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Body auscultation is a frequent clinical diagnostic procedure used to diagnose heart problems. The key advantage of this clinical
method is that it provides a cheap and effective solution that enables medical professionals to interpret heart sounds for the
diagnosis of cardiac diseases. Signal processing can quantify the distribution of amplitude and frequency content for diagnostic
purposes. In this experiment, the use of signal processing and wavelet analysis in screening cardiac disorders provided enough
evidence to distinguish between the heart sounds of a healthy and unhealthy heart. Real-time data was collected using an IoT
device, and the noise was reduced using the REES52 sensor. It was found that mean frequency is sufficiently discriminatory to
distinguish between a healthy and unhealthy heart, according to features derived from signal amplitude distribution in the time
and frequency domain analysis. The results of the present study indicate the adequate discrimination between the
characteristics of heart sounds for automatic detection of cardiac problems by signal processing from normal and abnormal
heart sounds.

1. Introduction

Heart auscultation is a technique used to evaluate the sound
wave generated by the heart’s mechanical motion [1]. This is
a screening technique that is often employed as the main
diagnostic tool for heart diseases [2]. Heart disease is a lead-
ing reason of death around the globe. In 2016, an anticipated
17.9 million people died prematurely as a result of heart dis-
ease, accounting for 31% of all fatalities globally [3]. Heart
failures and strokes account for 85% of all cardiovascular
disease-related fatalities worldwide [4]. The high death rate
is a result of cardiovascular abnormalities that have to be
detected early to minimize long-term consequences and
heart death prematurely. Most people in their lifetime expe-
rience irregular heartbeat or abnormal heartbeat which is
known as arrhythmias. Although arrhythmia is harmless in
most instances, increased arrhythmias may be caused by

other types of heart disease. Heart diseases can be catego-
rized into three different types. Arrhythmia is caused by
problems associated with the electrical system [5]. The
electrical system regulates a steady heartbeat. Other heart
diseases might be caused due to disruption in blood circula-
tion or due to congenital defects [6]. Stroke, heart attack,
and cardiomyopathy are examples of such diseases. One of
the common electric disorders of the heart is arrhythmias.
This begins in the upper chamber’s atria. This includes atrial
fibrillation (AF or Afib). The upper chambers of the heart
beat 300-400 times in a minute. People with AFib experience
symptoms like filling up with fluid, shortness of breath, and
swelling of hands and legs. They are five times more likely to
have a cardiac arrest. Another type of electrical disorder that
is similar to AFib is Atrial Flutter (AFL) [7]. This is similar
to AFib as it produces a quick pulse in the atria. AFL is trig-
gered by a single circulating electrical wave about 300 times
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in minutes. The next category of heart disease is circulatory
disorders. Myocardial infarction or more commonly known
as heart attack is a circulatory disorder. Sudden heart failure
can be caused by cardiac diseases which are affected by
external constraints. There must be no time delays in the
detection of cardiovascular diseases as they are censorious.

The heart sounds can have indicators of the current
disorders or warnings about any forthcoming disorder. The
indicators can be present randomly throughout the signal
if they may be occurring all the time. This type of nonlinear-
ity of heart sounds can be presented using a discrete wavelet
transform (DWT). The digital recording of the heart sound
that is generated with an electronic stethoscope is called
PCG [8]. The technique of listening to the heart sound with
a stethoscope is called cardiovascular auscultation which is a
simple way of diagnosis. It is used to examine the heart’s
functioning and performance. The opening and shutting of
the atrioventricular, mitral, and tricuspid valves causes
unequal blood pressure, high velocity, and slowing of blood
circulation.

One of the leading causes of death across the world is
cardiac disease [9]. It has to be identified at an early stage
in order to have a better cure [10]. However, the lack of
medical professionals in developing countries is worsening
the problem [11]. While stethoscopes provide easy, efficient,
and cheap ways for the physical examination of the human
heart, trained medical experts are required. Mortality in
rural areas can be prevented through an early and quick
automated diagnosis of cardiac diseases. Therefore, a signal
analysis-based heart sound analysis can be a significant
way for the detection of cardiac diseases without requiring
prior medical or professional training [8]. Primary health
care centers may benefit from this analysis to detect early
signs of cardiac diseases. Some investigations have been
carried out toward the automated detection of diseases. This
was done by the analysis of auscultation. Particularly in
developing countries, the shortage of medical experts caus-
ing mortality can be reduced.

