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Diabetic nephropathy is a leading cause of end-stage renal disease in both developed and developing countries. It is lack of specific
diagnosis, and the pathogenesis remains unclarified in diabetic nephropathy, following the unsatisfactory effects of existing
treatments. Therefore, it is very meaningful to find biomarkers with high specificity and potential targets. Two datasets,
GSE30529 and GSE47184 from GEO based on diabetic nephropathy tubular samples, were downloaded and merged after
batch effect removal. A total of 545 different expression genes screened with log 2FC > 0:5 were weighted gene coexpression
correlation network analysis, and green module and blue module were identified. The results of KEGG analyses both in green
module and GSEA analysis showed the same two enriched pathway, focal adhesion and viral myocarditis. Based on the
intersection among WGCNA focal adhesion/Viral myocarditis, GSEA focal adhesion/viral myocarditis, and PPI network, 17
core genes, ACTN1, CAV1, PRKCB, PDGFRA, COL1A2, COL6A3, RHOA, VWF, FN1, HLA-F, HLA-DPB1, ITGB2, HLA-
DRA, HLA-DMA, HLA-DPA1, HLA-B, and HLA-DMB, were identified as potential biomarkers in diabetic tubulointerstitial
injury and were further validated externally for expression at GSE99325 and GSE104954 and clinical feature at nephroseq V5
online platform. CMap analysis suggested that two compounds, LY-294002 and bufexamac, may be new insights for
therapeutics of diabetic tubulointerstitial injury. Conclusively, it was raised that a series of core genes may be as potential
biomarkers for diagnosis and two prospective compounds.

1. Introduction

Diabetic nephropathy (DN), affecting approximately 30-
40% of patients with diabetes mellitus (DM) as a devastating
microvascular complication, is the primary cause of chronic
kidney disease (CKD) and end-stage renal disease (ESRD) in
the world [1]. DN is characterized by progressive renal dam-
age manifested by a deterioration in the glomerular filtration
rate (GFR), progressive proteinuria, an increased serum cre-
atinine level (SCR), a progressive urine albumin creatinine
ratio (ACR), hypertension, and a high mortality rate because
of complications from ESRD or cardiovascular diseases. DN
patients taken in proportion of 30-47% of all patients

enrolled in ESRD programs, a trend which is significantly
associated with the growing incidence and mortality rates
of diabetic patients [2]. Due to the high morbidity ratio
and significant public health problems associated with
ESRD, early diagnosis, reasonable therapeutics, and the
postponement of DN onset have promising clinical
implications.

In the past, DN was considered to be a glomerular dis-
ease mainly characterized by vascular damage. However,
some studies have reported recently that patients with
advanced DN have either substantial glomerular pathologi-
cal change or proteinuria. It appears that a decline in renal
function precedes traditional indicators of renal disease,
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such as microalbuminuria or creatinine [3, 4]. Emerging evi-
dence supports the concept that renal tubular lesions play an
important role in the occurrence and development of DN. A
large number of studies have shown that the capacity for
albumin reabsorption decreases after the renal tubular func-
tion is compromised, which occurs significantly earlier than
the changes in renal function and glomerular filtration func-
tion. Simple renal tubular dysfunction can also cause pro-
teinuria [3–6]. The renal tubules may act as initiators,
drivers, or contributors in the early pathogenesis of DN
[5]. Renal tubulopathy and renal interstitial fibrosis can be
used as relatively independent factors to predict the progres-
sion of renal disease. Thus, there is an increasing need to
exploring molecular alterations of renal tubules as biomark-
ers for develop effective early diagnosis protocols and under-
stand the precise molecular mechanisms involved in disease
progression related to therapeutic strategies in DN.

Currently, bioinformatics methods are extensively
applied to the analysis of microarray data to identify differ-
entially expressed genes (DEGs), followed by mechanism
exploration. However, due to a limited sample size, reliable
results may be difficult to come by during a single ChIP
analysis given the high false-positive rate. In our research,
four mRNA-expression profiling arrays were downloaded
from the Gene Expression Omnibus (GEO), of which two
datasets, GSE30529 and GSE47184, were merged after
batch-effect removal to screen the DEGs and subsequent
mechanisms, while other two datasets, GSE99325 and
GSE104954, were regarded as validation sets, respectively.
DEGs expressed in renal tubulointerstitial tissues between
DN patients and normal controls were filtrated to seek pro-
spective biomarkers. Weighted gene coexpression network
analysis (WGCNA), protein-protein interaction (PPI) net-
work, gene set enrichment analysis (GSEA), and Kyoto
Encyclopedia of Genes and Genomes (KEGG)/Gene Ontol-
ogy (GO) analysis were executed to identify the central bio-
markers and explore the molecular mechanisms that bring
about renal tubule damage. Complementally, the Nephroseq
v5 online platform was used to validate the Pearson correla-
tions between core genes and the clinical performance of
DN. Possible small-molecule drugs that could reverse the
major tubulointerstitial changes in DN were revealed by
connectivity mapping (CMap). Conclusively, a total of 17
core genes, two crucial pathways, and 10 potential drugs
(especially LY-294002 and bufexamac) were found, which
can be regarded as hopeful diagnostic biomarkers and ther-
apeutic strategies for tubulointerstitial lesions in DN,
respectively.

2. Materials and Methods

2.1. Microarray Data Information and DEG Analysis. Four
gene-expression datasets (GSE30529, GSE47184,
GSE99325, and GSE104954) were downloaded from GEO
database (http://www.ncbi.nlm.nih.gov/geo), a publicly
available functional genomics database, to screen and iden-
tify candidate genes involved in tubulointerstitial injury of
patients with DN. GSE30529 was performed on the
GPL571 platform (Human Genome U133A 2.0 Array; Affy-

metrix, Santa Clara, CA, USA). GSE47184 was performed on
both the GPL11670 (Human Genome U133 Plus 2.0 Array;
Affymetrix) and GPL14663 (GeneChip Human Genome
HG-U133A Custom CDF; Affymetrix) platforms.
GSE99325 was tested on the GPL19109 (Human Genome
U133 Plus 2.0 Array; Affymetrix) and GPL19184 (Human
Genome U133A Array; Affymetrix) platforms. GSE104954
was tested on the GPL24120 (Human Genome U133A
Array; Affymetrix) and GPL22945 (Human Genome U133
Plus 2.0 Array; Affymetrix) platforms, respectively.

Data preprocessing included probe conversion, data inte-
gration, and batch-removal effects. Genes with ≥1 probe sets
or probes without corresponding gene symbols were averaged
or removed, respectively. InSilicoMerging R/Bioconductor
packages were used to integrate and normalize them across
platforms, respectively. The DEGs inDN and normal renal tis-
sues were screened by a cut-off criterion, adjusted P < 0:05 and
jlog 2FCj > 0:5, using the linear models for microarray data
(limma) R package. The heat map of DEGs was calculated
and mapped using “Pheatmap” R package.

2.2. Construction of the Weighted Gene Coexpression
Network. WGCNA is a system biology method used to
describe gene-association patterns between different sam-
ples. It can be used to identify highly covarying gene sets
and to identify candidate biomarker genes or therapeutic
targets based on the interconnectedness of gene sets and
the association between gene sets and phenotypes. A gene
coexpression network was constructed for analyzing the
coexpression relationship of DEGs using the WGCNA
online tool, Sanger Box (http://sangerbox.com/).

