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Background. Ocimum basilicum L. (OBL) is mainly used to treat neurological diseases in China. The preliminary work of this
group showed that OBL improves cognitive impairment in Alzheimer’s disease (AD). However, the underlying
pharmacological mechanism remains unclear. Methods. The components of OBL were compiled by literature search, and their
active ingredients were screened by online database. The drug targets of OBL in the treatment of AD were predicted and
analyzed using information derived from sources such as the SwissTargetPrediction tool. And through the network visual
analysis function of Cytoscape software and protein-protein interaction analysis (PPI), the core targets of OBL treatment of
AD are predicted. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed
to analyze the related signaling pathways affected by OBL. Moreover, AutoDock software was used to assess the potential
binding affinity between the core targets and the active compounds. Subsequently, in vivo experiment was conducted to verify
the findings of network pharmacology. Results. A total of 35 active compounds and 188 targets of OBL were screened, of
which 43 common targets were related to AD. The active compounds of 35 OBLs induced 118 GO and 78 KEGG. The results
of PPI and network topology parameter analysis show that targets such as MAPK1, GSK3B, NR3C2, ESR1, and EGFR are
known as the core targets for the treatment of AD by OBL and are docked with the active ingredients of OBL. Molecular
docking results suggest that diterbutyl phthalate (DBP) may be the main active component of OBL for the treatment of AD.
Flow cytometry analysis results showed that apoptosis decreased with increasing DBP dose. In addition, DBP significantly
decreased the levels of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in the supernatant of Aβ25-35-induced
injury HT22 cell cultures, and it can be speculated that DBP has the ability to protect the stability of injured neuronal cells and
improve the permeability of cell membranes, thus stabilizing the intracellular environment. Mechanistically, DBP may increase
the mRNA levels of AKT, GSK-3β, etc. in AD cell models and regulate the phosphorylation of AKT/GSK-3β pathway-related.
Conclusions. Conclusively, our study suggests that DBP, the main active component of OBL, has potential in the prevention or
treatment of AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by amyloid protein (A) deposition and neu-
rogenic fiber tangles [1]. Data shows that the number of
people over 65 years of age with AD is expected to reach
6.7 million in 2025 [2]. Patients with AD present with

symptoms such as short-term memory loss, language diffi-
culties, and disorientation [3].There are many different theo-
ries on the pathogenesis of AD, such as the A cascade
hypothesis, genetic mechanisms, inflammatory mechanisms,
mitochondrial dysfunction, neurotransmitter dysregulation,
glycogen synthase kinase-3 (GSK-3), and oxidative stress,
but the pathogenesis has not been fully elucidated [4].
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Research on AD is very limited, and active exploration of
effective therapeutic drugs for AD has become an important
research direction for therapeutic targets in recent years.

Ocimum basilicum L. (OBL), a genus of basil in the
family Labiatae, has pharmacological effects such as free
radical scavenging, anti-inflammatory, antitumor, antibac-
terial, hypolipidemic, and antiatherosclerotic [5]. OBL has
been reported to have therapeutic activity against neuro-
logical disorders such as depression, anxiety, and sedation,
mainly through anti-inflammatory and antioxidant proper-
ties [6]. Studies have reported the ameliorative effect of
OBL volatile oil on neurodegenerative changes in mice
caused by chronic unpredictable mild stress (CUMS), but
the therapeutic effect of OBL on AD has not been studied
and reported [7]. OBL ameliorates memory and neurolog-
ical deficits after ischemia-reperfusion-induced brain injury
in mice [6]. The composition of OBL is complicated and
variable, and further research is needed to screen for active
compounds with therapeutic effects, as well as to under-
stand the role and mechanism of the compound in the
treatment of AD.

In this study, we investigated the active components,
potential targets, and signaling pathways of OBL for the
treatment of AD through network pharmacology, which
is consistent with the therapeutic principles of Chinese
medicine and ethnic medicine for the treatment of com-
plex diseases and then searched for the best match between
OBL small molecule compounds and target proteins by
complementing the receptor active sites of AD disease
targets with spatial structure and minimizing the binding
energy. The monomeric component diterbutyl phthalate
(DBP) was screened from OBL. In vitro experiments
showed the effect of DBP on HT22 cells with Aβ25-35-
induced damage. The material basis of the action of OBL
and its mechanism of action was investigated to provide
some theoretical basis for the treatment of clinical AD at
a later stage, see Figure 1.

2. Materials and Methods

2.1. Collection and Collation of OBL Components. The OBL
chemical components were collected according to the fol-
lowing criteria: (1) regional OBL component that has been
publicly reported in the literature within the last 5 years
and (2) chemical components that have been quantified in
OBL. The collected components were preprocessed and
standardized to remove outlier samples and redundant
molecular descriptions, and finally, the component names
were entered into the PubChem database (https://www
.chemicalbook.com/) to retrieve normalized 3D molecular
structure descriptors for subsequent data analysis.

2.2. Screening of OBL Candidate Components and Their
Related Targets. The OBL-normalized 3D molecular struc-
ture descriptors were compiled according to the above cri-
teria and entered into the SIB database (http://www
.swissadme.ch/index.php) to derive pharmacokinetic param-
eters related to the chemical composition, and the biologi-
cally active components were selected for further study

based on ADME parameters. In SwissADME, the high gas-
trointestinal absorption is indicated by the OB. The high
OB value indicates the important index of pharmacody-
namic molecules and drug-like properties. In this paper,
high gastrointestinal absorption and bioavailability scores
0.55 were used as criteria for screening. The higher OB value
is a key index indicating the potent molecules and drug-like
properties. Pharmacodynamic effects can influence the
ADME process and therefore lead to changes in drug bio-
availability [8].