The significant contribution of this paper is finding out a
way to differentiate between normal and abnormal hearts for
automated screening of cardiac disorders. Various domains
were studied in order to comprehend and analyze the varia-
tions in heart sound. This work is aimed at isolating cardiac
and pulmonary sounds. Modulation filters are added to the
time-frequency representation of the initial signal reported
in the chest. Then, an iterative wavelet decomposition and
reconstruction filter algorithm are applied. The lung signals
are taken as noise, and all signals are segregated. Then, the
signal-to-noise ratio is determined.

The people from rural areas who have no immediate
access to any medical care can be benefited from this study.
Body auscultation is the basic diagnostic process held by an
expert. But in rural areas, there is a scarcity of expert
doctors. In that case, this study titled “Wavelet and Spectral
Analysis of Normal and Abnormal Heart Sound for Diag-
nosing Cardiac Disorders” came into action. We can follow
the working overview of the proposed system given in
Figure 1. By using the proposed system, rural people can
get diagnosed whether his/her heart sound is normal or

abnormal even without consulting an expert. This proposed
system can be used as a primary diagnostic center. If heart
sound is found abnormal, he/she will be needed to consult
an expert in this field. If sound comes normal, then he will
be relieved of stress, as it is very hard and costly for rural
people to come every time to a big city and meet a doctor.
This system can come in handy in the primary diagnosis
of diseases related to the heart.

The paper is organized as follows: Introduction is
described in Section 1. Literature Review is explained in Sec-
tion 2. Section 3 explains Methodology. Then, in Section 4,
Result and Discussion is explained in detail. Finally, Conclu-
sion is described in Section 5. The future work plan has been
described in Section 6.

2. Literature Review

Previous literature provides us with some insights into the
research areas associated with the early detection of heart
failures. Automatic heart sound categorization is a potential
study area that is now being explored using signal analysis
and artificial intelligence techniques. Auscultation of the
heartbeat is still inadequate for diagnosing some cardiac
diseases [12]. It does not provide the analyzer with both
qualitative and quantitative information about the phono-
cardiogram signals [13, 14]. Singh et al. [10] compared
healthy heart sounds and unhealthy heart sounds. The
amplitude and frequency element probability distributions
were calculated. This was accomplished through the use of
signal processing. The results showed that there was
adequate differentiation for automated detection of heart
diseases using signal processing. Dey et al. [2] used discrete
wavelet transform (DWT) on a spectrogram to evaluate
and identify the characteristics of the different approximated
components. An 82% accuracy was achieved through this
method. Kumar et al. [15] used the same method for analyz-
ing the segmented signals, but an algorithm was used to
assess only the S3 components of heart sound, and segmen-
tation was performed. The sensitivity was 90.35%, and the
specificity was 92.35%. The accuracy of this analysis was
shown by Huiying et al. [16] who suggested a 93% correct
ratio by using a heart sound segmentation algorithm. It also
used DWT to produce envelopes of approximations from
the original signal.

The PCG audio recordings of patients were used to
expert chronic heart failure (CHF) by Gjoreski et al. [17].
The results which determined CHF phases were compared,
and an accuracy of 92% was achieved. The time and the
spectral analysis of the signal were used in this research.
For continuous observation of the heart, an automated
CHF detection device can be calibrated.

Based on wavelet analysis as well as random forest
identifier, Qiao et al. [18] introduced a method to classify
adolescents’ heart sound data. The heart sound segmenta-
tion algorithm was used to determine the positions of S1,
systole, S2, and diastole, S3. The random forests provided
the most accurate classification results. A 3.01% improve-
ment was observed compared to the normal time and fre-
quency analysis of the heart. After that, Cheng and Zhang
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[19] suggested a self-construct wavelet basis for heart sound
denoising. Compared to other traditional wavelets, the
experimental results suggested that a heat sound wavelet
can filter out the noise while preserving the main character-
istics of the signal. A lower mean square error and a higher
signal-to-noise ratio were observed.