WGCNA analysis can be divided into three steps, as fol-
lows: (i) select an appropriate soft threshold, (ii) determine
the coexpression module, and (iii) analyze the relationship
between modules and phenotypes. Briefly, genes were ana-
lyzed by both Pearson’s correlation matrices and an average
linkage method. Then, β, a soft power threshold, that may
underline strong correlations between genes and penalize
weak correlations, was used to convert the correlation matrix
into a weighted adjacency matrix using a power function A
mn = jCmnjβ (where Cmn equals = Pearson’s correlation
between genem and gene n, and Amn equals the adjacency
between gene m and gene n). The adjacency was then
switched into a topological overlap matrix (TOM), which
was used to measure the network connectivity of a gene.
The resulting TOM was based on genetic similarity of bio-
logical significance and was used to measure the coexpres-
sion relationships between genes. It was defined as the sum
of its adjacency with all other genes for network gene ratio.
This was followed by the calculation of corresponding dis-
similarities (1-TOM). Module identification was achieved
using the method of dynamic tree cutting based on hierar-
chical clustering with a minimum size (gene group) of 20
for the genes dendrogram. The sensitivity was set to 2. To
further analyze the module, we calculated the dissimilarity
of module eigen genes, chose a cut line for the module den-
drogram, and merged some modules with a distance < 0:25.
It should be noted that grey module is considered a gene set
that could not be assigned to any module.
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2.3. GSEA. GSEA was conducted to explore the underlying
biological pathways. The 46 samples in GSE30529 +
GSE47184 belonged to two groups of 28 DN samples and
18 controls and underwent enrichment analysis using the
GSEA software (GSEA_4.1.0, http://software.broadhttp://
institute.org/gsea/), on the JAVA version 8.0 platform. The
annotated gene set c2.cp.kegg.v7.4.symbols.gmt obtained
from the GSEA official website (http://www.gsea-msigdb
.org/gsea/index.jsp) was chosen as the reference set to calcu-
late enrichment score (ES). The number of permutations
was set to 1000. The gene size was set to 5-500. A normalized
P < 0:05 and a false − discovery rate ðFDRÞ < 0:25 were con-
sidered to be statistically significant.

2.4. KEGG Pathway and GO Analysis. For gene set func-
tional enrichment analysis, we used the latest KEGG path-
way gene annotation obtained from KEGG rest API
(https://www.kegg.jp/kegg/rest/keggapi.html) and GO anno-
tations from the R software package http://org.hs.eg.db (ver-
sion 3.1.0), to map genes into a background set. Then, the R
software package clusterProfiler (Version 3.14.3) was used
for enrichment analysis. We set the minimum gene set to 5
and the maximum gene set to 5000; P < 0:05 and FDR <
0:05 were considered to be statistically significant.

2.5. PPI Analysis. To identify more key genes related to DN,
a PPI network of genes in the green module was established
by the retrieval of interacting genes (STRING, http://string-
db.org) [7]. A high confidence 0.9 was selected to design the
PPI network. Then, the PPI network was visualized and the
interactive relationships among interested genes were ana-
lyzed using the Cytoscape version 3.9.0 software. Genes were
subsequently further identified by calculating the top 30
nodes ranked by degree method using cyto-hubba, a Cytos-
cape software plugin [“CytoHubba: identifying hub objects
and subnetworks from complex interactome,” BMC Systems
Biology].

2.6. External Validation. GSE99325 (18 DN samples and 6
controls) and GSE104954 (17 DN samples and 5 controls)
were download from the GEO database to validate the hub
gene-expression differences between the DN and control
groups. A receiver-operating characteristic (ROC) curve
was drawn to evaluate the efficiency of hub genes in the diag-
nosis of DN.

2.7. Clinical Features Analysis. The correlations between the
expression of core genes and the GFR, proteinuria, SCR, and
ACR values in DN patients were analyzed using the Nephro-
seq v5 online tool (http://v5.nephroseq.org/) by the Pearson
correlation coefficient (cor). P < 0:05 was considered to be
statistically significant. Insignificant results are not shown.

2.8. CMap Analysis. The CMap database (https://portals
.broadinstitute.org/cmap) applies the whole genome-
transcription system to comprehensively describe biological
states, such as disease, physiology, and drug induction. The
GSEA algorithm was used to extract and compare the
gene-expression markers of these biological states so as to
connect the drugs with the same (similar) or opposite func-

tions, the diseases applicable to certain drugs, and the drug
action pathways [8]. We used the genes in the green module
to predict potential drugs that may ameliorate tubulointer-
stitial lesions in DN patients. Before CMap analysis, gene
symbols were converted into probe identifiers according to
the annotation information of the GPL96 chip, which was
downloaded from the GEO database.

2.9. Statistical Analysis. Statistical analyses were handled
with R (R Foundation for Statistical Computing, Vienna,
Austria) and GraphPad Prism version 8.0 (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). An Unpaired t -test or the
Mann–Whitney U test was used to evaluate the core genes’
expression differences between the DN and control groups.
ROC curves were established, and we calculated area under
the ROC curve (AUC) values to evaluate the efficacy of core
genes in diagnosing DN. The correlations between core gene
expressions and GFR, proteinuria, SCR, and ACR values
were assessed by the Pearson COR. All tests were two-tailed,
and P < 0:05 indicated statistical significance.

3. Results

3.1. Identification of DEGs Specifically Involved in
Tubulointerstitial Injury in DN. Figure 1 shows the flow
chart of the study. For screening DEGS, two GEO datasets,
GSE30529 and GSE47184, were merged, incorporating a
total of 28 DN samples and 18 controls (10 DN samples
and 12 controls from GSE30529 and 18 DN samples and 6
controls from GSE47184, respectively). In addition,
GSE99325 and GSE104954 were used for external validation,
where GSE99325 included 18 DN samples and 6 tumor
nephrectomy (TN) samples as control. GSE104954 included
17 DN samples and 5 TN samples as a control group.

In this study, a total of 10859 genes were included after
merging GSE30529 and GSE47184 (Figure 2(a)). Before
removing the batch effect, the sample distribution of each
dataset was observed to be quite different, suggesting that
there was a batch effect. After removing the batch effect,
the data distribution among each dataset tended to be con-
sistent, with the median on the same line, and the mean
and variance values also being similar to one another
(Figures 2(b) and 2(c)). The UMAP diagram also showed
that the batch effect was better removed (Figure 2(d)). After
batch normalization, 545 DEGs were filtered out by the
limma R package (adjusted P < 0:05 and jlog 2FCj > 0:5), in
which 375 genes were upregulated, and 170 were downregu-
lated (Figure 2(e)). Among them, the top 20 upregulated and
the top 20 downregulated genes were exhibited on the heat
map (Figure 2(f)). The comparison results before and after
batch removal in GSE99325 and GSE104954 and the com-
plete lists of 545 DEGs are presented in Figure S1 and
Table S1, respectively (Figure S1, Table S1).

3.2. WGCNA and PPI Network Analysis. To identify the cor-
relation between gene modules and the DN phenotype,
WGCNA was performed based on DEGs of tubulointersti-
tial samples. No outlier among the samples existed based
on sample clustering, and β = 16 (scale − freeR2 = 0:85)
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was chosen as the soft-threshold power to conduct a scale-
free gene coexpression network with complete module
characteristics (Figure 3(a)). Modules were obtained by
dynamic tree cutting and then were merged using following
parameters: β = 16, minModuleSize = 20, deepSplit = 2;
mergeCutHeight = 0:25. Namely, after generated by
dynamic tree cut, modules were merged with a number of
genes < 20 and the cutting height of 0.25. Then, three mod-
ules for the DEGs were obtained by WGCNA, including
green, blue, and grey modules (Figures 3(b)–3(d)). The grey
module was an unintentional module. Table S2 shows the
numbers of genes in each module (Table S2). The
adjacencies among genes and the module division
consistency are exhibited in a heat map, which revealed a
higher correlation among most of the genes in the same
module (Figure 3(e)). Pearson’s test was used to analyze
the COR between the module eigengenes (MEs) and
clinical traits. The association between individual genes
and clinical traits was defined as the gene significance
(GS), while the relationship between gene-expression
values and MEs in certain module was denoted as the
module membership (MM). The analysis between modules
and clinical traits revealed that the green module was

positively correlative with DN, with COR = 0:67 and P = 3e
− 07, and the blue module was negatively correlative with
DN, with COR = 0:54 and P = 1e − 04 (Figure 3(f)).
Additionally, the outcomes of the GS vs. MM scatterplot in
the green module showed a positively significant
correlation (COR = 0:37, P = 1:1 − e12), while the blue
module had a weak negatively significant relevance
between the GS and MM (COR = −0:19, P = 0:028)
(Figure 3(g)). Otherwise, used the cut-off criteria
(jMMj > 0:9 and jGSj > 0:1). Forty genes in the green
module and 31 genes in the blue module with high
connectivity were considered to be hub genes and are
shown in a heat map, respectively (Figures 4(a) and 4(b)).