To estimate the drug similarity of each ingredient, phar-
macokinetic parameters were calculated based on the model
in the Pipeline Pilot ADMET collection. The obtained
ingredients’ English names were imported into the TCMIP
V2.0 database (http://www.tcmip.cn/TCMIP/index.php) of
herbal ingredients for searching to obtain the level of
drug-likeness weight [9]. A quantitative index called the
quantitative estimate of drug-likeness (QED) was used to
assess drug similarity, and the estimated values ranged from
0 to 1. The mean QED values for drug-likeness were 0.49
and 0.67. If QED > 0:67 indicates good drug-likeness, 0:49
≤QED ≤ 0:67 indicates if QED > 0:67, it means that the
drug forming property is good, 0:49 ≤QED ≤ 0:67 means
that the drug forming property is medium, and QED >
0:67 means that the drug forming property is weak. In this
paper, 0:49 ≤QED ≤ 0:67 was used as the screening crite-
rion for screening. The achieved components were consid-
ered as candidate components of OBL, and the candidate
components were collated through the SwissTargetPredic-
tion (http://www.swisstargetprediction.ch/) database for
their targets of action.

2.3. Screening of AD Disease Targets. Using “Alzheimer dis-
ease” as a keyword, we searched and screened known disease
targets in four major disease-related databases, including
DisGeNET (http://www.disgenet.org/), CTD (http://ctdbase
.org/), TTD (https://db.idrblab.org/ttd/), and DrugBank
(https://www.drugbank.ca), and eliminated repeated targets
to obtain known targets for the pathogenesis of AD.

2.4. Drug-Disease Target Association Analysis. The OBL
component targets were intersected with AD disease tar-
gets, and the intersected targets were imported into the
STRING database to obtain the interaction relationship
between the targets. With “homo sapiens” selected as the
species, “minimum required interaction score” was selected
as ≥0.7, and the rest of the default parameters were used.
A protein-protein interaction (PPI) association network
was constructed, and isolated nodes were deleted to obtain
the initial network. The CytoNCA (2.1.6) plug-in was then
used to determine the betweenness centrality (BC), close-
ness centrality (CC), eigenvector centrality (EC), degree
centrality (DC), local average connectivity-based method
(LAC), network centrality (NC), and other topological
attributes as criteria for 2-step screening to simplify the
network, screening different target clusters, and the top-
ranked target clusters as key target clusters for OBL treat-
ment of AD.
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2.5. Gene Enrichment Analysis. In order to systematically
elucidate the role of OBL in the treatment of AD, the inter-
secting targets of OBL for AD were subjected to GO (Gene
Ontology) enrichment analysis and KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) signaling pathway enrich-
ment analysis. The active component-target-pathway
network map was constructed by Cytoscape 3.7.1 software
(version: 3.7.1, https://cytoscape.org).

2.6. Pretreatment and Molecular Docking of Receptors
and Ligands

2.6.1. Ligand Pretreatment. The structures of the active
ingredients obtained under 2.2 were corroborated with the
help of the PubChem database and saved in mol format files.
After checking the spatial structure in PyMOL software
(https://pymol.org/), the structure was converted to PDB
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Figure 1: Workflow of the network pharmacological investigation on the use of DBP in AD treatment.
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format. The structure is filled with AutoDock Tools 1.5.6,
atomic charges are added, atomic types are assigned, and
all flexible bonds are rotatable by default and saved in pdbqt
format as docking ligands.

2.6.2. Pretreatment of Receptors. The crystal structure pro-
teins of the core targets of OBL therapeutic AD collected
under 2.4 above were preprocessed using AutoTools, remov-
ing excess protein chains and ligands, hydrogenating to
delete water molecules, calculating Gasteiger charges, and
saving them as pdbqt files, which were used as receptors
for molecular docking.

2.6.3. Molecular Docking. The above pretreated ligands and
receptors were docked to the proteins using AutoDock Vina
(version: 1.2, http://vina.scripps.edu/index.html) for small
molecules. Finally, the dominant conformation was taken
for analysis and plotted using Maestro (Schrodinger)
(https://www.schrodinger.com) software.

2.7. Cellular Experimental Validation

2.7.1. Experimental Cell Lines. Mouse hippocampal neuronal
cell HT22 cell line was obtained from Fenghui Bio.

2.7.2. Drugs, Reagents, and Instruments. DBP (Ref. D806672:
Maclean’s); Reagents include fetal bovine serum (Ref.
FND500: Excell Bio) and DMEM high sugar medium (Ref.
C11965500BT: GIBCO). Instruments include the following:
biological safety cabinet (Ref. HF1200LC, Shanghai Likang
Instruments Co., Ltd.); CO2 cell incubator (Ref. Model:
Smart Cell HF-90, Shanghai Likang Instruments Co., Ltd.);
benchtop low-speed centrifuge (Model: DK-80, Shanghai
Likang Instruments Co., Ltd.); PCR instrument (Model:
ABI QuantStudio™ 6 Flex Real-Time PCR System, ABI);
and enzyme marker (Model: xMarkTM, Bio-Rad).

2.7.3. CCK-8 Method for the Detection of Low-, Medium-,
and High-Dose Groups of DBP. A previous study by our
group showed that Aβ25-35-inhibited HT22 cell survived in
a concentration-dependent manner, with an IC50 of
173.568μm [10]. HT22 cells in good growth condition were
digested with trypsin, prepared into 5 × 104 cells/mL single
cell suspension with complete medium, inoculated into 96-
well plates (100μL/well, i.e., 5 × 103 cells/well), incubated
for 24 h at 37°C with 5% CO2 for wall attachment, the
medium was discarded, and 100μL of Aβ25-35 at a final con-
centration of 173.568μmol/L (IC50) was added separately. L
(IC50) of Aβ25-35 and different concentrations of DBP (0, 1,
5, 10, 20, and 50μmol) were added, while a blank control
group was set up. After 48 h of intervention, the supernatant
was collected for LDH assay, while 100μL of the configured
10% CCK-8 solution was added to each well, and the incuba-
tion was continued in the incubator for 1 h. After 1 h, the
OD value at 450 nm was measured by enzyme marker. OD
value at 450nm was measured by ELISA after 1 h. The
results of CCK-8 and LDH assay were combined to screen
the low, medium, and high intervention concentrations of
DBP for subsequent experiments.

