amino acid residue by a space. After encoded by the
BERT embedding layer, each amino acid residue is repre-
sented as a 768 dimensional context embedding vector.
Then, each protein sequence sample is represented as n (n
is window size) 768 dimensional vectors and 1 CLS vector.
(2) In the learning local features, we use the multichannel
CNN to extract n embedding vectors with 768 dimensions.
The sizes of the multichannel CNN kernels are 3, 4, and 5,
respectively. (3) In the feature fusion, we fuse the global
CLS vector with the local features output by the multichan-
nel CNN. Then, we use the softmax function to classify the
fusion features.

In this paper, the BERT-PPII algorithm has the following
innovations:

(i) The proposed method automatically extracts the
feature extraction using protein primary sequences.
This process has abandoned the system designing
process and the feature selection procedure. Thus,
it can avoid to manually extract the feature from
raw amino acid sequences

(ii) We use the pretrained BERT model to improve the
protein sequence encoding, and features to enhance
the ability of feature representation

(iii) We design the comparative experiments on both the
Strict_data dataset and the NonStrict_data dataset.
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The final experimental results show that the pro-
posed BERT-based model is better than the existing
algorithms

2. Materials and Methods

2.1. Problem Description. The PPII helix is a local spatial
conformation between amino acid residues in the protein
polypeptide chain. It usually consists of 3~8 amino acids.
Its prediction task maps the protein sequence composed of
20 amino acids to the corresponding the PPII helix structure
sequence. As shown in Figure 2, FQRP, the partial amino
acid residues of protein sequence, is mapped to PPII helix
structure. The existing PPII secondary structure prediction
algorithms adopt only one kind of the protein encoding
method, which causes the problem of insufficient learning
features. The PPII helix is determined by both the local
and the long-range among the amino acid residues in the
protein chain. If the prediction process only uses local or
global features, it will ignore the important PPII helix forma-
tion information and decrease the prediction accuracy.

To solve the problem of encoding protein sequence, this
paper employs the BERT to improve the code of amino
acids. Moreover, the CLS feature of the protein sequence
obtained by BERT and the local feature of the protein

sequence obtained by multichannel CNN are further inte-
grated to effectively improve the expression ability of sample
features. Our model mainly includes BERT embedding
encoding and global feature extraction, local feature extrac-
tion by multichannel convolution, and multifeature fusion,
which are described in Sections 2.2, 2.3, and 2.4, respectively.

2.2. Bert Embedding Encoding and Global Feature
Extraction. More and more natural language processing
(NLP) techniques have been employed to learn the feature
descriptors of protein sequences, DNA sequences, and
RNA sequences [14–17]. The BERT embedding layer can
obtain semantic and syntactic information from the context
of a sentence or paragraph, which enables to learn better fea-
tures. Recently, most PPII helix structure prediction algo-
rithms usually adopt only one kind of protein sequence
feature encoding method. In order to learn the better fea-
tures, the pretrained BERT model is used to improve the
of the PPII helix structure prediction performance. We
break this limitation by pretraining the model based on bidi-
rectional encoder representation from transformers (BERT).
The BERT model uses the multiattention mechanism to
obtain the CLS feature vector. The CLS feature vector can
fairly integrate the information of each amino acid residue
in the sample. Finally, the CLS feature is considered as the
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Figure 1: The flowchart of BERT-PPII model including input protein sequence samples, BERT embedding encoding and global feature
extraction, local feature extraction by multichannel convolution, multifeature fusion, and prediction. It is assumed that the sliding
window size is 13 and the amino acid residues in the sample are separated by space in the figure.
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global feature. The BERT model handles the migration task’s
input samples by the position encoding, self-attention mech-
anism, and residual connection.