Some of the key challenges in the classification of heart
sound are the segmentation of sounds, creating the distinc-
tion between heart and lung sound, and the time shift
changes of wavelet transformation. The heart sound seg-
mentation algorithm was used usually, but Das et al. [20]
proposed an unsupervised way to detect the positions of
S1, and S2 from phonocardiogram (PCG) recordings. The
method offered a maximum FI-score of 98% for normal data
and 92.5% for abnormal data. Bahreini et al. [21] suggested
the use of fractal dimension to identify sounds S1 and S2
using a hidden Markov model. To overcome the challenge,
Tsai et al. [22] showed a novel periodicity code deep autoen-
coder (PC-DAE) approach to create distinction between the
heart and lung sounds. However, the extension of this tech-
nique requires additional physiological data that is ECG.

Li et al. [23] proposed another system to distinguish
between coronary heart disease and valvular disease using
wavelet transform. This suggests that there is a necessity to
analyze the heart sounds and make clear distinctions for
future prediction. The empirical wavelet transformation
was divided into 3 modes by Li et al. [24]; a satisfactory rest
of Se was found at a percentage of 94.7%. Furthermore,
Elamaran et al. [25] analyzed the PCG signals and the execu-
tion time of the results was analyzed with Matlab R2016b.
Xiao et al. [26] created a computer-aided approach based
on deep learning to identify congenital heart defects in
children. Using two unique lightweight convolution neural
networks, the heart sounds were analyzed. Dwivedi et al.
[27] provided a critical analysis and an in-depth review of
the ways of automatic identification and classifications of
changes in the cardiac cycle. With the help of mobile tech-
nology, this may be utilized for illness treatment and moni-
toring. Data from the wavelet analysis can be used to train
SVM classifiers for better diagnosis. However, it is important
to ensure that noise is removed to ensure accuracy. The
wavelet threshold denoising method was performed on the
retained modes by Liu et al. [28]. The findings show that

the heart beats’ signal-to-noise ratio (SNR) minimizes the
root mean square error under various SNR situations.

The heart is one of the most vital organs, and sustaining
life is dependent on its ability to beat in a rhythm. Mondal
et al. [29] proposed a novel heart sound denoising technique.
This introduced a combined framework of wavelet packet
transform (WPT) and singular value decomposition (SVD),
and the results were found to be satisfactory. Glazova et al.
[30] created a monitoring system remotely that monitored
asthma patients by analyzing the duration of the tracheal
sound. However, the system could not be made fully autono-
mous. Li et al. [31] applied machine learning algorithms to
heart rate variability features from the ECG signal, but the
model could be extended to predict SVT events as well.
Mishra et al. [32] analyzed the heart sound of the wavelet
domains from the screening of cardiac disorders. The
detailed approximation coefficient of DWT was analyzed to
differentiate between the normal and abnormal heart sounds.
Mohammad-Taheri et al. [33] also analyzed a VT and VF
detection using the ECG signal’s slope. 70% of the dataset
was selected for training, and the rest of the dataset was used
for testing. Yaseen et al. [9] examine multiple classifications
of the heart sound. It suggests an enhanced automated classi-
fication system for cardiac diseases. Discrete wavelet trans-
form (DWT) was used for feature extraction from the heart
sound signal. For the improvement of accuracy, DWT fea-
tures were used for categorization and training using DWT.

Heart sound measured
by stethoscope

MATLAB reads the
excel input and plots

the desired signal
graph

PLX-DAQ software
converts data from
serial monitor to

excel version

Arduino Uno read the
signal and plot the

signal by serial plotter

REES52 sensor filter
the amplified signal

Heart sound
amplified by electret

condenser
microphone

Figure 1: Working overview of the proposed system.

Figure 2: Complete designed model.
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(a) Signal into Matlab from REES52
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(b) Wavelet soft thresholding s = 0:5
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(c) Wavelet soft thresholding s = 1
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(d) Wavelet soft thresholding s = 1:5

Figure 3: Continued.
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This method showed a 97% accuracy in diagnosing cardiac
disorders.

The available algorithms and the experimental data are
in a positive direction. Therefore, there is more scope for
development in the direction of creating effective models
for heart sound-based automated cardiac illness detection.
Several methodologies and techniques used by authors prove
that there are significant methods that can be employed to
find the heart sound across various age groups. This results
in early detection and regular monitoring. Some of the tech-
niques included machine learning, deep learning, wavelet
analysis, and analysis of PCG signals. However, the limitation
that is existent in almost all papers included the challenger of
differentiation between heart and lung sound. The differenti-
ation between a healthy heart and an unhealthy heart is done
through some parameters. This suggests that there is a gap in
the previous literature in examining and differentiating
between heart and lung sounds.