2.7.4. LDH and ROS Detection. HT22 cells in good growth
state were taken, cells were digested with trypsin, prepared
into 5 × 104 cells/mL single cell suspension with complete
medium, inoculated into 96-well plates (100μL/well, i.e.,
5 × 103 cells/well) and 6-well plates (2mL/well, i.e., 1 ×
105 cells/well), incubated at 37°C and 5% CO2 for 24h
for wall attachment, and discarded medium, and the inter-
ventions were performed according to experimental groups,
with 3 replicates per group. After the intervention was com-
pleted, the medium was discarded and the cells were collected
for LDH and ROS detection (fluorescence detection wave-
length setting: optimal excitation wavelength 500nm and
optimal emission wavelength 525nm).

2.7.5. Cell Cycle Detection by Flow Cytometry. HT22 cells in
good growth condition were digested with trypsin, prepared
into 5 × 104 cells/mL single cell suspension with complete
medium, inoculated into 25 cm2 culture flasks, and incu-
bated in a 37°C, saturated humidity, 5% CO2 cell incubator
for 24h. After the intervention according to 2.6.1 experi-
mental grouping, the cells in each group were digested with
trypsin, washed with 5mL of PBS, and fixed overnight at
4°C. Once, resuspend the cells with 500μL of precooled
PBS, add the cell suspension to 3.5mL of precooled 80% eth-
anol, and fix overnight at 4°C. Centrifuge at 2000 rpm for
5min to precipitate the cells. Carefully aspirate the superna-
tant to avoid aspirating the cells. Wash 2 times with pre-
cooled PBS and discard the clean supernatant. Add 500μL
PI/RNase Staining Buffer to resuspend the cells and pass
through a 200 mesh nylon sieve to make a single cell suspen-
sion, incubate for 30min at 4°C, protected from light, detect
red fluorescence at an excitation wavelength of 488nm with
a flow cytometer, and detect light scattering. Analysis soft-
ware was used for cellular DNA content analysis and light
scattering.

2.7.6. Flow Cytometry Detection of Apoptotic Cells. HT22
cells in good growth condition were digested with trypsin,
prepared into 5 × 104 cells/mL single cell suspension with
complete medium, inoculated into 25 cm2 culture flask, and
incubated in 37°C, saturated humidity, 5% CO2 cell culture
chamber for 24h. After the intervention according to the
experimental grouping in 2.6.1, the culture fluid in the cell
flask was aspirated into the centrifuge tube after the interven-
tion was completed (containing the cells that were washed
twice with PBS), and the PBS was collected together into
the centrifuge tube. The cells were digested by trypsin, trans-
ferred to the centrifuge tube, and centrifuged at 1000 rpm for
5min, and the supernatant was discarded. Wash the cells
twice with precooled PBS and discard the supernatant. Add
500μL of 1×Binding Buffer to resuspend the cells and pass
through a 200 mesh sieve to make a single cell suspension.
Add 5μL Annexin V-PE and 10μL 7-AAD to each tube,
mix gently, and leave for 5min at 4°C protected from light.
Flow cytometry assay was performed within 30 minutes.

2.7.7. Experimental Grouping. The experimental groupings
are as follows: model control group (173.568μmol/L of
Aβ25-35 intervened in HT22 cells for 48 h); positive control
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group (173.568μmol/L of Aβ25-35 and 0.5μmol/L of SB216763
together intervened in HT22 cells for 48h); low-dose group
of DBP (173.568μmol/L of Aβ25-35 and 50μmol/L DBP
cointervened in HT22 cells for 48h); DBP medium-dose

group (173.568μmol/L of Aβ25-35 and 100μmol/L DBP coin-
tervened in HT22 cells for 48h); and DBP high-dose group
(173.568μmol/L of Aβ25-35 and 150μmol/L DBP cointer-
vened HT22 cells for 48h).
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Figure 2: Core target screening for OBL for AD. (a) Combination of Venn diagram: 43 candidate targets were screened with the minimum
required interaction score ≥ 0:7; (b) component-target network, including 223 nodes and 525 edges, the blue circles represent 188 candidate
targets, the red octagonal shapes represent 35 OBL components; (c) PPI network diagram: including 37 nodes and 69 edges. (d) The core
target of OBL in the treatment of AD.
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2.7.8. Detection of AKT and GSK-3β Gene Expression by
qRT-PCR. HT22 cells in good growth condition were
digested with trypsin and prepared into 5 × 104 cells/mL sin-
gle cell suspension with complete medium, inoculated into
25 cm2 culture flasks and incubated in 37°C, saturated
humidity, 5% CO2 cell culture incubator for 24h. The inter-
vention was carried out according to experimental groups,
with 5 replicates in each group. After the intervention was
completed, the medium was discarded and 1mL of TRIzol
was added to digest the cells so that TRIzol lay flat on the cell
level, and the cell culture flasks were repeatedly shaken until
the cells were digested down and loaded into 1.5mL EP

tubes. Follow-up experiments were performed according to
the qRT-PCR lab report.

2.7.9. WB Detection of AKT, p-AKT, GSK-3β, and p-GSK-3β
Protein Expression. HT22 cells in good growth condition
were digested with trypsin, prepared into 5 × 104 cells/mL
single cell suspension with complete medium, inoculated
into 25 cm2 culture flasks, and incubated in 37°C, saturated
humidity, 5% CO2 cell incubator for 24h. The intervention
was carried out according to experimental groups, with 3
replicates in each group. After the intervention was com-
pleted, the culture medium in the flask was discarded,

Table 2: Potential target information filtered by network topology parameters.