Position encoding: Generally, the same characters with
different locations are assigned the same feature description.
Thus, they cannot capture the location information of the

Results for PDB 7 ODCA

Sequence
DSSP

The color code is the following:
I
II
III
IV

All helix in red
All strand in green
Polyproline II in blue
Coil, turn and gap in grey

Figure 2: Some primary sequences of protein sequence (PDB id: 7ODCA) are assigned secondary structure conformations by DSSP
algorithm. This graph is derived from the online PPII and secondary structure assignment database developed by Chebrek et al. [35]. In
the graph, a letter represents a specific conformation, and its color relates to different secondary structure categories.
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Figure 4: (a) Positive sample; (b) negative sample.
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input text. To solve the above problem, the input samples
are encoded according to the position of the character, as
shown in Equation (1). PE denotes the position code of each
input character. pos denotes the position of the character in
the sequence. dmodel denotes the dimension of WQðxÞ.
When the same characters appear in the input amino acid
residues, they will have different feature codes obtained by
the self-attentive mechanism due to the different position
codes.

PE pos, jð Þ =
sin

pos

10000j/dmodel

� �
, j = 2i

cos
pos

10000j−1/dmodel

� �
, j = 2i + 1

8>>><
>>>:

: ð1Þ

After that, the protein sequence sample X = ðx1, x2,
x3,⋯, xnÞ will be processed by word embedding query
(WQ) and position coding (PE), as shown in Equation
(2). Xinput represents the input vector of BERT:

Xinput =WQ Xð Þ + PE: ð2Þ

Self-attention mechanism: This paper utilizes the self-
attention mechanism to capture the relationship among
the amino acid residues of the input sample sequence,
as shown in Equation (3). As a result, each character contains
the information of the other characters, where Q = XinputW

Q,

K = XinputW
K , V = XinputW

V . Q, V , and K are the query vec-

tor, value vector, and key vector, respectively. WQ, WK , and
WV are the weight matrices of Q, K , and V , respectively.

Attention Q, K , Vð Þ = softmax
QKTffiffiffiffiffi
dk

p
 !

V : ð3Þ

Residual connection: To avoid the problems of gradient
disappearance and explosion during the training process,

we establish the residual connection for the output of the
self-attentive mechanism [36], as shown in Equation (4).

Xoutput = Xinput + Attention Q, K , Vð Þ: ð4Þ

During training the model, we normalize the data [37,
38] as shown in Equation (5). Thus, the algorithm can
quickly and smoothly converge to the optimal solution. μ is
the mean value of Xoutput and σ is the standard deviation of
Xoutput. When σ becomes 0, ε can avoid the denominator
being 0. The training parameters α and β can compensate
the information lost during the normalization process:

LayerStandary = α
Xoutput − μ

σ + ε
+ β: ð5Þ

To obtain the amino acid residues, we put the standard-
ized features into the fully connected neural network
followed by a residual connection and a standardization
procedure.

To ensure the transformer’s self-attention mechanism
[39] has excellent representation ability, BERT model
employs two pretraining tasks [18]: the “masked language
model” (MLM) and the “next sentence prediction” (NSP).
As a result, it can provide a better generalization result for
the downstream tasks.

2.3. Local Feature Extraction by Multichannel Convolution.
The interaction among the local amino acid residues in the
protein chain has an important influence on the formation
of the PPII helix. The protein sequences’ features can be rep-
resented as matrices, and the local spatial correlations exist
among the amino acids’ features in the sequences. Moreover,
the convolutional neural networks (CNNs) can handle the
spatial correlation among the dense data in the network. In
this paper, to obtain the relationships among the local amino
acid residues, we further use the CNN to learn the feature of
Bert’s output vectors. The convolution neural networks cap-
ture the important local information of the protein sequence
sample’s features. Correspondingly, the pooling procedure
learns the important local features. Thereafter, we obtain

Table 1: The dataset under strict definition (Strict_data).

Dataset Number of sequence Number of PPII Number of non-PPII Total

Training set 6561 36622 1494487 1531109

Test set 1640 9068 382819 391887

Independent test set 920 4855 201537 206392

Table 2: The dataset under less strict definition (NonStrict_data).

Dataset Number of sequence Number of PPII Number of non-PPII Total

Training set 7121 64490 1554142 1618432

Test set 1781 15880 379276 395156

Independent test set 1001 8639 208785 217424
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the final vector η by splicing the output vectors of the CNN
layers.