3. Methodology

3.1. Modeling Circuit Device and Data Collecting Process. In
this section, the required steps are described to construct the
device to collect real-time data. The main component of the
circuit stethoscope has been used in this work, and it is
essential to collect generated data from the heart. The
stethoscope has chest parts in the form of rods that are used
(shown in Figure 2) to listen to internal noises, such as
heartbeats. An electret condenser microphone is chosen to
construct the circuit to amplify the signal measured by the
stethoscope. Noise has to be removed from the original sig-
nal. In this case, a REES52 sensor is used to filter out the
noise from the amplified signal. The vital part of the project
is collecting noise-free data from the noisy heart sound. An
Arduino Uno is used to process the data. Matlab can read

those excel datasets and interpret the sound to signal. The
signal was then denoised and ready for further analysis to
extract some features of the signal so that we can compare
the normal heart sound with abnormal heart sound and
come to a decision whether a person is healthy or unhealthy
by simply collecting his heart sound.

The total phenomenon has been shown in the block dia-
gram given in Figure 1.
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3.2. Data Acquisition. After successfully assembling and
constructing the circuit, it is programmed to operate and
collect data from the heart. The auscultation that is done
with an electronic stethoscope is a cost-effective method.
The characteristics of the heart sounds on various domains
can be explored using this device to identify more differences
between healthy hearts and cardiac patients. This paper
proved an analysis of heart sounds using various parameter
analyses for the automated detection and screening of car-
diac disorders. We collected real heart sound data from both
medically fit and unfit people. By doing some spectral anal-
ysis, we come to a conclusion that there are several differ-
ences in feature between healthy and unhealthy sounds.

3.3. Data Description. There are accurate live audio record-
ings of normal and abnormal heart sounds for finding out
the relation of healthy and unhealthy heart sounds to make
common cardiac diagnoses. Unhealthiness means abnormal
heart rhythms (arrhythmia), heart muscle disorders (cardio-
myopathy), congenital defects (problems with the formation
of the heart and blood vessels that are present from birth),

atrial fibrillation, sick sinus syndrome, sinus tachycardia,
heart block, heart failure, etc. If any of these problems hap-
pens, then the patient’s heart sound becomes weak which
leads to a decrease in amplitude than a person who is totally
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free of those diseases. Description of some of the healthy and
unhealthy patients from whom we took our heart sound sig-
nals is as follows:

(1) Abnormal sounds

(i) 24-year-old man, no symptoms, Autism Spec-
trum Disorder (ASD). Upon examination, the
pulses are normal, and the heart’s activity is
maximum and maybe slightly elevated towards
the left sternal border. Observed the left top
sternal margin

(ii) 23-year-old man, asymptomatic, Patent Ductus
Arteriosus (PDA). The examination results in
noticeably elevated radial and femoral pulses
as well as a significantly elevated heart rate.
The heart activity was also slightly raised.
Observed the left top sternal margin

(iii) Aortic stenosis, regurgitation, and an elevated
heart rate and irregular pulses in a 20-years-
old patient. He seems worn out and ill. No prior
symptoms, normal historical development in
terms of growth

(2) Normal sounds

(i) 23-year-old girl, no symptoms, and in good con-
dition, regular medical examination and regular
heartbeat and pulse. Used the stethoscope’s dia-
phragm to listen at the left upper sternal border

(ii) 20-year-old male. No symptoms, standard
physical examination, regular bodily habits,
normal heartbeat and pulse, and attended to
all four regions. Due to microphone noise on

the skin, there are a few crackles; listened to
the recurrent noises

(iii) Boy, 19, without symptoms. Routine medical
examination of cardiac impulse and pulse that
are normal. Listened to the upper left sternal
boundary

The comparison of healthy and unhealthy person’s heart
sound is shown in Result and Discussion. There are clear
findings that a healthy person’s heart sound is always greater
in amplitude, variance, and energy than that of an unhealthy
person. It is understandable that if amplitude is greater, then
a healthy man’s mean value will also be greater. And these
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mean, variance, and energy are differentiating criteria
between healthy and unhealthy people.

3.4. Successive Denoising Process. Figures 3(a)–3(e) show the
detailed denoising process step by step. The REES52 sensor
was used to filter out the noise from the amplified signal of
the stethoscope. Then, this signal is taken as input to Matlab.