Name BC CC DC EC LAC NC

MAPK3 357.3 0.1500 14 0.4222 4.3 11.585

MAPK1 209.3 0.1475 13 0.4092 4.5 11.161

EGFR 160.7 0.1434 12 0.3654 3.8 8.619

ESR1 11.2 0.1390 8 0.3084 4.5 7.074

NR3C1 62.7 0.1379 7 0.2689 3.4 4.300

MAPT 75.5 0.1374 6 0.2110 2.3 3.600

GSK3B 3.0 0.1379 6 0.2669 4.3 5.200

CHRM1 172.0 0.1324 5 0.0220 0.8 2.583

F2 424.0 0.1434 5 0.1210 0.8 1.083

IGF1R 60.0 0.1369 5 0.2061 2.4 3.000

RARA 3.0 0.1358 5 0.1917 2.8 4.167

ADRA1B 116.0 0.1319 4 0.0215 1.0 2.667

PTGS2 168.0 0.1379 4 0.1105 1.0 2.167

ESR2 0.0 0.1358 4 0.2024 3.0 4.000

PRKCA 1.3 0.1358 4 0.1868 2.5 3.333

PTGS1 60.0 0.1250 3 0.0174 0.7 1.500

PARP1 0.0 0.1343 3 0.1533 2.0 3.000

RARB 0.0 0.1343 3 0.1377 2.0 3.000

ADRA1A 0.0 0.1192 2 0.0040 1.0 2.000

ADRA1D 0.0 0.1192 2 0.0040 1.0 2.000

ALOX5 0.0 0.1246 2 0.0172 1.0 2.000

BCHE 60.0 0.1290 2 0.0170 0.0 0.000

CDK1 0.0 0.1290 2 0.0774 1.0 2.000

CHRM3 0.0 0.1196 2 0.0042 1.0 2.000

CHRM5 0.0 0.1196 2 0.0042 1.0 2.000

LDLR 2.0 0.0286 2 0.0000 0.0 0.000

MAOB 0.0 0.1165 1 0.0024 0.0 0.000

CHRM2 0.0 0.1192 1 0.0034 0.0 0.000

DYRK1A 0.0 0.1233 1 0.0283 0.0 0.000

MMP2 0.0 0.1281 1 0.0491 0.0 0.000

HMGCR 0.0 0.0285 1 0.0000 0.0 0.000

HTR2A 0.0 0.0278 1 0.0000 0.0 0.000

SLC6A4 0.0 0.0278 1 0.0000 0.0 0.000

INSR 0.0 0.1229 1 0.0277 0.0 0.000

VLDLR 0.0 0.0285 1 0.0000 0.0 0.000

MPO 0.0 0.1132 1 0.0023 0.0 0.000

NR3C2 0.0 0.1237 1 0.0361 0.0 0.000
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3mL of sterile PBS buffer was added and repeatedly rinsed
twice, the PBS buffer was discarded, the cells were digested
with trypsin, and the operation method was the same as
cell passaging. After centrifugation, the supernatant was
discarded and the cell precipitate was left, and the cells
were collected after washing with 5mL of sterile PBS.
The subsequent experiments were performed according
to the Western Blot experiment report.

2.7.10. Data Processing. All data were expressed as mean ±
standard deviation (�x ± SD), and each group’s data was
statistically analyzed using SPSS 19.0 software. If the data
conformed to normal distribution, one-way ANOVA was

used for statistics: for Chi-squared, LSD method was used
for multiple comparisons; for Chi-squared, Tamhane’s
method was used for multiple comparisons, and P < 0:05
indicated significant differences; if the data did not conform
to normal distribution, the data were first log transformed to
normalize the data, and then, the data were statistically ana-
lyzed according to the above one-way ANOVA method.

3. Results

3.1. Screening of Candidate Components for OBL. Accord-
ing to the composition collection criteria, 310 OBL com-
ponents were compiled from published literature reports
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Figure 3: Analysis of gene work enrichment in the treatment of AD with OBL. (a) The first 15 biological processes. (b) Composition of the
first 15 cells. (c) The first 15 molecular functions. (d) The first 15 signaling pathways. (e) C-T-P network diagram: red octagons represent 28
components, blue circles represent 32 candidate targets, and green triangles represent 15 signaling pathways.
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[5, 11–19], and these components were further investigated.
Screening parameters of gastrointestinal absorption = high
and bioavailability ≥ 0:55 were used to screen 107 ingredi-
ents, and then, 35 candidate ingredients were screened using
0:49 ≤QED ≤ 0:67, as shown in Table 1.

3.2. Core Target Screening for OBL for AD. Canonical
SMILES of the 35 candidate components obtained above
were imported into the SwissTargetPrediction database to
collect their action targets, and 525 action targets were
obtained, and 188 action targets were obtained after deleting
duplicate targets. The targets were linked to OBL compo-
nents, and the component-target network map was con-
structed by Cytoscape software. The network consists of
223 nodes and 437 edges. The edges between the components
(red octagonal shape) and the targets (blue circles) represent
interactions.

The TTD, CTD, DisGeNET, and DrugBank databases
were searched for targets related to AD pathogenesis to
obtain 155, 298, 252, and 45 disease targets, respectively,
and intersected with 188 OBL targets to obtain 43 shared tar-
gets, see Figure 2(a). STRING data screened 43 drug-disease
shared targets with the criteria of “Homo sapiens” and “

minimum required interaction score” ≥ 0:7. The 43 drug-
disease targets were filtered by STRING data with the criteria
of “Homo sapiens” and “minimum required interaction scor
e” ≥ 0:7 to obtain 37 candidate targets, and the interaction
relationship between the targets is shown in Figure 2(b).
The network of 37 nodes and 69 edges was simplified as
shown in Figure 2(c). The 46 candidate targets were filtered
by the CytoNCA plug-in with the median of BC, CC, EC,
DC, LAC, NC, and other topological attributes of the initial
network nodes ≥ 2 and “value =Default” and “filter = -
used”. and “filter =used by total rank selected to 15% pro-
teins” as filtering criteria to simplify the network and

obtain mitogen-activated protein kinase 1 (MAPK1), gly-
cogen synthase-3 beta (GSK3B), mineralocorticoid receptor
(NR3C2), estrogen receptor (ESR1), and epidermal growth
factor receptor (EGFR). The above five targets were used as
core targets for molecular docking with OBL candidate com-
ponents, see Figure 2(d) and Table 2.

3.3. GO and KEGG Enrichment Analysis Results. The results
of GO gene function analysis of 43 common targets of OBL
for AD treatment by the DAVID database showed that 289
entries were obtained, and the top 45 results were ranked
in accordance with the corrected FDR pairs.

