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Osteoporosis is a widespread bone disease that affects million cases annually. The underlying mechanisms behind the progress of
osteoporosis remain enigmatic, which limits detections of biomarkers and therapeutic targets. Hence, this study was aimed at
exploring hub molecules to better understand the mechanism of osteoporosis development and discover the traditional
Chinese medicine potential drugs for osteoporosis. miRNA and gene expression profiles were downloaded from Gene
Expression Omnibus (GEO). Weighted correlation network analysis (WGCNA) was used to identify the key modules for
osteoporosis. DIANA Tools was applied to perform pathway enrichment. A miRNA-gene interaction network was constructed,
and hub miRNAs and genes were distinguished using Cytoscape software. Receiver operating characteristic (ROC) curves of
hub miRNAs and genes were plotted, and correlations with hub genes and osteoporosis-associated factors were evaluated.
Potential drugs for osteoporosis in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform
(TCMSP) were screened, and molecular docking models between these drugs and target genes were showed by AutoDock
tools. Two hub modules, 1 miRNA module and 1 gene module, were identified to be the most strongly correlated with
osteoporosis by using WGCNA. Then, 3 KEGG pathways including focal adhesion, PI3K-Akt signaling pathway, and gap
junction were shared pathways enriched with the miRNAs and genes screened out by WGCNA and differential expression
analyses. Finally, after constructing a miRNA-gene interaction network, 6 hub miRNAs (hsa-miR-18b-3p, hsa-miR-361-3p,
hsa-miR-484, hsa-miR-519e-5p, hsa-miR-940, and hsa-miR-1275) and 6 hub genes (THBS1, IFNAR2, ARHGAP5, TUBB2B,
FLNC, and NTF3) were detected. ROC curves showed good performances of miRNAs and genes for osteoporosis. Correlations
with hub genes and osteoporosis-associated factors suggested implicational roles of them for osteoporosis. Based on these hub
genes, 3 natural compounds (kainic acid, uridine, and quercetin), which were the active ingredients of 192 herbs, were
screened out, and a target-compound-herb network was extracted using TCMSP. Molecular docking models of kainic acid-
NTF3, uridine-IFNAR2, and quercetin-THBS1 were exhibited with AutoDock tools. Our study sheds light on the pathogenesis
of osteoporosis and provides promising therapeutic targets and traditional Chinese medicine drugs for osteoporosis.

1. Introduction

Osteoporosis is the most common bone disease with clinico-
pathological features of low bone mineral density (BMD) and
deterioration of bone microstructure [1]. Osteoporosis affects
up to 40% women, and more than 3 million cases in US suffer

from osteoporosis per year [2]. Bone is a living tissue in which
the bone formation by osteoblast and bone resorption by oste-
oclast are in critical and dynamic balance [1]. Despite the uni-
versality of osteoporosis, the underlying mechanisms related
to its progress are still ambiguous, which severely limits detec-
tions of biomarkers and therapeutic targets.
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MicroRNAs (miRNAs) are short noncoding RNAs able to
regulate gene expression by interacting with the 3′ untranslated
region of target mRNA. Multiple studies have indicated that
various miRNAs are involved in the process of bone metabo-
lism and remodeling. Numerous miRNAs are dysregulated
in patients with osteoporosis, including miR-194, miR-16,
miR-338, miR-2861, miR-223, miR-422, miR-133, miR-21,
miR-186, and miR-3651 [3–8]. For example, miR-194 was
upregulated in osteoporosis patients and may be a promising
biomarker for osteoporosis [4]. In addition, miR-16 was sug-
gested to inhibit osteogenesis by suppressing the expression of
VEGFA [5]. Moreover, miRNAs could regulate several signal-
ing pathways involved in osteoporosis. For instance, miR-133
and miR-203 promote osteogenic differentiation [9, 10]. How-
ever, there is no study comprehensively analyzing hubmiRNAs.
In this study, we aimed to screen key miRNAs and their target
genes by using comprehensive bioinformatics analysis.

Currently, high-throughput sequencing and bioinfor-
matics technology has dramatically improved clinical, bio-
logical, and drug research. Weighted correlation network
analysis (WGCNA) was a widely used computational tool
for identification of hub genes [11]. In the present study,
we constructed a coexpressed network with WGCNA and
identified novel hub miRNAs and genes associated with
osteoporosis. It is well established that traditional Chinese
herbal medicine (TCHM) has been widely applied for thou-
sands of years to treat diverse diseases, including osteoporo-
sis [12]. However, multiple TCHMs have been reported to
exert favourable antiosteoporosis actions through combining
with Western medicine [13]. Herewith, it would be ponder-
able to distinguish the effective TCHM compounds used for
treating osteoporosis. Based on it, this study established the
target-compound-herb network to identify the significant
target-compound.