In this paper, we design the CNN models with convolu-
tional kernels of 3, 4, and 5, respectively (Section 3.5). As
shown in Figure 3, the sample’s local feature learning pro-
cess mainly consists of the convolution operation and the
pooling operation.

Convolution operation: We use the convolution opera-
tion to process the BERT layer’s output matrix B = fH1,
H2,⋯Hng. Assuming the convolution kernel’s size is m,
each time the convolution is computed based on m word
vectors. Generally, we slide the convolution kernel 1 step
from top to bottom and divide B into fH1:m,H2:m+1,⋯,
Hn−m+1:ng. Where Hi:j represents the concatenated vectors
of fHi ⋯Hjg. The vector C = fc1, c2,⋯, cn−m+1g and the
value ci is obtained by convolving Hi:i+m−1, as shown in
Equation (6):

c1 =WTHi:i+m−1 + b: ð6Þ

We initialize the convolution kernel’s parameter (W)
as a random uniform distribution. b is the bias variable.

Pooling operation: After the convolution operation, we
perform a pooling operation on the text feature mapping
vector C = fc1, c2,⋯, cn−m+1g. For the results obtained with
q convolution kernels, we use a global maximum pooling,
as shown in Equation (7).

Ĉm =max Cm1, Cm2,⋯, Cmq

� �
: ð7Þ

We concentrate the features extracted with the kernel
sizes m = ð3, 4, 5Þ as the local feature vector η, as shown in
Equation (8):

η = Ĉ3, Ĉ4, Ĉ5
� �

: ð8Þ

2.4. Multifeature Fusion. A survey about the PPII helix struc-
tures prediction shows that most algorithms use the tradi-
tional features and manually select features to combine.
Most research works only adopt the local features [26–29]
or the global features [30–33], which decreases the accuracy
of PPII helix structure prediction. Both the local and long-
range interactions among amino acid residues determine
the PPII helix. Therefore, the local features and global fea-
tures are equally important in prediction the PPII helix. In
this paper, we propose to fuse the protein sequences’ local
features η and the global features CLS, and the joint feature
in Equation (9) is used to predict the PPII helix structure:

M = concat CLS, ηð Þ: ð9Þ

The global feature CLS is obtained by the BERT model,
and the local feature η is obtained by the multichannel
CNN. We utilize the concat() algorithm to generate the final
feature vector M = fCLS, ηg. In this paper, we use the fusion
feature M to predict the PPII helix structure.

3. Results and Discussion

3.1. Sample and Dataset. In this paper, we design the com-
parative experiments on the PPIIPRED dataset [30]. The
filtering rules which define the PPII helix dataset [41]
include two kinds of definitions: the “strict” and “less strict.”
The filter criteria are percentage identity ≤30%, resolution
≤2.5, and R-value ≤0.25. The strict criteria include the trans
filtering, the dihedral filtering, and the regularization
filtering.

The trans filtering:

−145 < αC − 70: ð10Þ
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0
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Figure 5: The amino acid composition of PPII and Non-PPII.
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The dihedral filtering:

−180 <Ψ < −160, ð11Þ

90 <Ψ < 180, ð12Þ

−105 <Φ < −45: ð13Þ

The regularization filtering:

∑n−1
k=1dk,k+1

n
, ð14Þ

dk−1,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψi‐1 −Ψið Þ2 + Φi −Φi+1ð Þ2

q
: ð15Þ

Compared with the strict definition, the less strict defini-
tion removes the requirement: −105 <Φ < −45. Based on the
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Figure 6: (a) The ROC of BERT-PPII model with different sliding window sizes on the balanced Strict_data test set, WS_9 means that the
number of amino acid residues is 9. (b) The ROC plots of BERT-PPII model with different sliding window sizes on the balanced NonStrict_
data test set.

7BioMed Research International



above the definitions of the strict and less strict, we obtained
the strict and less strict PPII helix structure datasets.