Wavelet decomposition offers a higher signal analysis.
Wavelet decomposition level was chosen as per the criteria
of a noise-free signal. After wavelet transform, the majority
of the noise data and very little signal data are found in the
high-frequency subbands. Here, the various subbands are
subjected to gentle thresholding. Lastly, wavelet reconstruc-
tion of the signal was attained by wave-rec.
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Soft thresholding is used here so that our information
does not get cut out unexpectedly. Only the noise signal will
be cut out from the original heart sound. Different level of
thresholding explains throughout the steps of noise removal
from the signal. It is the second phase of noise removal as
the first phase of noise removal was done by REES52.

3.5. Parameters for Relative Analysis of Healthy and
Unhealthy Heart Sound

(1) Signal: two different signals are found from healthy
and unhealthy subjects. They differ in amplitude
and frequency. Healthy signals show much higher
amplitude than unhealthy heart signals

(2) Spectrogram: healthy heart sound shows higher mag-
nitude with constant variation in magnitude as time
progresses. On the other hand, unhealthy subjects
are more consistent with magnitude and small in
value

(3) Normal distribution: according to the normal distri-
bution, data that are close to the mean happen more
commonly than data that are far from the mean.
Symmetric with respect to the mean

(4) Detailed coefficient (cD): denoising of collected heart
signals is done so that analysis of heart sound is
accurate and efficient. Symlet wavelet levels 1 to 4
are being used here. Healthy and unhealthy heart
sounds showed a difference in character and were
easy to differentiate between them

(5) Approximation coefficient (cA): noise-free signal
wavelet levels are much more accurate than noisy

signal symlet levels. Healthy and unhealthy signals
present different characteristics even after being
denoised. So, we can count the approximation coef-
ficient of heart sound also as a differentiating factor
between healthy and unhealthy people

So, we came to the conclusion that healthy and
unhealthy sound signals show different characteristics and
there are enough parameters to differentiate between them.
It encourages us to analyze further to extract many more
differences between them. We found some factors to differ-
entiate between them as follows:

3.5.1. Mean Value. The threshold level is found about 0.07-
0.09 to differentiate between them. If a signal poses a higher
mean value of 0.09, then it is healthy; if it is less than 0.07,
the person is unhealthy.

3.5.2. Variance. If the variance of a heart sound is above
0.015, it is healthy. On the other hand, if the variance value
is less than 0.01, it will be tagged as unhealthy.

3.5.3. Energy of DWT. The energy of discrete wavelet
transform coefficient is derived by the simple equation of
energy, energy =∑n

i=1ðxÞ2/n. Here, n = no:of heart sample.
x = signal amplitude. We found the threshold value of
2e − 08 to 0:5e − 05 for differentiating between them.
Unhealthy samples’ energy is much lower than the energy
of healthy samples. So, this energy is being counted as a dif-
ferentiating factor between healthy and unhealthy samples
of the heart sound. If a signal has more than 0:5e − 05 value,
then the person is healthy, and if it is less than 2e − 08, the
person is unhealthy.
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4. Result and Discussion

The wavelet domain was studied to understand and interpret
the variations in heart sound. The characteristics of the heart
vibrations are analyzed using the signal and discrete wavelet
transform analysis. In this section, real-time data collected
by the proposed device will be presented with appropriate
figures. Real data was found through a stethoscope with
some electronic devices. Body auscultation is one of the most
important clinical testing methods for the examination of
cardiac disorders. This medicinal approach is inexpensive

and efficient and allows trained physicians to recognize
and analyze the sound of the heart for diagnosis. But in
the rural areas of Bangladesh, there is a scarcity of medical
experts who can give a proper interpretation of heart sounds.
To overcome this obstacle, the stethoscope heart sound was
converted into an electrical signal via a condenser micro-
phone and then PLX-DAQ tools. PLX-DAQ converted serial
monitor data of Arduino into Excel data file. Matlab inter-
preted the sound to signal. The denoised signal was then
plotted, and a comparison of the normal heart sound with
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abnormal heart sound was conducted. Using the visual com-
parison, the decision on whether a person is healthy or
unhealthy was taken by simply collecting his heart sound.