2. Materials and Methods

2.1. Data Selection. miRNA profiles in GSE74209 and
GSE93883 datasets were downloaded from Gene Expression
Omnibus (GEO). Gene expression data were from GSE7158
and GSE35956 datasets. GSE74209 dataset contained 6 oste-
oporosis and 6 healthy cases. GSE93883 dataset contained 12
osteoporosis and 6 healthy cases. GSE7158 dataset contained
12 osteoporosis and 14 healthy cases. GSE35956 dataset con-
tained 5 osteoporosis and 5 healthy cases. miRNA profiles
from GSE74209 and GSE93883 datasets and mRNA profiles
from GSE7158 and GSE35956 datasets were, respectively,
merged and normalized using “normalization” package in
R. Differentially expressed miRNAs (DEM) and genes
(DEGs) were identified using “limma” package in R.

2.2. Weighted Correlation Network Analysis (WGCNA).
After detecting the outliers, “wgcna” package in R was
applied to construct a WGCNA coexpression network.
Firstly, soft thresholding power β was selected to ensure
scale-free distribution (sale free R2 = 0:9). Secondly, the
coexpression network was constructed based on topological
overlap matrix (TOM). And the cluster dendrogram and
the module colors were plotted to display the modules. For
miRNA, the dissimilarity degree of module Eigengenes
(MEDissThres) was set to 0.25. And the minModuleSize
was set to 30. Modules with these parameters were merged
into a new module. Pearson’s correlation coefficients were
analyzed to exhibit the correlation between clinical traits
and the module. P < 0:01 was seen as significant.

2.3. Functional Enrichment Analysis. DEMs were subjected
to DIANA Tools (http://www.microrna.gr/) to perform
KEGG pathway analysis. “KEGG” package in R was used
to enrich DGE-related KEGG pathways. The signaling path-
ways were seen to be significant when P < 0:05.

2.4. miRNA-mRNA Network Analysis. To examine the rela-
tionship between DEMs and DEGs, “network” package in
R was downloaded. A miRNA-gene interaction network
was constructed using Cytoscape software. The target genes
of miRNAs were predicted by miRWalk.

2.5. Receiver Operating Characteristic (ROC) Analysis for Key
miRNAs and Genes and Correlation with Key Genes and
Crucial Osteoporosis-Related Genes. ROC analysis was con-
ducted to assess the predictive performance of hub miRNAs
and genes, and the predictive values of the area under the
curves (AUCs) of ROC curves specific to hub miRNAs and
genes were calculated. In addition, correlations with these
key genes and vital osteoporosis-associated factors were
calculated to evaluate functional roles of these genes in
osteoporosis.

2.6. Development of Molecule Docking Model. The 2D
structures of chemicals were downloaded from PubChem
database. ChemBio3D Ultra 14.0 software was applied to
draw the 3D structures of the chemicals. The structure with
minimum free energy conformation was saved as a mol2 file.
The protein of gene was searched in UniPort database, and
the 3D structure of the target protein was downloaded from
the Protein Data Bank (PDB) archive and transformed into
2D structure with PyMOL software and saved as a PDB file.
Then, the molecular docking model was developed using the
AutoDock Vina software. The model with the minimum free
energy conformation was visualized with PyMOL software.

Table 1: Characteristics of the individual studies incorporating into the analysis of miRNA sequence.

GEO ID Country Year Osteoporosis to healthy ratio Sample organism

GSE74209 Spain 2015 6 : 6 Homo sapiens

GSE93883 Hong Kong 2020 12 : 6 Homo sapiens
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Figure 1: Identification of osteoporosis-associated miRNAs. (a) Hierarchical clustering tree and the module colors were plotted to display
the modules. (b) The correlations between the 5 modules and osteoporosis. (c) The correlation between module membership and gene
significance in the turquoise module. (d) The differentially expressed miRNAs were screened out in 18 osteoporosis and 12 healthy cases
with the cutoff criteria adjusted P value < 0.01 and jlog 2FCj ≥ 1. (e) Venn diagram displayed the shared miRNAs between 132
differentially expressed miRNAs and 55 miRNAs in the turquoise module.
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3. Results