A PPI network of the green module genes was developed
based on the STRING database (Figure 4(c)). To further ana-
lyze module genes, a PPI subnetwork was developed by iden-
tifying the top 30 nodes with neighbors and expanded ranked
by degree method in cyto-hubba, Cytoscape software plugin.
A total of 95 genes were screened (Figure 4(d), Table S3).

3.3. KEGG and GO Enrichment Analyses of Green and Blue
Module Genes. To analyze the interrelated functions and
pathways of genes in the green and blue modules, GO

GSE30529+GSE47184

GSEA 545 DEGs

WGCNA

PPI
KEGG/GO 
enrichment

KEGG/GO 
enrichment

17 
Core genes

External validation
Clinical features 

analysis

GSE99325 GSE104954

Screening potential drugs
cMap

Log FC > 0.5

DN-related module 
blue (134 genes)

DN-related module 
green (347 genes) 

CytoHubba analysis

GSEA WGCNA PPI

Figure 1: The flow chart of the study. Abbreviation: GSEA: gene set enrichment analysis; DEGs: differentially expressed genes; WGCNA:
weighted gene coexpression network analysis; DN: diabetic nephropathy; PPI: protein-protein interaction.
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Figure 2: Continued.
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biological process (BP), GO molecular function (MF), GO
cellular component (CC) analyses, and KEGG analysis were
performed. The results of green module gene enrichment
revealed that phagosome (hsa04145; P = 2:49E − 12) was
most significantly enriched for in the KEGG pathway,
followed by complement and coagulation cascades
(hsa04610; P = 6:94E − 11), Staphylococcus aureus infection
(hsa05150; P = 1:63E − 10), and so on (Figure 5(a) and
Table S4). As for the BP, MF, and CC analyses, the
outcomes are shown in Figures 5(b)–5(d). For the blue
module, KEGG pathway enrichment analysis of blue
module genes showed that metabolic pathways (hsa00140;
P = 1:27e − 10), mineral absorption (hsa04978; P = 0:0004),
and fatty acid degradation (hsa00071; P = 0:0012) were
significantly enriched, as shown in Figure 5(e).
Furthermore, the results of the BP, MF, and CC analyses
are shown in Figures 5(f)–5(h).

3.4. Core Genes Related to Gene Tubulointerstitial Injury in
DN Samples. To identify KEGG signaling pathways enriched
in the DN phenotype, GSEA was employed based on merged
data from GSE30529 and GSE47184 and revealed significant
differences (P < 0:05, FDR < 0:25) in enrichment using an
annotated gene set (c2.cp.kegg.v7.2.symbols). As shown in
Figure 6(a), the top 8 significantly enriched gene sets in pos-
itively correlated with the DN group were as follows:
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFEC-
TION (ES = 0:631, NES = 1:573, P = 0:028, FDR = 0:237),
KEGG_FC_GAMMA_R_MEDIATED_ PHAGOCYTOSIS
(ES = 0:514, NES = 1:572, P = 0:029, FDR = 0:213), KEGG_
FOCAL_ADHESION (ES = 0:489, NES = 1:563, P = 0:019,
FDR = 0:207), KEGG_FC_EPSILON_RI_SIGNALING_
PATHWAY (ES = 0:433, NES = 1:552, P = 0:033, FDR =
0:211), KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY
(ES = 0:630, NES = 1:555, P = 0:016, FDR = 0:202), KEGG_
CELL_CYCLE (ES = 0:508, NES = 1:542, P = 0:029, FDR =
0:213) (ES = 0:514, NES = 1:572, P = 0:029, FDR = 0:213)

(ES = 0:514, NES = 1:572, P = 0:037, FDR = 0:181), KEGG_
VIRAL_MYOCARDITIS (ES = 0:618, NES = 1:546, P =
0:047, FDR = 0:189), and KEGG_NATURAL_KILLER_
CELL_MEDIATED_CYTOTOXICITY (ES = 0:546, NES =
1:540, P = 0:033, FDR = 0:174). From the GSEA results, the
two pathways KEGG_FOCAL_ADHESION and KEGG_
VIRAL_MYOCARDITIS were enriched, which were also
confirmed by the results of KEGG analysis of green module
genes in WGCNA. In order to lock core genes, the intersect-
ing genes among the WGCNA focal adhesion pathway,
GSEA focal adhesion pathway, and the related genes of the
top 30 nodes with neighbors and expanded ranked by the
degree method in cyto-hubba of the PPI network and the
intersecting genes among WGCNA-viral myocarditis path-
way, GSEA-viral myocarditis pathway, and the related genes
of the top 30 nodes with neighbors and expanded ranked by
degree method in cyto-hubba of the PPI network were ana-
lyzed (Figures 6(b) and 6(c)). Based on the Venn diagrams
shown in Figures 6(b) and 6(c), upon synthesizing the
results of the intersection, the final 17 core genes (ACTN1,
CAV1, PRKCB, PDGFRA, COL1A2, COL6A3, RHOA,
VWF, FN1, HLA-F, HLA-DPB1, ITGB2, HLA-DRA, HLA-
DMA, HLA-DPA1, HLA-B, and HLA-DMB) related to
tubulointerstitial lesions in DN were found (Figure 6(d)).

3.5. External Validation of the Expression and Diagnostic
Capacity of Core Genes in the DN Group. As shown
Figures 7 and 8, the two datasets of GSE99325 and
GSE104954 were used for cross-validation. Five of the 17
core genes were identified from the expression level and
diagnostic capacity in the DN group in validation datasets,
including CAV1, PDGFRA, COL1A2, VWF, and FN1. In
detail, the mRNA expression of CAV1 (P = 0:004 in
GSE99325 and P = 0:0075 in GSE104954), PDGFRA
(P = 0:0404 in GSE99325 and P = 0:0332 in GSE104954),
COL1A2 (P = 0:0224 in GSE99325 and P = 0:0046 in
GSE104954), VWF (P = 0:0092 in GSE99325 and P =
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Figure 2: Identification of DEGs specifically implicated in tubulointerstitial injury in DN. (a) Venn diagram of merge of GSE30529-GPL571,
GSE47184-GPL11670, and GSE47184-GPL14663, the two datasets showed an overlap of 10859 genes. (b–d) The density (b), UMAP (c), and
boxplot (d) figure before or after removing batch. (e) Volcano plot analysis identifies DEGs, Log2FC > 0:5, and adj:P < 0:05. (f) Heat map of
the top 20 upregulated and top 20 downregulated DEGs. Red: upregulation; blue: downregulation.
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Figure 3: Identification ofmodules specially correlated withDN byWGCNA. (a) Sample dendrogram; (b) analysis of different soft-thresholding
values from 1 to 30. (c) Evaluation of mean connectivity for each β value. β = 16was selected. (d) Dendrogram of all DEGs clustered based on the
dissimilarity measure (1-TOM). The original (upper bar) and merged modules (lower bar) are, respectively, shown in the two-colored bars
below. (e) Network heat map plot of all the DEGs. Each row and column of the heat map belong to a single gene. The colors from red to
progressive yellow represent a low to high adjacencies. (f) Module-trait relationships heat map, namely, correlation heat map of each module
with clinical phenotype. (g) The relationship between the module membership and gene significance in the green (left) and blue (right) module.
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Figure 4: Continued.
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0:0183 in GSE104954), and FN1 (P = 0:0153 in GSE99325
and P = 0:015 in GSE104954) were significantly higher in
the DN group than the control group in both GSE99325
and GSE104954 (Figure 7). The ROC curves showed that
aside from HLA-DMA (AUC, 0.6759 in GSE99325 and
AUC, 0.6235 in GSE104954), PRKCB (AUC, 0.6000 in
GSE104954), and HLA-B (AUC, 0.6706 in GSE104954),
the genes had relatively high AUCs (>0.7) in the diagnosis
of DN, especially CAV1 (AUC, 0.8704 in GSE99325; AUC,
0.8706 in GSE104954), COL1A2 (AUC, 0.8148 in
GSE99325; AUC, 0.9059 in GSE104954), VWF (AUC,
0.8426 in GSE99325; AUC, 0.8353 in GSE104954), FN1
(AUC, 0.8241 in GSE99325; AUC, 0.8588 in GSE104954),
and ITGB2 (AUC, 0.8056 in GSE99325; AUC, 0.8000 in
GSE104954) (Figure 8).