4.1. Signal Analysis. Figure 4(a) is an electrical signal con-
verted from sound recorded from a healthy person. Heart
sounds were interpreted as electrical signals in the time
domain. This representation of sound can extract various
features of sound. It can be seen from the heart’s lub dub
in these figures. Figure 4(b) represents the electrical signal

recorded from an unhealthy person in the time domain.
The difference between healthy and unhealthy heart sounds
in amplitude was seen. A clear visualization can be seen of
the differences between healthy and unhealthy subjects.
Figure 4(c) shows such a comparison, and the variation in
amplitude and frequency of these signals can be seen. A
healthy person shows much higher amplitude than an
unhealthy person’s signal. Unhealthy and healthy sound
visual signals might look so close, but there will always be
differences in their magnitude as to mean value.
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4.2. Spectrogram Analysis. Quadratic time-frequency analy-
sis methods produce spectrograms, which are 2D matrices.
Figures 5 and 6 show such spectral signals from healthy
and unhealthy subjects. Figure 6 shows the intensity of the
frequency content of the signal as time progresses. We can
see that Figure 5 shows a higher magnitude with constant
variation in magnitude as time progresses. Figure 6 is more
consistent with magnitude and small in value. We have seen
lower magnitude values all around the spectrogram. A clear

indication of differences between these figures is noticeable.
Singh et al. [10] found a similar result.

4.3. Normal Distribution. The probability distribution of
heart sounds recorded from a healthy and unhealthy subject
with normal distribution predicts the probability of subjects
being healthy or unhealthy. Figures 7 and 8 show the prob-
ability distribution of healthy and unhealthy subjects. The
normal distribution is a continuous probability distribution
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that has a bell curve probability density function. It is clearly
seen that the probability distribution of healthy sample
(Figure 7) has a higher density where the unhealthy signal
(Figure 8) has a lower density which indicates clear discrim-
ination among healthy and unhealthy samples. That means,
it is evident that probability distribution analysis is an
important parameter for diagnosing cardiac diseases easily.

4.4. Detailed Coefficient (cD): Wavelet Family Sym4 Is Used
Here. The detailed coefficient for healthy and unhealthy sub-
jects: Figures 9 and 10 show detailed coefficients taken from

a healthy and unhealthy person’s cardiopulmonary system,
respectively. The gathered cardiac signals are denoised so
that future analysis of heart sounds can be precise and effi-
cient. To improve responsiveness, symlet wavelet families
are employed. Numerous symlet levels have been tested
ranging from 1 to 4 and discovered that level 4 produced
the best results. These graphs highlight the differences
between these two signals. As a result, we may use the
detailed coefficient of heart sound to distinguish between
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healthy and unwell persons. Figures 11–14 depict four dis-
tinct levels of the symlet wavelet family employing precise
coefficients for the discrete wavelet transform. As the level
goes from 1 to 4, the signal’s accuracy improves, and unde-
sirable noise is efficiently eliminated. The variations in levels
have been noticed before and after denoising. Noise-free sig-
nal wavelet levels are far preferable to noisy signal symlet
levels. Before and after denoising, good and unhealthy sig-
nals exhibit distinct properties.

4.5. Approximation Coefficient (cA).Wavelet family Sym4 is
used here. Approximation coefficient of a healthy and
unhealthy subject: Figures 15 and 16 show the denoised
approximation coefficient using Sym4 level 4 of a healthy
subject and the denoised approximation coefficient using
Sym4 level 4 of an unhealthy subject, respectively. Here,
approximation coefficients for the heart sound signals of
a healthy and unhealthy person are retrieved. To ensure
the analysis of heart sound is precise and effective, the
gathered cardiac signals are denoised. Here, symlet wavelet
families have been used for improved response. Various
symlet levels have been used from level 1 to level 4, and
level 4 produced the best results. These figures demon-
strate the distinct disparities between these two signals.
As a result, the heart sound approximation coefficient
may be used to distinguish between healthy as well as
unhealthy individuals. Figures 17–20 display four distinct
levels of the symlet wavelet family utilizing the discrete
wavelet transform’s exact coefficients. From level 1 to level
4, the accuracy of the signal improves, and unnecessary
noise is effectively eliminated.

Additionally, the variations in levels before and after
denoising are visible. Compared to noisy signal symlet levels,
noise-free signal wavelet levels are substantially more
accurate.

After being denoised, good and sick signals exhibit dif-
ferent features. The heart sounds are converted from the
spatial domain here to the wavelet domain in the suggested
wavelet analysis to obtain more noticeable characteristics.
The wavelet initial level decomposition of the heart sound
was performed using the symlet filter. The heart sound sig-
nal is separated into approximate and precise coefficients
using a wavelet. A single number has been computed as a
characteristic feature because the range of the amplitude dis-
persion of the signal in the time and wavelet domain exhibits
discriminating behavior for screening of heart diseases. The
value of energy of wavelet coefficients can be able to distin-
guish between healthy and unhealthy heart sounds because
the range of amplitude is varied.