3.1. Identification of Osteoporosis-Associated miRNAs. After
combination and normalization of miRNAs from
GSE74209 and GSE93883 datasets, 1,810 miRNAs in 18
osteoporosis and 12 healthy cases were obtained (Table 1).
To screen out miRNAs correlated with osteoporosis,
WGCNA was performed to construct a miRNA coexpres-
sion network. No outliers were detected in the 30 samples
(Supplementary Figure 1A). The soft thresholding power β
was selected as 12 for scale-free network (scale-free R2 =
0:9 with relatively high mean connectivity) (Supplementary
Figure 1B). Then, 5 modules were obtained after similar
modules were merged with the settings MEDissThres =
0:25 and minModuleSize = 30 (Figure 1(a)). The
correlation between the 5 modules and osteoporosis was
shown in Figure 1(b), and the strongest negative
correlation was observed between the turquoise module
and osteoporosis (R = −0:68, P = 3e − 05). Figure 1(c)
displays high correlation between module membership and
gene significance in the turquoise module, suggesting that
the miRNAs in this module were strongly associated with
osteoporosis. Therefore, further analyses were performed
with 55 miRNAs in turquoise module.

Further, to identify osteoporosis-associated miRNAs, we
screened out the DEMs in 18 osteoporosis and 12 healthy
cases. 132 DEMs including 56 upregulated and 76 down-
regulated miRNAs were identified in response to osteopo-
rosis with the cutoff criteria adjusted P value < 0.01 and
jlog 2FCj ≥ 1 (Figure 1(d)). The overlapped genes between
132 DEMs and 55 miRNAs in the turquoise module were
selected as miRNAs associated with osteoporosis (Figure 1(e)),
and 17 miRNAs were identified.

3.2. Identification of Osteoporosis-Associated Genes. In
GSE7158 and GSE35956 dataset, 23,520 mRNAs were iden-
tified in 17 osteoporosis and 19 healthy samples (Table 2).
The 36 samples were then subjected to WGCNA analysis.
The soft thresholding power β was selected as 15, and 9
modules were obtained (Figures 2(a)–2(c)). The darkolive-
green module contained 3,344 mRNAs that were the most
strongly correlated with osteoporosis (Figure 2(c)). 1,572
DEGs including 807 upregulated and 765 downregulated
genes were identified in response to osteoporosis
(Figure 2(d)). The 222 osteoporosis-associated shared genes
were obtained after comparing the 3,344 genes and 1,572
DEGs (Figure 2(e)).

3.3. KEGG Pathway Analysis and Construction of miRNA-
Gene Interaction Network. Next, we explored the biological
functions of the 17 osteoporosis-associated miRNAs with
DIANA Tools. The 38 KEGG pathways were significantly

enriched such as ErbB signaling pathway, Wnt signaling
pathway, AMPK signaling pathway, TGF-beta signaling
pathway, and MAPK signaling pathway (Supplementary
Table 1). The 222 osteoporosis-associated genes were also
subjected to KEGG pathway analysis with “KEGG”
package in R. And 14 KEGG pathways were significantly
enriched such as cysteine and methionine metabolism,
Salmonella infection, focal adhesion, gap junction,
pathogenic Escherichia coli infection, glycerolipid
metabolism, PI3K-Akt signaling pathway, and p53 signaling
pathway (Figure 3(a)).

Importantly, 3 shared KEGG pathways were obtained
including focal adhesion, PI3K-Akt signaling pathway, and
gap junction. And we identified 14 miRNAs and 13 genes
in the 3 shared pathways (Tables 3 and 4). Then, hub miR-
NAs and genes were selected according to the following
criterions: (1) there was a negative regulatory relationship
between miRNAs and corresponding genes; (2) the gene
was the target of the miRNA predicted by miRWalk; and
(3) the miRNA and corresponding gene were in the same
signaling pathway. Then, we detected 6 hub miRNAs (hsa-
miR-18b-3p, hsa-miR-361-3p, hsa-miR-484, hsa-miR-519e-
5p, hsa-miR-940, and hsa-miR-1275) and 6 hub genes
(THBS1, IFNAR2, ARHGAP5, TUBB2B, FLNC, and
NTF3). To explore the regulation relationship between miR-
NAs and genes, we constructed a miRNA-gene interaction
network (Figure 3(b)). Hsa-miR-1275 and hsa-miR-940
were the core regulators as they targeted 5 genes, respec-
tively. And IFNAR2 and ARHGAP5 were the core node
genes as they were targeted by 6 miRNAs. Besides, the
6 hub genes were all upregulated, and 6 hub miRNAs
were downregulated in osteoporosis (Figures 3(c) and
3(d), P < 0:05).