G-protein-coupled acetylcholine receptor activity, enzyme
binding, G-protein-coupled serotonin receptor activity, RNA
polymerase II transcription factor activity, ligand-activated
sequence-specific DNA binding, neurotransmitter receptor
activity, identical protein binding, alpha1-adrenergic receptor
activity, steroid binding, sequence-specific DNA binding, pro-
tein serine/threonine/tyrosine kinase activity, zinc ion bind-
ing, oxidoreductase activity, acting on single donors with
incorporation of molecular oxygen, incorporation of two
atoms of oxygen, virus receptor activity, protein kinase bind-
ing, and beta-amyloid binding are the first 15 biological func-
tions induced by the 35 OBL components, see Figure 3(a).

Cytosol, nucleoplasm, nuclear chromatin, receptor com-
plex, perinuclear region of cytoplasm, cytoplasm, cyclin-
dependent protein kinase holoenzyme complex, transcrip-
tion factor complex, plasma membrane, caveola, plasma
membrane, integral component of plasma membrane, inte-
gral component of presynaptic membrane, dendrite, synapse,
axon, postsynaptic membrane, macromolecular complex,
receptor complex, glutamatergic synapse, integral compo-
nent of postsynaptic membrane, membrane, nucleus, and
mitochondrion were ranked among the top 15 cell compo-
nents, see Figure 3(b).

–4.7

–4.9

–6.1

–6.4

–5.4

–5.4

–5.5

–7.0

–5.2

–5.5

–5.9

–4.8

–6.1

–9.1

–5.9

–5.2

–5.6

–6.5

–6.7

–5.7

–5.8

–6.7

–8.7

–5.4

–5.7

–6.4

–4.7

–6.2

–8.3

–6.7

–5.8

–5.2

–6.0

–7.2

–6.4

–6.1

–5.8

–7.9

–5.9

–6.0

–6.8

–5.1

–6.9

–8.8

–6.7

–5.1

–6.3

–6.1

–6.8

–5.6

–6.0

–6.9

–8.0

–5.6

–6.0

–6.4

–4.8

–6.2

–5.2

–6.0

–4.9

–5.1

–6.2

–7.0

–5.6

–5.5

–5.8

–8.4

–5.4

–5.5

–6.5

–4.4

–6.0

–9.1

–6.1

EGFR ESR1 GSK3B NR3C2 MAPK1

Benzaldehyde

Camphor

Carvone

DBP

Estragole

Geraniol

Isoborneol

Kaempferol

Linalool

Nerol

Nerolidol

Nonanal

Piperitone

Quercetin

Terpineol

–8

–6
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16 BioMed Research International



The first 15 biological processes are adenylate cyclase-
inhibiting G-protein-coupled acetylcholine receptor signal-
ing pathway, G-protein-coupled serotonin receptor signaling
pathway, signal transduction, positive regulation of vasocon-
striction, G-protein-coupled acetylcholine receptor signaling
pathway, peptidyl-tyrosine autophosphorylation, aging, G-
protein-coupled receptor signaling pathway, coupled to
cyclic nucleotide second messenger, response to xenobiotic
stimulus, cellular response to reactive oxygen species,
memory, intracellular steroid hormone receptor signaling
pathway, cellular response to estradiol stimulus, adenylate
cyclase-activating adrenergic receptor signaling pathway,
and phospholipase C-activating G-protein-coupled recep-
tor signaling pathway, see Figure 3(c).

Forty-three targets were imported into the DAVID data-
base to analyze KEGG signaling pathways, and the pathways
were further screened according to FDR size, with the FDR
value indicating that the smaller the value in the enrichment
analysis, the higher the enrichment significance. A total of 83
signaling pathways were collected and sorted according to
FDR ≤ 0:05, and the top 15 results are shown in Figure 3,

including pathways in cancer (hsa05200), neuroactive
ligand-receptor interaction (hsa04080), calcium signaling
pathway (hsa04020), cholinergic synapse (hsa04725), regula-
tion of actin cytoskeleton (hsa04810), PI3K-AKT signaling
pathway (hsa04151), Alzheimer’s disease (hsa05010), path-
ways of neurodegeneration-multiple diseases (hsa05022),
serotonergic synapse (hsa04726), endocrine resistance
(hsa01522), estrogen signaling pathway (hsa04915), phos-
pholipase D signaling pathway (hsa04072), chemical
carcinogenesis-receptor activation (hsa05207), MAPK sig-
naling pathway (hsa04010), and cGMP-PKG signaling path-
way (hsa04022), see Figure 3(d).

Fifteen signaling pathway connecting targets and their
acting OBL candidate components were used to construct
a component-target-pathway (C-T-P) network map by
Cytoscape software, which includes 75 nodes (including
28 candidate components, 32 candidate targets, and 15
signaling pathways) and 240 edges. The edges between
components (red octagons), targets (blue circles), and sig-
naling pathways (green triangles) represent interactions,
see Figure 3(e).
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Figure 6: Continued.
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3.4. Preliminary Validation of OBL Active Ingredient Action
on AD Core Targets. To further determine the accuracy of
the prediction results, molecular docking of the core targets
to the candidate components was performed. The core tar-
gets EGFR (PDBID=5GTY), ESR1 (PDBID=4XI3), MAPK1
(PDBID=1TVO), GSK3B (PDBID=3mvh), and NR3C2
(PDBID=3VHU) and 35 candidate components were molec-
ularly docked.

The magnitude of the binding energy (BE) is used to
determine how well the components of OBL match the core
target. When the conformation of ligand and receptor is sta-
ble, the lower the energy, the higher the possibility of action.
Generally, BE ≤ −4:25Kcal/mol indicates that the active
ingredient has a certain binding energy to the target, BE ≤
−5:00Kcal/mol indicates that the active ingredient has good
binding energy to the target, and BE ≤ −7:00Kcal/mol indi-
cates that the active ingredient has strong binding energy.
In this paper, using BE ≤ −4:25Kcal/mol as the criterion,
15 of the 35 candidate components had some binding activ-
ity with 5 core targets, as shown in Table 3 and Figure 4. As
can be seen in the table, EGFR was associated with Kaemp-
ferol (BE = −7) and Quercetin (BE = −9:1); ESR1 was associ-
ated with Kaempferol (BE = −8:7) and Quercetin (BE = −8:3
); GSK3B with DBP (BE = −7:2), Kaempferol (BE = −7:9)
and Quercetin (BE = −8:8), respectively; MAPK1 with
Kaempferol (BE = −8:4) and Quercetin (BE = −9:1), respec-
tively, and NR3C2 with Kaempferol (BE = −8) were less than
-7.00Kcal/mol, indicating a strong binding activity.