3.6. Clinical Validation on the Relationship between Core
Genes and Kidney Function of Patients with DN. To verify
potential roles of core genes in tubulointerstitial injury in
DN, Pearson’s correlation analysis between core genes and
kidney function features like GFR, proteinuria, SCR, and
ACR were analyzed using Nephroseq v5. Notably, the
mRNA expression levels of ACTN1, CAV1, COL1A2,
COL6A3, FN1, RHOA, VWF, HLA-DPA1, and HLA-B in
kidney tubules were negatively relevant to the GFR in DN
patients (Figure 9(a)), indicating that these core genes may
promote the development of DN. Besides, compared to the
subnephrotic proteinuria group, COL1A2 mRNA expression
was significantly higher in the nephrotic proteinuria group
(P = 0:0075), and the mRNA expression levels of ACTN1,
PRKCB, ITGB2, HLA-DPA1, and HLA-B in kidney tubules
were positively correlated with proteinuria in patients with
DN (Figure 9(b)). In addition, the mRNA expression levels

of COL1A1, HLA-F, and ITGB2 in kidney tubules were pos-
itively correlated with SCR in DN patients, hinting that
those genes may facilitate the progression of DN (Figure 9
(c)). Finally, HLA-F had a positive relationship with ACR
in DN patients (Figure 9(d)).

3.7. Identification of Potential Drugs to Prevent Diabetic
Tubulointerstitial Injury by CMap. To explore potential
drugs for application in the treatment of DN, CMap analysis
was performed on line based on the upregulated and down-
regulated genes in the critical green module. As shown in
Table 1, the top 10 agents that may reverse the DEGs of
the critical green module in cell lines were estradiol, LY-
294002, 5224221, procaine, bufexamac, metaraminol, zimel-
dine, morantel, Prestwick-692, and PNU-0230031.

4. Discussion

With the prevalence of diabetes worldwide, the incidence
rate of DN, as the major microvascular complication of this
disease, has also increased rapidly and has become the main
cause of ESRD both in developed and developing countries
[9, 10]. Although the pathogenesis of DN has been exten-
sively studied in recent decades, there are still no effective
treatments available for DN in clinic. Therefore, early detec-
tion and early intervention should be emphasized for DN. It
remains of great clinical significance to further discover the
prospective diagnostic biomarkers, pathophysiological
mechanisms, and possible intervention targets of DN.

Previously, studies on the mechanism of DN mostly
focused on glomerular injury, and the clinical indicators
used to evaluate DN are mostly based on the changes in glo-
merular structure and function [11]. Notably, emerging
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Figure 4: The heat map of hub genes selected by WGCNA and PPI network visualization of the coexpressed module. (a) The heat map of
hub genes in the green module by WGCNA; (b) the heat map of hub genes in the blue module by WGCNA; (c) PPI network of all the genes
in the green module based on STRING database; (d) PPI network of genes identified by calculating the top 30 nodes with neighbors and
expanded ranked by degree method in “cyto-hubba,” a plug-in of Cytoscape software. Red: upregulation; blue: downregulation.
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evidence suggests that tubular changes contribute to the pro-
gression of renal pathologies in diabetic kidney disease,
including interstitial fibrosis. Pathologically, the lesions of
patients with DN include thickness of the glomerular and
tubular basement membranes, mesangial expansion, nodular
glomerular sclerosis, and tubulointerstitial fibrosis [12],
summarily, glomerular lesions and tubulointerstitial changes
[13]. Formerly, DN was generally considered a glomerular
disease, but with the deepening of research, compared to
glomerular injury, it is believed that renal tubular disease
and renal interstitial fibrosis are more closely related to the
progressive deterioration of renal function and could be used
as relatively independent indices to evaluate and predict the
progress of renal disease [14–16]. Additionally, renal tubular
interstitial accounts for >90% of renal parenchyma and is
responsible for the varieties in pivotal functions, and renal
tubular interstitial injury plays a central role in the progres-
sion of DN [17, 18]. In the development of chronic renal dis-
ease, renal interstitial fibrosis is a key pathological change
and a predominant pathological feature in DN with tubular
atrophy, extracellular matrix accumulation, and myofibro-
blast expansion [13, 19], which can better reflect the degree
and level of renal damage. In renal interstitial fibrosis, histo-
pathological changes in kidney tubules may be an initial fac-
tor, which have been regarded as an important cause of
albuminuria and proteinuria [18]. Hence, identifying the
susceptible genes of renal tubular injury in DN patients is
very meaningful in order to elucidate the origin of this dis-
ease and explore potential treatments.

As evidence accumulates worldwide, DN is now known
as the product of multiple gene interactions, but the molec-
ular mechanisms at play remain poorly understood consid-

ering the complexity of etiological differences [20].
Therefore, potential biomarkers for early diagnosis and ther-
apeutic targets were in sore need. Traditionally, single ChIP
data had low reliability because of large individual differ-
ences and high false-positive ratios. The purpose of our
investigation was to the ascertain underlying pathways and
central genes related to the diagnosis and pathogenesis of
DN in two merged GEO datasets, GSE30529 and
GSE47184. Based on screening DEGs between DN patients
and controls with log 2FC > 0:5, the WGCNA algorithm
was further performed for functional modules associated
with diabetic tubulointerstitial injury. Compared to tradi-
tional microarray-based analysis methods, WGCNA pos-
sesses a number of unique advantages, which are
characterized by analyzing gene clusters (modules) rather
than entire genes and their interactions.