To determine the predictive performance of hub miR-
NAs and genes, the AUCs of ROC curves about hub miR-
NAs and core genes were calculated as 0.907 and 0.827
(Figures 4(a) and 4(b)), suggesting that these key miRNAs
and genes had predictive actions for osteoporosis. In addi-
tion, correlation coefficients with these key genes and vital
osteoporosis-associated factors including RUNX2, CALCA,
and BMP2 were presented to be a trend of correlation
with osteoporosis (Figures 4(c)–4(e)); complementally,
these correlations coefficients were not significant, caused
by insufficient sample size, the presence of missing values,
and the existence of outliers. Overall, these data show a
demonstrative effect of these key miRNAs and genes for
osteoporosis.

3.4. Screening of Potential Drugs. Next, we screened poten-
tial drugs for osteoporosis in TCMSP (Traditional Chinese
Medicine Systems Pharmacology Database and Analysis
Platform) based on the 6 hub genes. And 3 genes

Table 2: Characteristics of the individual studies incorporating into the analysis of mRNA sequence.

GEO ID Country Year Osteoporosis to healthy ratio Sample organism

GSE7158 China 2008 12 : 14 Homo sapiens

GSE35956 Germany 2012 5 : 5 Homo sapiens
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Figure 2: Identification of osteoporosis-associated mRNAs. (a) The soft thresholding power β was selected as 15 (sale free R2 = 0:9) to
ensure a scale-free network. (b) Hierarchical clustering tree and the module colors were plotted to display the modules. (c) Nine modules
were obtained with Pearson’s correlation coefficients and P values. (d) The differentially expressed genes were screened out in 17
osteoporosis and 19 healthy samples with the cutoff criteria adjusted P value < 0.01 and jlog 2FCj ≥ 1. (e) Venn diagram displayed the
shared miRNAs between 1,572 differentially expressed genes and 3,344 genes in the turquoise module.
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(NTF3, IFNAR2, and THBS1) were targeted by 3 natural
compounds (kainic acid, uridine, and quercetin), which
were the active ingredients of 192 herbs. Then, we devel-
oped a target-compound-herb network to visualize the
relationship among the 3 genes, 3 compounds, and 192
herbs (Figure 5). For example, kainic acid, the active
ingredient in herb Abri Herba, could affect osteoporosis
by targeting NTF3; uridine, the active ingredient in herbs
Atractylodes, Cordyceps, and Semiaquilegia, could affect
osteoporosis by targeting IFNAR2; quercetin, the active
ingredient in herbs Ardisia japonica Herba, Folium Arte-
misiae Argyi, Anisi stellati fructus, and Ginkgo Semen
could affect osteoporosis by targeting THBS1. To investi-

gate the relationship between compounds and the targets,
molecular docking was performed. Figure 6 displays the
3 best molecular docking models with minimum free
energy. The 3 compounds were, respectively, buried in
the pockets of the 3 proteins, suggesting that the 3 com-
pounds could be potential drugs of osteoporosis targeting
the 3 genes.

4. Discussion

WGCNA is widely used to detect the coexpressed genes cor-
related with certain phenotype by developing a correlation
network. Currently, accumulating studies have performed
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Figure 3: KEGG pathway analysis and construction of miRNA-gene interaction network. (a) Fourteen KEGG pathways were significantly
enriched with the 222 osteoporosis-associated genes. (b) The miRNA-gene interaction network was constructed with Cytoscape software.
(c) The expression of 6 hub miRNAs in 18 osteoporosis and 12 healthy cases. (d) The expression of 6 hub genes in 17 osteoporosis and 19
healthy samples.
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WGCNA to investigate the interactions between molecules
in osteoporosis. For example, Qian et al. identified PPWD1
as a potential biomarker for osteoporosis [14]. Using
WGCNA, Hu et al. discovered 7 genes that affected the pro-
gression of osteoporosis [15]. In this study, we detected
osteoporosis-associated miRNAs and genes using WGCNA
and differential expression analyses. We identified 5 mod-
ules for miRNAs, of which the turquoise module was the
most strongly correlated with osteoporosis. For genes, 9
modules were grouped, and the darkolivegreen module was
the most relevant to osteoporosis. Subsequently, 17 miRNAs
and 222 genes were obtained associated with osteoporosis
after comparing WGCNA and differentially expression
results. For miRNAs, KEGG pathway analysis indicated that
the 17 miRNAs were mainly enriched in 38 signaling path-
ways. Meanwhile, the 222 genes were mainly enriched in
14 pathways. And 3 shared KEGG pathways including focal