Quercetin can bind to GSK3B by patterning hydropho-
bic interactions with adjacent residues ASP292, THR291,

THR211, LYS179, ALA177, MET227, GLU228, TYR229,
ALA230, PHE438, MET281, LEU156, GLY157, GLY159,
VAL164, GLU234, and ARG4, form hydrophobic interac-
tions, and form hydrogen bonds with ALA230, thus binding
to GSK3B. Quercetin binds to MAPK1 (ARG67, ILE56,
LYS54, ALA52, GLY34, ILE31, LYS114, ASP111, MET108,
LEU107, and LEU156). Quercetin can be activated at the
active sites of the adjacent residues LEU844, THR854,
ASP855, MET766, LEU777, LEU788, and ILE789. Quercetin
can bind to EGFR by patterning hydrophobic interactions
with adjacent residues LEU844, THR854, ASP855, MET766,
LEU777, LEU788, ILE789, THR790, LEU792, MET793,
GLY796, CYS797, LEU718, LEU1001, PHE997, VAL726,
LYS745, ILE744, and ALA743 and π-interactions with
LYS745 by patterning hydrophobic interactions with adjacent
residues LEU428, TRP383, LEU384, LEU387, MET388,
PHE404, LEU391, ARG394, GLU353, ALA350, LEU349,
THR347, LEU346, MET343, MET528, LEU525, and VAL534
interactions, forming π-interactions with PHE404 and form-
ing hydrogen bonds with ARG394, thus binding to ESR1.

Kaempferol can bind to EGFR by patterning hydropho-
bic interactions with adjacent residues ARG841, LEU844,
THR790, ASP855, THR854, LYS745, ALA743, CYS797,
GLY796, LEU718, GLY719, SER720, GLY721, GLY724,
THR725, and VAL726. Kaempferol binds to ESR1
(MET140, ILE424, PHE425, MET343, LEU346, THR347,
LEU349, ALA350, PHE404, ARG394, MET388, and
LEU387). Kaempferol can be used as the active site of the
residues MET281, THR291, ASP292, VAL164, LYS163,
GLY162, GLY159, LYS158, GLY157, LEU156, ARG4,

GLY
A: 157 LYS

A: 158

GLY
A: 159LEU

A: 156PHE
A: 438

GLU
A: 234

ASP
A: 292

THR
A: 291

ALA
A: 230

GLU
A: 228

MET
A: 281

ALA
A: 177

MET
A: 227

VAL
A: 164

THR
A: 211

LYS
A: 163

GLY
A: 162 ARG

B: 4

OH

O

HO

O

(e)

Figure 6: Molecular models of the binding of DBP to the predicted targets GSK3B shown as 3D diagrams and 2D diagrams.(a) 3D structure
of GSK3B; (b) 3D structure of DBP; (c) DBP binding at the active site of GSK3B; (d) 3D pattern of DBP and GSK3B docking; (e) 3D pattern
of DBP and GSK3B docking.
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PHE442, PHE438, GLU234, LYS179, ILE180, and LEU181
forming hydrophobic interactions and thus binding to
GSK3B. Kaempferol can bind to GSK3B by patterning hydro-
phobic interactions with adjacent residues LEU814, SER811,
LEU810, MET852, LEU938, MET807, PHE941, CYS942,
PHE956, THR945, LEU766, LEU769, MET845, ASN770,
PHE829, LEU772, ALA773, and GLN776 forming hydropho-
bic interactions and thus binding to NR3C2. Kaempferol can
bind to NR3C2 by forming hydrophobic interactions with
adjacent residues MET108, ASP111, LEU156, ASN154,
LYS114, SER153, ILE31, LYS151, GLU33, GLY34, CYS166,
ASP167, YS54, GLY37, and VAL39 and thus binds toMAPK1
by patterning hydrophobic interactions with adjacent residues
MET108, ASP154, LYS114, SER153, ILE31, LYS151, GLU33,
GLY34, CYS166, ASP167, YS54, GLY37, and VAL39.

DBP binds to GSK3B (THR291, ASP292, ARG4, VAL164,
LYS163, GLY162, PHE161, GLY159, LYS158, GLY157,
LEU156, LEU181, LYS179, ALA177, GLU234, PHE438,
ALA230, TYR229, MET281, GLU228, MET227, and
THR211) active sites, and hydrogen bonds are formed with

THR291, further improving the interaction between the ligand
and GSK3B protein.

Among the above active ingredients, Quercetin and
Kaempferol have been reported in the treatment of AD. For
example, Quercetin can improve cholinergic function and
play a neuroprotective role in AD. The neuroprotective
effects of Quercetin have multiple mechanisms, including
inhibition of Aβ aggregation [20], inhibition of NFT forma-
tion, inhibition of amyloid precursor protein (APP) cleavage
enzyme (BACE1) inhibition [21], and acetylcholinesterase
(AChE) inhibition [22] to reduce oxidative stress in AD
[23]. It plays a role in alleviating Alzheimer’s disease in terms
of oxidative stress and reactive oxygen species scavenging, as
well as improving vascular dysfunction and inhibiting
inflammation. In contrast, Kaempferol delays the loss of
climbing ability and memory and reduces oxidative stress
and acetylcholinesterase activity in AD Drosophila [24].