We used the sliding window technique [34] to select
sequences as input samples. Assuming a protein sequence
of length L, we can obtain 2m + 1 protein sequence fragment
to represent a single amino acid sample. So, the number of
samples is L. Given the sliding window size is 13, the positive
samples (PPII helix structure) and negative samples (non-
PPII helix structure) are shown as in Figures 4(a) and 4(b).

For the problem of protein secondary structure identifi-
cation, we predict the PPII helix based on sample center res-
idues, since the prediction results relate to the information of
the neighbor amino acid residues. The datasets processed by
the sliding window are divided into training sets, validation
sets, and test sets. Table 1 is the dataset under strict defini-
tion (Strict_data), and Table 2 is the dataset under less strict
definition (NonStrict_data).

To solve the serious imbalance problem between positive
and negative samples, we employ the under-sampling
method to randomly select the same number of negative

samples as the positive samples in the original training data.
We utilize both the negative samples and the positive sam-
ples as the training data. Furthermore, the training data is
divided into training set and validation set, and their ratio
is 4 : 1. The training set, the validation set, and the test set
form a balanced dataset.

3.2. Analysis of Amino Acid Composition. We investigate the
PPII helix structure and the non-PPII helix structure
according to the relative frequency of the amino acid resi-
dues located in the center position of the PPII helix. In this
study, the relative frequency of the various amino acids in
the dataset is shown in Figure 5. It shows that A, E, L,
and P are the amino acids in the PPII helical structure. A,
G, L, and V are the main amino acids in the non-PPII helix
structure. Compared with the non-PPII helix structure,
amino acid P appears more frequently. Except the Proline
(P), the other amino acids have no obvious characteristic
in these two kinds of structure. The relative frequencies of
the P in the middle of the PPII helix structure is about five
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Table 3: The Comparative experiments of the BERT-PPII with different n-gram channel combinations on a balanced Strict_data test set.

Dataset Window size Sens Spec MCC ACC

Stirct_data

3_kernel 0.636 0.846 0.491 0.741

3_4_kernel 0.644 0.847 0.501 0.745

3_4_5_kernel 0.661 0.841 0.510 0.751

3_4_5_6_kernel 0.610 0.871 0.498 0.741

3_4_5_6_7_kernel 0.640 0.854 0.510 0.747
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times more than that in the middle of the non-PPII helix
structure. Therefore, P can distinguish the PPII helix struc-
ture and the non-PPII helix structure effectively. Although
P accounts for a large proportion, not all PPII helical struc-
tures contain P.

3.3. Evaluation Criteria. In this study, we adopt four com-
monly used metrics including sensitivity (Sens), specificity
(Spec), accuracy (ACC) and Matthews correlation coefficient

(MCC) to evaluate the performance. Their definitions are
shown as follows:

Sensitivity =
TP

TP + FN
, ð16Þ

Specif icity =
TN

TN + FP
, ð17Þ
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Figure 8: (a) The ROC plot of the BRET-PPII model on the Strict independent test set; (b) The ROC plot of the BERT-PPII model on the
NonStrict independent test set. TPR represents the rate that is correctly judged to be positive, and FPR represents the rate that is wrongly
judged to be positive.
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Accuracy =
TP + TN

TP + FP + TN + FN
, ð18Þ

MCC =
TP ∗ TN − FP ∗ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp :

ð19Þ
Sensitivity represents the proportion of the positive sam-

ples which are correctly predicted. Specificity represents the
proportion of the negative samples which are correctly pre-
dicted. ACC indicates the proportion of correctly classified
samples; MCC represents the correlation coefficient between
the observed category and the predicted binary classification.
Its range is [−1,1]. We will get a better prediction result,
when the MCC value is close to 1. TP represents the true
positive. It is the number of positive samples correctly pre-
dicted. TF represents the true negative. It is the number of

negative samples correctly predicted. FP represents the false
positive. It is the number of negative samples incorrectly
predicted. FN represents the false negative. It is the number
of positive samples incorrectly predicted. AUC is the area
under the ROC curve. We evaluate the generalization perfor-
mance of the algorithm model based on AUC, and the value
of a robust model is close to 1.