adhesion, PI3K-Akt signaling pathway, and gap junction
were discovered. Multiple studies have demonstrated the
roles of the 3 signaling pathways in osteoporosis. Focal adhe-
sions (FAs) are macromolecules that mediate the interac-
tions between cells and extracellular matrix [16]. Multiple
studies have reported that FAs participated in cell differenti-
ation, mobility, and angiogenesis. H. Xie et al. demonstrated
that FA signaling ameliorates the progression of osteoporo-
sis by promoting the formation of H-type vessels in bone
mesenchymal stem cells [16]. Besides, Hu et al. displayed
that enhanced vessels in bones were positively associated
with the level of FA kinases [17]. Phosphoinositide 3-kinase-
(PI3K-) protein kinase B (AKT) signaling pathway, involved
in cell survival, apoptosis, and growth, has been indicated to
play critical roles in regulating osteoporosis development
[18]. For example, the activation of PI3K-Akt signaling
pathway elevated the expression of osteogenic differentiation
genes such as ALP and BMP2 to promote the growth and
differentiation of osteoblast [19]. However, the inactivation
of PI3K-Akt signaling attenuated bone resorption of osteo-
clasts [20]. Gap junction proteins were mainly identified in
osteocytes, osteoblasts, and osteoclasts. Many investigations
have indicated that gap junction proteins are critical to the
conservation of bone structure and formation. Gap junctions
were decreased in osteocytes in mouse osteoporosis model
[21]. Connexin 43, a gap junction protein, is essential for
the function of osteocyte and reduced in high glucose-
induced osteoporosis [22]. These investigations all indicated
the inhibitory roles of these signaling pathways in osteopo-
rosis progression.

After construction the miRNA-gene interaction net-
work, we identified 6 hub miRNAs (hsa-miR-18b-3p, hsa-
miR-361-3p, hsa-miR-484, hsa-miR-519e-5p, hsa-miR-940,
and hsa-miR-1275) and 6 hub genes (THBS1, IFNAR2,
ARHGAP5, TUBB2B, FLNC, and NTF3) for osteoporosis.
Consistently, the functions of some of these miRNAs and
genes in osteoporosis have been investigated. Z. Wang
et al. exhibited that miR-361 has been upregulated in osteo-
porosis patients [23]. MiR-484 has been discovered to posi-
tively associate with bone mineral density in in femoral bone
[24]. Hashimoto et al. demonstrated that miR-940 could
induce osteogenic differentiation by targeting ARHGAP1
and FAM134A [25]. The inhibition of thrombospondin-1
(THBS1) could suppress the formation of osteoclast and
has reported to be involved in osteoclastogenesis [26]. Dexa-
methasone could mediate the osteoblast differentiation by
increasing the level of TUBB2B [27]. And in our study, for
the first time, the intimate association of the other 3 miR-
NAs (hsa-miR-18b-3p and hsa-miR-519e-5p) and 4 genes
(IFNAR2, ARHGAP5, FLNC, and NTF3) with osteoporosis
was discovered. However, the biological functions of the
molecules in osteoporosis await to be investigated.

Currently, estrogen and bisphosphonate have been
widely used in the treatment of osteoporosis. However, their
side effects greatly limited their application in osteoporosis.
For example, the use of estrogen elevated the incidence rate
of breast cancer and heart failure [28]. Meanwhile, bisphos-
phonate compounds led to the irritation in gastrointestinal
tract [28]. Therefore, given rare adverse effects, TCHMs,

Table 3: Genes identified in 3 KEGG pathways including focal
adhesion, PI3K-Akt signaling pathway, and gap junction.