It was reported [25] that DBP could exacerbate hippo-
campal tissue damage in AD rats through oxidative stress
and upregulate the Bcl-2/Bax/Caspase-3 signaling pathway,

(a) (b)

(c) (d)

(e) (f)

Figure 7: Effect of DBP on the HT22 AD model cell morphology after injured by Aβ25-35 (×100). (a) control group; (b) 170μmol/L Aβ25-35;
(c) 50 μmol/L DBP+170 μmol/L Aβ25-35; (d) 100μmol/L DBP+170 μmol/L Aβ25-35; (e) 150 μmol/L DBP+170 μmol/L Aβ25-35; (f) 200 μmol/
LDBP+170μmol/L Aβ25-35.
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Figure 8: (a, b) The effect of Aβ25-35 on HT22 cell proliferation after treated with different concentration for 48 h. (c) Effects of different
treatments on LDH expression level of HT22 cells. (d) ROS florescence. (e) Histograms of HT22 cell cycle in different intervention groups.
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leading to decreased learning memory capacity. DBP expo-
sure aggravates type 2 diabetes by disrupting the insulin-
mediated PI3K/AKT signaling pathway [26], see Figure 5.
DBP epigenetically induces reproductive toxicity via the
PTEN/AKT pathway [27]. In this study, molecular dock-
ing results showed that DBP has strong binding activity
to GSK3B, see Figure 6. Glycogen synthase kinase 3β
(GSK-3B) is a key factor of the signal transduction path-
way during oxidative stress in AD neurons [28]. Aβ in
AD patients has neuronal toxicity and induces oxidative

stress in neurons [29]. The downstream direct target gene
of phosphatidylinositol (-3) kinase (PI3K) is GSK-3B, and
Aβ is able to decrease AKT activity, increase GSK-3β
activity, and inhibit AKT/GSK-3-related signaling path-
ways [30]. It can be seen that if GSK-3β can be effectively
inhibited, it can help alleviate the symptoms of AD
patients.

Researchers have shown that inhibitors of GSK-3β
include Thiazolidinones (TZD), Bis-indole [31], Aniline
[32], Maleimides, Kenpaullone [33], and Indirubin [34],
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Figure 9: Effects of DBP on apoptosis of HT22 cells. (a) Control group; (b) Model group; (c) SB216763; (d) DBP-L; (e) DBP-M; (f) DBP-H.
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while little research has been done on the effects of phthalates
on AD. The blood-brain barrier (BBB), resulting in low drug
solubility and low bioavailability, has become a bottleneck in
the current treatment of AD [35]. DBP has good blood-brain
barrier permeability (BBB = 0:56) [36]. Whether DBP exerts
its therapeutic effect on AD only by inhibiting AKT/GSK-
3β, the next step is to conduct in vitro experiments to verify
it, see Figure 5.

3.5. DBP Intervention Concentration Screening. The OD
values increased after different concentrations of DBP inter-
vention in Aβ25-35-induced injury in the HT22 AD cell
model of hippocampal neuronal cells in intervening mice.
Compared with the model group, the OD values of DBP
50, 100, and 150μmol/L increased significantly with the con-
centration gradient, and 150μmol/L increased more signifi-
cantly with statistically significant differences (P < 0:01).
Therefore, 50, 100, and 150μmol/L were chosen for the next
experiment. As shown in Figure 7, the morphological detec-
tion of the effect of DBP on the state of Aβ25-35-induced
injury HT22 cells, the morphological observation showed
that DBP could reduce the damage of Aβ25-35-induced
injury HT22 cells.

To further determine the effect of DBP on the activity of
HT22 cells with Aβ25-35-induced injury, the LDH content in
the cell supernatant was measured. The results showed a sta-
tistically significant decrease in LDL content with concentra-
tion gradient in the DBP 50, 100, and 150μmol/L groups
compared with the model group (P < 0:01). In addition,
the cell survival rate was significantly reduced after Aβ25-35
intervention in mouse hippocampal neuronal cells HT22.
Based on the experimental results, 50, 100μmol/L, and
150μmol/L were selected as the low, medium, and high con-
centrations of DBP for subsequent experiments, see Figure 8.

3.6. LDH and ROS Assay Results. As shown in Figure 8(c),
compared with the control group, the LDH content in the
cell culture fluid of the DBP low-, medium-, and high-dose
groups was significantly reduced, and the difference was
statistically significant (P < 0:01). Compared with the model
group, the LDH content in the cell cultures of the DBP low-,
medium-, and high-dose groups was significantly lower than
that of the model group, with a statistically significant differ-
ence compared with the model group (P < 0:01).

As shown in Figure 8(d), the fluorescence intensity of
ROS in the cell culture medium of DBP low-, medium-,
and high-dose groups was significantly reduced, and the
difference was statistically significant (P < 0:01). Compared
with the model group, the fluorescence intensity of ROS in
the cell culture fluid of DBP low-, medium-, and high-dose
groups was significantly reduced, and the difference was
more significantly reduced in the high-dose group, and the
difference was statistically significant (P < 0:01). This indi-
cates that DBP can reduce oxidative stress and improve the
viability of HT22 cells.

3.7. Cell Cycle Assay. The results are shown in Figure 8(e).
Flow cytometric detection of DBP on the cell cycle after
Aβ25-35-induced injury to HT22 cells showed that, compared

with the model group, the Aβ25-35-induced injury to
HT22AD cell model group showed a gradual decrease in
the effect on the G0/G1 phase of the cell cycle with increas-
ing DBP dose, a gradual increase in the effect on the S phase,
and almost no effect on the G2/M phase.

3.8. Apoptosis Detection. Flow cytometry detected the apo-
ptosis rate of Aβ25-30 after Aβ25-35 induced HT22 cell
injury (Figures 9 and 10. The results showed that Aβ25-
35 significantly promoted the apoptosis rate of HT22 cells
(P < 0:01). After DBP intervention in the low-, medium-,
and high-dose groups compared with the model group,
Aβ25-35 produced damage to HT22 cells, and the apoptosis
rate of damage gradually decreased with the increase of
concentration. Among them, DBP was more obvious at
medium and high doses, and the difference was statisti-
cally significant (P < 0:01) (Figure 10).

3.9. qRT-PCR Assay Results. The results of reverse transcrip-
tion quantitative PCR of AKT and GSK-3β mRNA expres-
sion after different intervention groups are shown in
Figure 11. The effect of DBP on AKT and GSK-3β mRNA
expression was increased in a concentration-dependent
manner. Among them, compared with the model group,
the AKT and GSK-3β mRNA expression levels of DBP
low-, medium-, and high-dose groups increased with the
gradient of DBP concentration, and the difference was not
statistically significant.