In this study, a total of 10,859 genes were included after
GSE30529 and GSE47814 were merged, and we then identi-
fied 545 DEGs between renal tubulointerstitial tissues of 28
DN samples and 18 controls from the GSE30529 and
GSE47184 merged datasets. The following WGCNA analysis
showed that the green module was most significantly associ-
ated with DN, and KEGG/GO analysis was performed to
investigate these genes in the green module further to eluci-
date more regarding the fundamental pathogenesis. Based
on the results of KEGG pathway enrichment of genes in
green module, as shown in Figure 5(a) and Table S4, the
top 20 pathways (phagosome, complement and coagulation
cascades, Staphylococcus aureus infection, pertussis,
hematopoietic cell lineage, amoebiasis, viral myocarditis,
allograft rejection, leishmaniasis, graft-versus-host disease,
type I diabetes mellitus, tuberculosis, rheumatoid arthritis,
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Figure 5: KEGG pathway and GO function enrichment analysis of genes assigned in the green and blue module. (a–d) The top 20 most
statistically significant terms of KEGG (a), BP (b), CC (c), and MF (d) analysis of genes assigned in the green module; (e) the statistically
significant terms of KEGG analysis of genes assigned in the blue module; (f–h) the top 20 most statistically significant terms of BP (b),
CC (c), and MF (D) analysis of genes assigned in the blue module. The x-axis represents GeneRatio and y-axis represents KEGG/GO
terms. The size of circle represents gene count. Different color of circles represents different adjusted P value; FDR: false discovery rate;
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c2.cp.kegg.v7.4.symbols.gmt in the DN group. (a) The top 8 significant enriched gene set positively correlated with the DN group was KEGG_
PATHOGENIC_ESCHERICHIA_COLI_INFECTION (ES = 0:631, NES = 1:573, P = 0:028, FDR = 0:237), KEGG_FC_GAMMA_R_
MEDIATED_PHAGOCY-TOSIS (ES = 0:514, NES = 1:572, P = 0:029, FDR = 0:213), KEGG_FOCAL_ADHESION (ES = 0:489, NES = 1:563
, P = 0:019, FDR = 0:207), KEGG_FC_EPSILON_RI_ SIGNALING_PATHWAY (ES = 0:433, NES = 1:552, P = 0:033, FDR = 0:211), KEGG_
CYTOSOLIC_DNA_SENSING_PATHWAY (ES = 0:630, NES = 1:555, P = 0:016, FDR = 0:202), KEGG_CELL_CYCLE (ES = 0:508, NES =
1:542, P = 0:029, FDR = 0:213) (ES = 0:514, NES = 1:572, P = 0:029, FDR = 0:213) (ES = 0:514, NES = 1:572, P = 0:037, FDR = 0:181),
KEGG_VIRAL_MYOCARDITIS (ES = 0:618, NES = 1:546, P = 0:047, FDR = 0:189), and KEGG_NATURAL_KILLER_CELL_MEDIATED_
CYTOTOXICITY (ES = 0:546, NES = 1:540, P = 0:033, FDR = 0:174). (b) Venn diagram of genes in WGCNA-focal adhesion pathway,
GSEA-focal adhesion pathway, and the related genes of the top 30 nodes with neighbors and expanded ranked by degree method in “cyto-
hubba” of PPI network. (c) Venn diagram of genes in WGCNA-viral myocarditis pathway, GSEA-viral myocarditis pathway, and the related
genes of the top 30 nodes with neighbors and expanded ranked by degree method in “cyto-hubba” of PPI network. (d) The heat map of final
17 core genes in GSE30529-47184. WGCNA-focal adhesion: genes in focal adhesion pathway by WGCNA analysis; GSEA-focal adhesion:
genes in focal adhesion pathway by GSEA KEGG analysis; WGCNA-viral myocarditis: genes in viral myocarditis pathway by WGCNA
analysis; GSEA-viral myocarditis: genes in viral myocarditis pathway by GSEA KEGG analysis; PPI-degree top 30: the related genes of the
top 30 nodes with neighbors and expanded ranked by degree method in “cyto-hubba” of PPI network; red: upregulation; blue: downregulation.
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Figure 7: External validation on the different expression of core genes in renal tubulointerstitial tissues between DN patients and controls in
dataset GSE99325 and GSE104954. (a) The different expression of core genes in renal tubulointerstitial tissues between DN patients and
controls in dataset GSE99325; (b) the different expression of core genes in renal tubulointerstitial tissues between DN patients and
controls in dataset GSE104954; analyzed by unpaired t test or Mann–Whitney U test ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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cell adhesion molecules (CAMs), influenza A, autoimmune
thyroid disease, NF-kappa B signaling pathway, asthma,
focal adhesion, and gap junction) were mapped. Some of
the pathways present here were consistent with previous
studies [21–24]; complement and coagulation cascades,
Staphylococcus aureus infection, pertussis were also
enriched in Xu et al.’s research [21]. While hematopoietic
cell lineage, amoebiasis, NF-kappa B signaling pathway,
complement and coagulation cascades, pertussis were also
enriched after WGCNA analysis in Iup et al.’s study [25].
Phagosome, complement and coagulation cascades,
Staphylococcus aureus infection, pertussis, viral
myocarditis, allograft rejection, leishmaniasis, graft-versus-
host disease, type I diabetes mellitus, tuberculosis,
rheumatoid arthritis, cell adhesion molecules (CAMs),
influenza A, autoimmune thyroid disease, asthma and focal
adhesion were related to DN in Zeng et al.’s article [23].
Complement and coagulation cascades, hematopoietic cell
lineage, cell adhesion molecules (CAMs), NF-kappa B
signaling pathway, phagosome, focal adhesion were

enriched in Cai et al.’s research [24]. All of the above
findings suggest the reliability of KEGG enrichment. As for
GO annotation in green module, there were predominantly
enriched on immune-related processes, like immune
system process, immune response, regulation of immune
system process, regulation of immune response, and
immune effector process, in the GO BP enrichment
analysis (Figure 5(b)), indicating the exceptionally active
immune process in diabetic tubulointerstitial injury.
Although DN is not a conservative immune-mediated
renal disease, there is growing evidence that immune
system components involved in the progression of DN are
exhibited in affected patients [26]. Many clinical studies
had reported that the activation of T-cells [27] and the
increase of immune complexes [28, 29] are associated with
nephropathy progression in patients with DM. Moreover,
GO CC and GO MF analysis were enriched for genes
located in extracellular vesicles, including extracellular
region, extracellular region part, extracellular space,
extracellular exosome, and extracellular matrix structural
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Figure 8: External validation on ROC curves of core genes in renal tubulointerstitial tissues in dataset GSE99325 and GSE104954. (a) ROC
curves of core genes in renal tubulointerstitial tissues in dataset GSE99325; (b) ROC curves of core genes in renal tubulointerstitial tissues in
dataset GSE104954. The AUCs were calculated.
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constituent, indicating the extreme activation of profibrotic
processes in patients with DN (Figures 5(c) and 5(d)),
which was also recognized by other researchers [30–32].

GSEA is a kind of calculation used to determine whether
a predefined set of genes shows statistically significant and
consistent differences between two biological states. Intrigu-
ingly, both the KEGG pathway analysis of genes in green
module based on the WGCNA algorithm and the GSEA-
annotated KEGG gene set analysis were enriched in two
identical pathways (focal adhesion and viral myocarditis),
suggesting these critical role of the two pathways. Notably
and uniquely, to lock the core genes associated with renal
tubule injury in DN, a PPI network of genes in the green
module was developed. We selected cross genes as core
genes among WGCNA focal adhesion or viral myocarditis,
GSEA focal adhesion or viral myocarditis, and the top 30
nodes with neighbors and expanded ranked by the degree
method in cyto-hubba of the green module PPI network.
Finally, a total of 17 genes distinguished as core genes,
namely, ACTN1, CAV1, PRKCB, PDGFRA, COL1A2,
COL6A3, RHOA, VWF, FN1, HLA-F, HLA-DPB1, ITGB2,
HLA-DRA, HLA-DMA, HLA-DPA1, HLA-B, and HLA-
DMB. CAV1 [33], Caveolin-1, acts as a scaffolding protein

within caveolar membranes [34] and is crucial to promote
profibrotic signal transduction resulted from several known
stimuli in DN, such as the most prominent factors hypergly-
cemia and angiotensin II, thus representing a novel and
hopeful therapeutic option for DN [33]. PRKCB, protein
kinase C beta type, is a kind of PKC isoforms. Langham
et al. reported that PRKCB mRNA expression was upregu-
lated expression and correlated closely with serum HbA
(1c) in patients with DN [35]. COL1A2, collagen type I α2
chain, is closely positively related to the progression of renal
fibrosis in DN [36]. Zeng et al. [23, 24] found that COL6A3
may contribute to kidney injury in DN. Researchers also
documented upregulated expressions of RHOA and VWF
in DN tubule samples [37]. FN1 was reported negatively
related with GFR in patients with DN [38] and was upregu-
lated in podocytes by mechanical stress [39]. ITGB2 was
identified as a hub gene from the complement cascade path-
way and negatively correlated with GFR [21]. Ma et al. [40]
determined that HLA-DPA1 was a potential key gene related
to the development of DKD involved in immune regulation.
HLA-B was proven to be a member of the NF-kappaB mod-
ule NFKB_IRFF_01, which, was activated in the inflamma-
tory stress response of progressive DN and could be a
potential target for the treatment of progressive renal dis-
eases such as DN [41].