mRNA log2FC Adj. P val

TUBB2B -1.804966996 0.044326216

THBS1 -1.457613401 0.01412781

EIF4B -0.964608275 0.003633295

NTF3 -0.894636294 0.014447327

IFNAR2 -0.70778604 0.022075193

FLNC -0.697736251 0.028265813

ARHGAP5 -0.663850508 0.026211769

TUBB6 0.625145836 0.045587962

PDGFRA 0.753914676 0.02396403

DOCK1 0.791003891 0.020771285

CHAD 1.029667417 0.047667364

LPAR1 1.303788899 0.013978794

ITGB8 1.726835004 0.005026655

Table 4: MiRNAs identified in 3 KEGG pathways including Focal
adhesion, PI3K-Akt signaling pathway and Gap junction.

miRNA log2FC Adj. P val

hsa-miR-5701 -1.638326569 0.004828665

hsa-miR-4258 0.952752859 0.006681939

hsa-miR-4667-3p 0.847227866 0.008128556

hsa-miR-4640-3p 0.882432241 0.008128556

hsa-miR-361-3p 1.003944592 0.009802755

hsa-miR-18b-3p 0.85483541 0.012724624

hsa-miR-4687-3p 0.871408616 0.019689352

hsa-miR-940 0.621601199 0.025433579

hsa-miR-1275 0.887163084 0.028126477

hsa-miR-99a-5p 0.760586238 0.041045519

hsa-miR-3127-3p 0.569654097 0.043355097

hsa-miR-519e-5p 0.796422805 0.045674943

hsa-miR-3162-3p 0.574105156 0.048288935

hsa-miR-484 0.587399648 0.049103596
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including iridoid glycosides, saponins, and flavonoids, are
increasingly applied in osteoporosis. In this study, we built
a target-compound-herb network using TCMSP and
screened out 3 natural compounds (kainic acid, uridine,
and quercetin) targeting 3 genes (NTF3, IFNAR2, and
THBS1). Subsequently, the corresponding molecular dock-
ing models were constructed. For the 3 natural compounds,
there were several studies related to the application of quer-

cetin, a natural flavonoid, in osteoporosis. For example,
quercetin has been reported to alleviate the progression of
osteoporosis by enhancing osteogenic differentiation via
AMPK signaling pathway [29]. For uridine, Li et al. demon-
strated that uridine triphosphate, a kind of nucleotides,
could inhibit osteogenic differentiation and promote adipo-
genic differentiation [30]. There was no study about thera-
peutic potential of kainic acid and uridine in osteoporosis.
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Figure 4: The ROC curves of hub miRNAs and core genes were plotted and correlations with these key genes and vital
osteoporosis-associated factors were assessed. (a and b) The AUCs of ROC curves about hub miRNAs and core genes were calculated.
(c–e) Correlation coefficients with these key genes and vital osteoporosis-associated factors including RUNX2 (c), CALCA (d), and
BMP2 (e) were exhibited.

9BioMed Research International



Figure 5: A target-compound-herb network was constructed to visualize their relationship among the 3 genes (NTF3, IFNAR2, and
THBS1), 3 compounds (kainic acid, uridine, and quercetin), and 192 herbs.

Kainic acid 2D structure Kainic acid 3D structure Docking model of kainic acid-NTF3

Quercetin 2D structure Quercetin 3D structure Docking model of quercetin-THBS1

Uridine 2D structure Uridine 3D structure Docking model of uridine-IFNAR2

Figure 6: Molecular docking models were constructed with the 3 compounds (kainic acid, uridine, and quercetin) and 3 targets (NTF3,
IFNAR2, and THBS1).
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Therefore, further investigations are needed for elucidate the
role of the two compounds in the treatment for osteoporosis.

5. Conclusion

In conclusion, our study detected 6 hub miRNAs and 6 hub
genes associated with osteoporosis using comprehensive bio-
informatics analysis including WCGNA, differential expres-
sion, and KEGG pathway analyses. Then, the miRNA-gene
interaction network was constructed. Predictive performances
of hub miRNAs and genes were evaluated, and correlations
with key genes and vital osteoporosis-associated factors were
determined. And 3 natural compounds (kainic acid, uridine,
and quercetin) were screened out based on the hub genes.
Our study sheds light on the pathogenesis of osteoporosis
and provides promising therapeutic targets and drugs for oste-
oporosis. Some limitations of this study including correlations
between targets and osteoporosis-related factors and specific
mechanism of target-compound will be explored in the future
work by larger samples and silencing/overexpressing the tar-
gets combined with compound administration.
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