3.10. WB Test Results. The WB results for detection of tar-
get protein AKT, p-AKT, GSK-3β, and p-GSK-3β and
internal reference protein β-actin are identified separately
in Figure 12. The sizes of the bands in the graphs match
the sizes of the proteins. Among them, p-AKT and p-
GSK-3β protein expression was significantly increased in
a concentration-dependent manner in the DBP low-,
medium-, and high-dose groups compared with the model
group, and the expression levels were more pronounced in
the high dose, with statistically significant differences
(P < 0:05).
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Figure 10: Effect of different concentrations of DBP intervention
on apoptosis of HT22 cells.
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4. Discussion

Natural products have complex biological activities; their
components are complex and diverse, and the composition
of the formula is even more complex. In the field of TCM,

natural products are commonly used in disease treatment,
and their pathways and modes of action vary after entering
the human body. They can act directly on specific targets,
produce new products after metabolism, or act indirectly
through the regulation of endogenous substances, exerting
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Figure 11: Gene expression level of HT22 cells in each group. Compared with the model group, AKT and GSK-3β mRNA expression level
difference was not statistically significant (P > 0:05).
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multicomponent, multitarget regulation. It is urgent to estab-
lish new research strategies and methods that can reflect the
overall characteristics of TCM-ethnic medicine. In recent
years, the rapid development of network pharmacology in
TCM-ethnic medicine research has attracted attention,
which integrates three aspects of TCM-ethnic medicine,
including components, targets, and related diseases, and con-
structs a multidimensional network of “components-targets-
pathways-diseases.” The active ingredients and mechanisms
of action of TCM-ethnic medicine for diseases are then visu-
alized and analyzed.

Visual analysis of the PPI network and its CytoNCA
network revealed multiple associations between targets,
with higher connectivity values associated with greater
potential therapeutic effects. The top-ranked target clusters
of MAPK1, EGFR, NR3C2, ESR1, and GSK3B may be key
targets. In previous studies, MAPK1 has been associated in
previous studies with neurodegeneration, synaptic plastic-
ity, cell survival, and a role in autophagic vesicle formation
in AD [37, 38]. The MAPK1 gene is thought to be an age-
dependent transcriptional alteration gene involved in aber-
rant hyperphosphorylation of tau proteins, leading to
aggregated neurogenic fiber tangles [39]. Furthermore, gal-
antamine can treat Alzheimer’s disease by attenuating the
activation of MAPK1 [40].

EGFR is a transmembrane receptor with tyrosine kinase
activity and is an important member of the ErbB family that
is involved in regulating brain development, neuronal sur-
vival, and functional regulation, among other activities.
Many neurodegenerative diseases include AD [41]. High
levels of EGFR may improve the metabolism of pathological
cerebrospinal fluid biomarkers associated with AD in cogni-
tively normal middle-aged individuals [42]. Many recent
studies have shown that EGFR inhibitors enhance autoph-
agy, improve Aβ toxicity, and neuroinflammation [43].

NR3C2 is an important gene involved in the stress
response, and its gene product, salt cortico‐steroid receptor,
is mainly distributed in the hippocampus and amygdala
regions involved in the regulation of tension and anxiety
and is closely related to tension and anxiety generation and
regulation and cognitive function [44]. miR-135b-5p upreg-
ulation can reduce neuronal damage and inflammatory
response in PSCI by targeting NR3C2, which is useful for
poststroke cognitive impairment treatment [45].

Estrogen can cross the blood-brain barrier to act in the
brain [46], and the action of estrogen is dependent on at
least 2 ESRs (ESR1 and ESR2), potential candidate genes that
regulate the development of AD. Variants in the ESR1 gene
have been reported to regulate the susceptibility or course of
AD. Scacchi et al. may be another gene that promotes inter-
individual variation in response to treatment with cholines-
terase inhibitors (ChEIs) of genes [47].

KEGG enrichment pathway analysis revealed that neu-
roactive ligand-receptor interaction [48], PI3K-AKT signal-
ing pathway [49], cholinergic synapse [50], regulation of
actin cytoskeleton [51], Alzheimer’s disease, pathways of
neurodegeneration-multiple diseases, MAPK signaling path-
way [52], and cGMP-PKG signaling pathway [53] are
important pathways related to disease regulation in AD

and have been reported in the literature, suggesting that
the pathways predicted to be enriched in this study have
high confidence. Quercetin mediates activation of the
PI3K/AKT/GSK-3β signaling pathway through ER and has
a protective effect against Aβ25–35-induced damage in
PC12 cells [54]. Quercetin protects against okadaic acid-
(OA-) induced hippocampal neuronal injury in HT22, a cell
line derived from mouse hippocampal neurons, via MAPK
and PI3K/AKT/GSK3β signaling pathways [55]. Kaempferol
exposure delayed the loss of climbing ability, memory, and
reduced oxidative stress and acetylcholinesterase activity in
Drosophila AD [24].

The results of the present study showed that DBP was
able to reduce the rate of inhibition of HT22 cells with
Aβ25–35-induced damage, and the results indicated that low
doses of DBP had a protective effect on HT22 cells with
Aβ25–35-induced damage. The present study showed that
DBP significantly reduced the LDH and ROS content in
the supernatant of Aβ25-35-induced injury HT22 cell cul-
tures, and DBP was also able to reduce the apoptosis rate
of Aβ25-35-induced injury HT22 cells. Thus, it can be specu-
lated from the results of this study that DBP has the ability
to protect the stability of injured neuronal cells and improve
the permeability of the cell membrane, thus stabilizing the
intracellular environment. This effect may be related to the
fact that DBP increases the mRNA levels of AKT, GSK-3β,
etc. in AD cell models and regulates the phosphorylation
of the AKT/GSK-3β pathway.

In summary, OBL has been used to explain the relation-
ship between OBL active ingredients, potential targets, sig-
naling pathways, and the pathogenesis of AD disease at a
holistic level through network pharmacology technology
and to verify the pharmacodynamic and regulatory mecha-
nisms of OBL main active ingredients through in vitro
experimental methods. This paper provides a new idea for
the treatment of AD with complex pathogenesis and also
lays the foundation for the in-depth study of the synergistic
mechanism of OBL.
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