Few or no studies exist on the relationship between DN
and core genes, such as ACTN1, PDGFRA, HLA-F, HLA-
DPB1, HLA-DRA, HLA-DMA, and HLA-DMB. However,
all of these genes were upregulated in renal tubulointerstitial
tissues of patients with DN and may have an exacerbated
role in the development of diabetic tubulointerstitial injury.
ACTN1, actinin alpha 1, belongs to the spectrin gene super-
family, which is a diverse group of cytoskeletal proteins,
including the α and β spectrins and dystrophins, of which
α-actinins are major cytoskeletal proteins based on their
critical role in cell adhesion and the organization of the cyto-
skeleton [42]. It is worth noting that cytoskeletal changes are
observed in podocytes in diabetes [43]. One member of α-
actinins, α-actinin-4, was highly expressed at the foot pro-
cesses of the podocytes and in blood vessel walls in the nor-
mal kidneys [44], and its function mutations were associated
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Figure 9: The correlation analysis between core genes renal tubulointerstium and clinical features in DN patients. (a) The significantly
negative correlation between core genes in renal tubulointerstium and GFR in DN patients; (b) the significantly positive correlation
between core genes in renal tubulointerstium and proteinuria in DN patients; (c) the significantly positive correlation between core genes
in renal tubulointerstium and SCR in DN patients; (d) the significantly positive correlation between core genes in renal tubulointerstium
and ACR in DN patients; DN: diabetic nephropathy; GFR: glomerular filtration rate; MDRD: modification of diet in renal disease; CG:
Cockcroft Gault; SCR: serum creatinine level; ACR: urine albumin creatinine ratio; Pearson correlation of log2 transformed mRNA levels
of core genes and clinical features in DN patients, P < 0:05 was statistically significant.

Table 1: The potential drugs analyzed by CMap analysis to reverse
altered expression of genes in the green module.

Rank
cmap name and

cell line
Mean n Enrichment P Cell

1 Estradiol -0.429 8 -0.649 0.00086 PC3

2 LY-294002 -0.245 13 -0.522 0.0011 HL60

3 5224221 -0.652 2 -0.967 0.00239 MCF7

4 Procaine -0.65 2 -0.961 0.0033 PC3

5 Bufexamac -0.64 2 -0.961 0.00334 MCF7

6 Metaraminol -0.666 2 -0.959 0.00364 PC3

7 Zimeldine -0.635 2 -0.958 0.0038 PC3

8 Morantel -0.663 2 -0.946 0.0063 PC3

9 Prestwick-692 -0.612 2 -0.944 0.0069 MCF7

10 PNU-0230031 -0.387 4 -0.737 0.00953 MCF7
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with familial focal and segmental glomerulosclerosis [45]. It
reveals that ACTN1, as an α-actinins, may induce renal
tubule injury though cytoskeletal changes. PDGFRA,
platelet-derived growth factor receptor alpha, which encodes
a cell surface tyrosine kinase receptor, plays a crucial role in
organ development, wound healing, and tumor progression.
Song et al. [46] found that there was reinforced activation of
the expression of PDGFRA and hedgehog signaling in
adventitial cells of AVFs from patients with ESKD and
CKD mice. PDGFRA was translocated and accumulated in
early endosomes, followed by sonic hedgehog overexpres-
sion. HLA-F, which belongs to the human leukocyte antigen
(HLA) class I heavy chain paralog family, is mainly localized
in the endoplasmic reticulum and Golgi apparatus, differing
from most other HLA heavy chains. It plays an important
role in immune surveillance, immune tolerance, and inflam-
mation. Additionally, both HLA-DRA and HLA-DMA
belong to the HLA class II α-chain paralog family, while
HLA-DPB1 and HLA-DMB belong to the HLA class II β-
chain paralog family, all of which anchor in the membrane
and play a central role in the immune system by presenting
peptides derived from extracellular proteins. Many
researchers found a correlation for the DPB1, DRA, DMA,
and DMB locus in patient susceptibility to type 1 diabetes
[47–49], but there is lack of related reports about DN.

In the present study, after clinical cross and index valida-
tion from GSE99325, GSE104954, and the Nephroseq v5
platform, the expression of ACTN1, CAV1, PDGFRA,
COL1A2, COL6A3, RHOA, VWF, FN1, HLA-DPB1, ITGB2,
HLA-DRA, HLA-DPA1, and HLA-DMB were significantly
upregulated in DN patients in at least one dataset,
GSE99325 or GSE104954. As for the clinical feature analysis
of core genes, it offered the positive results that the mRNA
expressions of ACTN1, CAV1, COL1A2, COL6A3, FN1,
RHOA, VWF, HLA-DPA1, and HLA-B in kidney tubules
negatively correlated with GFR, and the mRNA expression
of ACTN1, COL1A2, PRKCB, ITGB2, HLA-DPA1, and
HLA-B in kidney tubules positively correlated with protein-
uria; the mRNA expressions of COL1A1, HLA-F, and ITGB2
in kidney tubules positively correlated with SCR; the HLA-F
mRNA expressions level positively correlated with ACR in
DN patients.

CMap, an online tool to analyze potential therapeutic
drugs based on upregulated and downregulated genes, is
used in many diseases. Estradiol, lists as the top medication,
is a renoprotective drug. As early as 2005, Wells et al. [50]
discovered that estradiol supplementation may be an effec-
tive method to reduce the occurrence and progression of
diabetic kidney complications. They also found that 17β-
estradiol replacement improved renal function and the
pathology associated with DN [51]. Specifically, it reduced
tubulointerstitial fibrosis by increasing matrix metallopro-
teinase activity [52] and attenuated DN by regulating the
extracellular matrix and transforming growth factor-
(TGF-) β protein expression and signaling [53] in DN. LY-
294002, a pharmacological inhibitor of PI-3 kinase, inhibits
the activation of the catalytic subunit (p110) of PI-3 kinase
[54]. LY294002 could inhibit the expression of osteopontin,
a secreted phosphoprotein involved in the progression of

tubulointerstitial inflammation, which is stimulated by glu-
cose in primary cultures of human renal proximal tubular
epithelial cells [55]. Bufexamac, an aryl alkanoic acid deriv-
ative and a nonsteroidal anti-inflammatory agent for the
topical treatment of eczema and other inflammatory skin
diseases [56], is a specific inhibitor of the deacetylases of his-
tone types IIB (HDAC6 and HDAC10 [57]). Liang et al. [58]
proved that HDAC6, a kind of histone deacetylase (HDAC),
downregulated the acetylation of α-tubulin, heightened
motility, and restrained autophagy in podocytes dealing with
AGE, which deteriorated the phenotype of DN, suggesting
that HDAC6 is a prospective target for therapy in the early
phase of DN. In addition, growing data suggest that the inhi-
bition of HDAC can ameliorate clinical manifestations of
diabetic kidney disease and phenotypes such as fibrosis,
inflammation, cell death, and albuminuria [59–61]. Notably,
there is no relevant experiment on the effects of bufexamac
in the treatment of diabetic tubulointerstitial injury. Intrigu-
ingly, LY294002, which blocks the PI3K/Akt pathway, inhib-
ited high glucose-induced epithelial–mesenchymal
transition (EMT) in HK2 cells through reduced HDAC5
expression in a TGF-β1-dependent way. The intake of
TSA, another HDAC inhibitor, also reduced HDAC5
expression and then suppressed EMT in the kidneys of dia-
betic mice. It is meaningful and promising to explore single
or combined application of LY294002 and bufexamac to
treat diabetic tubule damage. Currently, there are only 309
gene-expression maps of known compounds in the CMap
database, which cannot cover all the requirements for com-
paring all drug gene-expression maps, and there is the prob-
lem of “comparison loss” of action mechanism. Therefore,
the effects of LY294002 and bufexamac in the treatment of
diabetic kidney injury need to be further verified by
in vitro and in vivo experiments.