3.4. Optimal Sliding Window. To obtain the optimal win-
dow, we set up comparison experiments to measure the pre-
diction performance with different windows. In this
experiment, the step length is 2, and its value range is [11,
21]. The ROC of BERT-PPII model on the balanced Strict_
data dataset and the NonStrict_data dataset is shown in
Figures 6(a) and 6(b), respectively. Figure 6(a) shows that
the model has the best performance with the window size
of [15, 17] and the AUC is 0.827. Figure 6(b) shows that
the model has the best performance with the window size
of [13, 19] and the AUC is 0.783. Usually, the training time
increases when the window size becomes. As a result, we set
the window size as 15.

3.5. The Optimal Convolutional Kernel Combinations. To
obtain the optimal channel number, we design the compar-
ative methods combined with different n-gram channels as
follows:

(1) 3_kernel: contains 3-gram CNN channels

(2) 3_4_kernel: a combination of 3-gram and 4-gram
CNN channels

(3) 3_4_5_kernel: a combination of 3-gram, 4-gram, and
5-gram CNN channels

(4) 3_4_5_6_kernel: a combination of 3-gram, 4-gram,
5-gram, and 6-gram CNN channels

(5) 3_4_5_6_7_kernel:a combination of 3-gram, 4-
gram, 5-gram, 6-gram, and 7-gram CNN channels

We test these five methods on the balanced Strict_data
dataset. The ROC curves are shown in Figure 7, and other
performances are shown in Table 3. The experimental
results show that the 3_4_5_kernel method has the best per-
formance, in the range of [0.2,0.7] of FPR and the range of
[0.7,1.0] of TPR, which is the most meaningful part for per-
formance comparison. We use the 3_4_5_kernel method in
the following experiments.

3.6. Predictive Performance Experiments on an Independent
Test Set. To further validate the generalization performance,
we conduct the experiments on the independent Strict_data
dataset and Nonstrict_data dataset. The ROC curves are
shown in Figures 8(a) and 8(b). The AUC value of the
BERT-PPII model is 0.827 on the independent Strict_data
dataset, and the value is 0.783 on the independent Non-
Strict_data dataset.

3.7. The Comparative Experiments. In this paper, we com-
pare BERT-PPII method with the following methods. To
predict PPII helices on a balanced dataset, Siermala et al.

Table 4: The comparative experiments on balanced Strict_data
dataset.

Methods Sens Spec MCC ACC AUC

ANN [25] 0.749 0.736 0.485 0.742 0.742

SVM [26] 0.673 0.841 0.493 0.744 0.822

RF 0.738 0.841 0.554 0.776 0.776

KNN 0.558 0.739 0.302 0.648 0.648

FAD-BERT [19] 0.660 0.821 0.492 0.741 0.752

EECL [10] 0.765 0.776 0.540 0.770 0.770

Adapt_Kcr [40] 0.792 0.767 0.559 0.779 0.855

BERT4Bitter [20] 0.661 0.825 0.493 0.744 0.762

OUR 0.661 0.838 0.198 0.834 0.826

Table 5: The comparative experiments on balanced NonStrict_
data dataset.

Methods Sens Spec MCC ACC AUC

ANN [25] 0.701 0.734 0.435 0.717 0.742

SVM [26] 0.629 0.789 0.423 0.709 0.822

RF 0.681 0.810 0.490 0.746 0.746

KNN 0.636 0.639 0.275 0.637 0.648

FAD-BERT [19] 0.581 0.797 0.411 0.732 0.733

EECL [10] 0.748 0.724 0.472 0.736 0.736

Adapt_Kcr [40] 0.751 0.736 0.487 0.744 0.823

BERT4Bitter [20] 0.590 0.798 0.397 0.695 0.743

OUR 0.559 0.833 0.219 0.824 0.826

Table 6: The comparative experiments with on unbalanced Strict_
data dataset and NonStrict_data dataset.