Therefore, the mean, variance, and energy value of the
heart sound signal’s wavelet coefficients are taken into
account when determining a person’s level of health.

4.6. Mean Value Comparison and Threshold Determination.
Figure 21 shows the mean value comparison between
healthy and unhealthy subjects. Recorded sound signals
from healthy and unhealthy people show a wide variety of
mean values. Although we have successfully found a thresh-
old value range as an isolation line between healthy and
unhealthy subjects, the mean value is not the same for all
healthy values. Mean value variation is found due to differ-
ent gender, age, body structure, etc. So, when we can collect
the heart sound data through the data acquisition technique
described above, then by finding out the mean value of the
recorded sound signal, we can tell whether the person is
healthy or unhealthy. The threshold level is found about
0.07-0.09 to differentiate between them.

4.7. Variance Comparison and Threshold Determination.
Figure 22 shows the variance comparison between healthy
and unhealthy heart sounds. According to this present anal-
ysis, if the variance of a heart sound is above 0.015, it is
unhealthy. On the other hand, if the variance value is less
than 0.01, it will be tagged as healthy. A similar result has
been observed in [10].

4.8. Energy of DWT Coefficient. Figures 23 and 24 show the
energy of DWT coefficient of healthy and unhealthy subjects
and detailed view of energy of DWT coefficient of unhealthy
subjects, respectively. The energy of discrete wavelet trans-
form coefficient is derived by the simple equation of energy,
energy =∑n

i=1ðxÞ2/n. Here, n = no:of heart sample. x = signal
amplitude. We plot the energy for each healthy and
unhealthy sample in Figures 23 and 24 and find out the
threshold value of 2e − 08 to 0:5e − 05 for differentiating
between them. Threshold values of variance, absolute mean,
and energy of DWT for differentiating normal and abnormal
signals have been shown in Table 1. It is seen that unhealthy
samples’ energy is much lower than the energy of healthy
samples. A similar result has been found in [32]. So, this
energy is being counted as a differentiating factor between
healthy and unhealthy samples of the heart sound.

5. Conclusion

Body auscultation is now a key and useful human health
assessment clinical diagnostic procedure. For automated
detection of cardiac diseases, this study introduced heart

Table 1: Range of threshold for automatic cardiac disorder detection to distinguish between normal and abnormal heart sounds.

Features
Maximum value of

abnormal samples for
threshold selection

Minimum value of
Normal samples for
threshold selection

Range for threshold
Feature considered for

separation of healthy and
unhealthy heart sounds

Absolute mean: signal amplitude 0.07 0.09 0.07-0.09 Yes

Variance 0.01 0.015 0.01-0.015 Yes

Energy of DWT 2e − 08 0:5e − 05 2e − 08 – 0:5e − 05 Yes
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sound analysis for differentiation of heart sounds collected
from normal and abnormal subjects using an IoT device.
Features derived from signal amplitude distribution in the
time domain and frequency domain analysis reveal that
mean frequency is discriminatory enough to distinguish
normal and abnormal hearts. The experiment’s findings
indicate adequate heart sound characteristic differentiation
for automated cardiac issue screening employing signal pro-
cessing from healthy/unhealthy heart sounds. The mean
threshold level is found about 0.06-0.09. Above the threshold
value is the healthy subject, and below the threshold value is
the unhealthy subject. To derive discriminatory features
from wavelet heart sound coefficients, the heart sound signal
was converted into the wavelet domain.

6. Future Work

An advanced IoT-based system can be improved so that the
data collected from far areas can easily be transferred to the
server to do the analysis. Then, update information about
the health condition could be supplied to a person. If we find
any abnormality, we can check it earlier before it gets worse.
Many transform techniques can be used for further extrac-
tion of different features in the biomedical field. Artificial
intelligence can be used in this sector for better output and
discriminatory features. Machine learning can also be used
for the accurate diagnosis of cardiac diseases from heart
sounds.

Data Availability

Data can be found in this given repository link https://github
.com/amzadjony96/Heart-Sound-Analysis or contact this
email amzad.hossain01@northsouth.edu.
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