5. Conclusions

Conclusively, the present study sought to identify core bio-
markers implicated in diabetic tubulointerstitial injury. A
total of 17 core genes was screened out and locked, which
may be potential targets for the diagnosis and therapy of
DN in the future. Besides, two prospective small compounds
were also found that may be potential therapeutic drugs in
diabetic kidney disease. However, some limitations in the
article existed as well. Clinical validation of the diagnostic
performance of core genes should be further pursued, and
basic studies are needed to validate the focal adhesion and
viral myocarditis pathways related to diabetic tubule lesions.

Data Availability

The datasets generated during and/or analyzed during the
current study are presented in the main file. Additional data
are available from the corresponding author on reasonable
request.

Conflicts of Interest

The authors report no conflict of interest.

17BioMed Research International



Authors’ Contributions

Yonghong Shi and Huandi Zhou are responsible for concep-
tion and design; Yonghong Shi for administrative support;
all authors for provision of study materials or patients;
Huandi Zhou and Zhifen Yang for collection and assembly
of data; Huandi Zhou and Lin Mu for data analysis and
interpretation; and all authors for manuscript writing and
final approval of manuscript.

Acknowledgments

This study was supported by grants from the National Nat-
ural Science Foundation of China (no. 81470966), Funds for
Guiding Local Scientific and Technological Development by
the Central Government of China (no. 216Z7703G), and
Natural Science Foundation of Hebei Province (nos.
H2021206144 and H2019206179).

Supplementary Materials

Figure S1: the boxplot figure before or after removing batch
in GSE99325 and GSE104954. Table S1: 545 DEGS. Table
S2: the number of genes and the identified hub genes in each
coexpression module. Table S3 related genes the top 30
nodes with neighbors and expanded ranked by degree
method in “cyto-hubba” of PPI network. Table S4: KEGG
analysis of green module genes. (Supplementary Materials)

References

[1] M. K. Sagoo and L. Gnudi, “Diabetic nephropathy: an over-
view,” Methods in Molecular Biology, vol. 2067, pp. 3–7, 2020.

[2] Y. C. Lin, Y. H. Chang, S. Y. Yang, K. D. Wu, and T. S. Chu,
“Update of pathophysiology and management of diabetic kid-
ney disease,” Journal of the Formosan Medical Association =
Taiwan yi zhi, vol. 117, no. 8, pp. 662–675, 2018.

[3] M. Sugahara, W. Pak, T. Tanaka, S. Tang, and M. Nangaku,
“Update on diagnosis, pathophysiology, and management of
diabetic kidney disease,” Nephrology, vol. 26, no. 6, pp. 491–
500, 2021.

[4] P. Piscitelli, F. Viazzi, P. Fioretto et al., “Publisher correction:
predictors of chronic kidney disease in type 1 diabetes: a longi-
tudinal study from the AMD Annals initiative,” Scientific
Reports, vol. 8, no. 1, p. 5999, 2018.

[5] J. Wen, Z. Ma, M. J. Livingston et al., “Decreased secretion and
profibrotic activity of tubular exosomes in diabetic kidney dis-
ease,” American Journal of Physiology. Renal Physiology,
vol. 319, no. 4, pp. F664–F673, 2020.

[6] F. Viazzi, P. Piscitelli, C. Giorda et al., “Association of kidney
disease measures with risk of renal function worsening in
patients with hypertension and type 2 diabetes,” Journal of
Diabetes and its Complications, vol. 31, no. 2, pp. 419–426,
2017.

[7] W. Bao, F. He, J. Gao, F. Meng, H. Zou, and B. Luo, “Alpha-1-
antitrypsin: a novel predictor for long-term recovery of
chronic disorder of consciousness,” Expert Review of Molecu-
lar Diagnostics, vol. 18, no. 3, pp. 307–313, 2018.

[8] A. Subramanian, R. Narayan, S. M. Corsello et al., “A next gen-
eration connectivity map: L1000 platform and the first

1,000,000 profiles,” Cell, vol. 171, no. 6, pp. 1437–1452.e17,
2017.

[9] N. Chen, L. Mu, Z. Yang et al., “Carbohydrate response
element-binding protein regulates lipid metabolism via mTOR
complex1 in diabetic nephropathy,” Journal of Cellular Physi-
ology, vol. 236, no. 1, pp. 625–640, 2021.

[10] L. Zhang, J. Long, W. Jiang et al., “Trends in chronic kidney
disease in China,” The New England Journal of Medicine,
vol. 375, no. 9, pp. 905-906, 2016.

[11] U. G. Kyle, L. Genton, and C. Pichard, “Low phase angle deter-
mined by bioelectrical impedance analysis is associated with
malnutrition and nutritional risk at hospital admission,” Clin-
ical Nutrition, vol. 32, no. 2, pp. 294–299, 2013.

[12] S. S. Badal and F. R. Danesh, “New insights into molecular
mechanisms of diabetic kidney disease,” American Journal of
Kidney Diseases, vol. 63, no. 2, pp. S63–S83, 2014.

[13] Y. S. Kanwar, L. Sun, P. Xie, F. Y. Liu, and S. Chen, “A glimpse
of various pathogenetic mechanisms of diabetic nephropathy,”
Annual Review of Pathology, vol. 6, no. 1, pp. 395–423, 2011.

[14] M. Zeng, J. Liu, W. Yang et al., “Identification of key biomark-
ers in diabetic nephropathy via bioinformatic analysis,” Jour-
nal of Cellular Biochemistry, vol. 120, no. 5, pp. 8676–8688,
2019.

[15] J. V. Bonventre, “Can we target tubular damage to prevent
renal function decline in diabetes?,” Seminars in Nephrology,
vol. 32, no. 5, pp. 452–462, 2012.

[16] S. M. Yu and J. V. Bonventre, “Acute kidney injury and pro-
gression of diabetic kidney disease,” Advances in Chronic Kid-
ney Disease, vol. 25, no. 2, pp. 166–180, 2018.

[17] Y. Guo, Z. Ran, Y. Zhang et al., “Marein ameliorates diabetic
nephropathy by inhibiting renal sodium glucose transporter
2 and activating the AMPK signaling pathway in db/db mice
and high glucose-treated HK-2 cells,” Biomedicine & Pharma-
cotherapy, vol. 131, p. 110684, 2020.

[18] Y. S. Long, S. Zheng, P. M. Kralik, F. W. Benz, and P. N.
Epstein, “Impaired albumin uptake and processing promote
albuminuria in OVE26 diabetic mice,” Journal of Diabetes
Research, vol. 2016, Article ID 8749417, 8 pages, 2016.

[19] Y. Liu, “New insights into epithelial-mesenchymal transition
in kidney fibrosis,” Journal of the American Society of Nephrol-
ogy: JASN, vol. 21, no. 2, pp. 212–222, 2010.

[20] J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic com-
plications,” Physiological Reviews, vol. 93, no. 1, pp. 137–188,
2013.