Dataset Methods Sens Spec MCC ACC

Strict_data
PPIIPRED 0.38 0.98 0.37 0.971

OUR 0.30 0.99 0.44 0.980

NonStrict_data
PPIIPRED 0.43 0.97 0.38 0.949

OUR 0.30 0.99 0.43 0.966
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[25] employs an artificial neural network (ANN), and Wang
et al. [26] adopt a support vector machine (SVM). In con-
trast, O’Brien KT [30] proposed the PPIIPRED model, and
it predicts PPII helix using a bidirectional recurrent neural
network (BRNN) on an unbalanced dataset. We conduct
the comparative experiments on both the balanced and

unbalanced datasets, respectively. The experimental results
are shown in Sections 3.7.1 and 3.7.2, respectively.

3.7.1. The Comparative Experiments on a Balanced Dataset.
This section conducts the comparative experiments on the
balanced dataset and the comparative methods including
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Figure 9: (a) Performance comparison between our algorithm and PPIIPRED on (a) Strict_data dataset and (b) NonStrict_data dataset,
respectively.
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ANN [25], SVM [26], random forest (RF), K-Nearest Neigh-
bor (KNN), FAD-BERT [19], EECL [10], Adapt_Kcr [40],
and BERT4Bitter [20]. All comparative methods use one-
hot to encode the amino acid residues. The evaluation
metrics are shown in Tables 4 and 5. On the dataset Strict
dataset, compared to the best performing support vector
machine algorithm (SVM), the BERT-PPII model improved
the ACC value by 9.0% and the AUC by 0.4%, as shown in
Table 4. On the NonStrict dataset, compared to the best
performing support vector machine (SVM), the BERT-PPII
model improved the ACC value by 11.5% and the AUC by
0.4%, as shown in Table 5. The BERT-PPII model has the
best performance in predicting the PPII helix.

3.7.2. The Comparative Experiments on an Unbalanced
Dataset. PPIIPRED model [30] uses a bidirectional recurrent
neural network (BRNN) to predict the PPII helix, and we
employ PPIIPRED model as the comparative method on
the unbalanced dataset. We divide the unbalanced dataset
(Strict_data, NonStrict_data) into training set, validation
set and test set, and their ratio is 3 : 1 : 1. The experimental
result is shown in Table 6 and Figure 9, and its shows that
our model outperforms PPIIPRED in predicting the PPII
helix. On the Strict_data dataset, the Spec, MCC, and ACC
values of the proposed method are 0.99, 0.44, and 0.980,
respectively. Compared to the PPIIPRED method, the values
of Spec, MCC, and ACC have been improved about 1%, 7%,
and 1%, respectively. On the NonStrict_data dataset, the
Spec, MCC, and ACC values of the proposed method are
0.99, 0.43, and 0.966, respectively. Compared to the PPII
PRED method, the values of Spec, MCC, and ACC have
been improved about 2%, 5% and 1.7%, respectively. The
above experiments show that our method can achieve the
best performance in predicting the PPII helix structure.

4. Conclusions

The PPII helix plays a very important role in many biochem-
ical processes, and it is necessary to quickly and accurately
predict the PPII helix. However, it is a time-consuming
and expensive work to identify PPII helix using traditional
physical and chemical experimental methods. In this study,
to some extent, protein sequences also have their own
arrangement motifs, which constitute the structure of pro-
teins in space and function in organisms. Due to the protein
sequences are similar to the natural language, we can apply
the natural language technology to the area of protein
sequences. We propose a new model BERT-PPII to identify
the PPII helix. The BERT-based BERT-PPII model automat-
ically generates the feature descriptors according to the orig-
inal amino acid sequence, and it does not need any system
design and feature coding selection. We use BERT encoding
mechanism to generate the CLS vector as the protein
sequence feature and fuse it and the CNN local feature vec-
tor to enhance feature expression. A large number of exper-
iments have shown that BERT-PPII achieves a better
performance than the existing methods. In particular, our
method is better than the PPIIPRED on the strict dataset.
The ACC value of our method is 1% higher than that of

PPIIPRED on the unbalanced datasets. Accuracy (ACC) is
2% higher than PPIIPRED on less stringent datasets. The
high prediction performance of our model BERT-PPII
enables it to provide robust performance and distinguish
between PPII helix and non-PPII helix.
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