[21] B. Xu, L. Wang, H. Zhan et al., “Investigation of the mecha-
nism of complement system in diabetic nephropathy via bioin-
formatics analysis,” Journal of Diabetes Research, vol. 2021,
Article ID 5546199, 14 pages, 2021.

[22] S. Liu, C. Wang, H. Yang, T. Zhu, H. Jiang, and J. Chen,
“Weighted gene co-expression network analysis identifies
FCER1G as a key gene associated with diabetic kidney dis-
ease,” Annals of Translational Medicine, vol. 8, no. 21,
p. 1427, 2020.

[23] M. Zeng, J. Liu, W. Yang et al., “Multiple-microarray analysis
for identification of hub genes involved in tubulointerstial
injury in diabetic nephropathy,” Journal of Cellular Physiology,
vol. 234, no. 9, pp. 16447–16462, 2019.

[24] F. Cai, X. Zhou, Y. Jia et al., “Identification of key genes of
human advanced diabetic nephropathy independent of pro-
teinuria by transcriptome analysis,” Bio Med Research Interna-
tional, vol. 2020, article 7283581, 14 pages, 2020.

18 BioMed Research International

https://downloads.hindawi.com/journals/bmri/2022/9554658.f1.zip


[25] D. IuP, M. V. Andruson, V. I. Makolinets, and V. A. Andreĭ-
chin, “Effect of autosensitization on the survival of skin trans-
plants,” Ortopediia Travmatologiia i Protezirovanie, vol. 7,
pp. 11–15, 1987.

[26] R. Pichler, M. Afkarian, B. P. Dieter, and K. R. Tuttle, “Immu-
nity and inflammation in diabetic kidney disease: translating
mechanisms to biomarkers and treatment targets,” American
Journal of Physiology. Renal Physiology, vol. 312, no. 4,
pp. F716–F731, 2017.

[27] J. J. Bending, A. Lobo-Yeo, D. Vergani, and G. C. Viberti, “Pro-
teinuria and activated T-lymphocytes in diabetic nephropa-
thy,” Diabetes, vol. 37, no. 5, pp. 507–511, 1988.

[28] M. F. Lopes-Virella, R. E. Carter, N. L. Baker, J. Lachin,
G. Virella, and DCCT/EDIC Research Group, “High levels of
oxidized LDL in circulating immune complexes are associated
with increased odds of developing abnormal albuminuria in
type 1 diabetes,” Nephrology, Dialysis, Transplantation,
vol. 27, no. 4, pp. 1416–1423, 2012.

[29] M. F. Lopes-Virella, K. J. Hunt, N. L. Baker, G. Virella, and
VADT Group of Investigators, “High levels of AGE-LDL,
and of IgG antibodies reacting with MDA-lysine epitopes
expressed by oxLDL and MDA-LDL in circulating immune
complexes predict macroalbuminuria in patients with type 2
diabetes,” Journal of Diabetes and its Complications, vol. 30,
no. 4, pp. 693–699, 2016.

[30] C. E. Hills, E. Siamantouras, S. W. Smith, P. Cockwell, K. K.
Liu, and P. E. Squires, “TGFβmodulates cell-to-cell communi-
cation in early epithelial-to-mesenchymal transition,” Diabe-
tologia, vol. 55, no. 3, pp. 812–824, 2012.

[31] L. Schaefer, I. Raslik, H. J. Grone et al., “Small proteoglycans in
human diabetic nephropathy: discrepancy between glomerular
expression and protein accumulation of decorin, biglycan,
lumican, and fibromodulin,” FASEB Journal, vol. 15, no. 3,
pp. 559–561, 2001.

[32] F. N. Ziyadeh, “The extracellular matrix in diabetic nephropa-
thy,” American Journal of Kidney Diseases, vol. 22, no. 5,
pp. 736–744, 1993.

[33] R. Van Krieken and J. C. Krepinsky, “Caveolin-1 in the patho-
genesis of diabetic nephropathy: potential therapeutic target,”
Current Diabetes Reports, vol. 17, no. 3, p. 19, 2017.

[34] L. Vargas, B. F. Nore, A. Berglof et al., “Functional Interaction
of Caveolin-1 with Bruton's Tyrosine Kinase and Bmx,” The
Journal of Biological Chemistry, vol. 277, no. 11, pp. 9351–
9357, 2002.

[35] R. G. Langham, D. J. Kelly, R. M. Gow et al., “Increased renal
gene transcription of protein kinase C-beta in human diabetic
nephropathy: relationship to long-term glycaemic control,”
Diabetologia, vol. 51, no. 4, pp. 668–674, 2008.

[36] B. L. Riser, F. Najmabadi, K. Garchow, J. L. Barnes, D. R. Peter-
son, and E. J. Sukowski, “Treatment with the matricellular pro-
tein CCN3 blocks and/or reverses fibrosis development in
obesity with diabetic nephropathy,” The American Journal of
Pathology, vol. 184, no. 11, pp. 2908–2921, 2014.

[37] S. Tang, X. Wang, T. Deng, H. Ge, and X. Xiao, “Identification
of C3 as a therapeutic target for diabetic nephropathy by bio-
informatics analysis,” Scientific Reports, vol. 10, no. 1,
p. 13468, 2020.

[38] Y.Wang, M. Zhao, and Y. Zhang, “Identification of fibronectin
1 (FN1) and complement component 3 (C3) as immune
infiltration-related biomarkers for diabetic nephropathy using
integrated bioinformatic analysis,” Bioengineered, vol. 12,
no. 1, pp. 5386–5401, 2021.

[39] F. Kliewe, S. Kaling, H. Lötzsch et al., “Fibronectin is up-
regulated in podocytes by mechanical stress,” FASEB Journal,
vol. 33, no. 12, pp. 14450–14460, 2019.

[40] F. Ma, T. Sun, M. Wu, W. Wang, and Z. Xu, “Identification of
key genes for diabetic kidney disease using biological infor-
matics methods,” Molecular Medicine Reports, vol. 16, no. 6,
pp. 7931–7938, 2017.

[41] H. Schmid, A. Boucherot, Y. Yasuda et al., “Modular activation of
nuclear factor-kappaB transcriptional programs in human dia-
betic nephropathy,” Diabetes, vol. 55, no. 11, pp. 2993–3003,
2006.

[42] Q. Chen, X. W. Zhou, A. J. Zhang, and K. He, “Correction to:
ACTN1 supports tumor growth by inhibiting Hippo signaling
in hepatocellular carcinoma,” Journal of Experimental & Clin-
ical Cancer Research, vol. 40, no. 1, p. 128, 2021.

[43] T. S. Ha, “High glucose and advanced glycosylated end-
products affect the expression of alpha-actinin-4 in glomerular
epithelial cells,” Nephrology, vol. 11, no. 5, pp. 435–441, 2006.

[44] J.M. Kaplan, S. H. Kim, K. N.North et al., “Mutations inACTN4 ,
encoding α-actinin-4, cause familial focal segmental glomerulo-
sclerosis,” Nature Genetics, vol. 24, no. 3, pp. 251–256, 2000.

[45] W. E. Smoyer, P. Mundel, A. Gupta, and M. J. Welsh, “Podo-
cyte alpha-actinin induction precedes foot process effacement
in experimental nephrotic syndrome,” The American Journal
of Physiology, vol. 273, 1 Part 2, pp. F150–F157, 1997.

[46] K. Song, Y. Qing, Q. Guo et al., “PDGFRA in vascular adventi-
tial MSCs promotes neointima formation in arteriovenous fis-
tula in chronic kidney disease,” JCI Insight, vol. 5, no. 21, 2020.

[47] J. A. Noble, A. M. Valdes, G. Thomson, and H. A. Erlich, “The
HLA class II locus DPB1 can influence susceptibility to type 1
diabetes,” Diabetes, vol. 49, no. 1, pp. 121–125, 2000.

[48] Ö. Aydemir, J. A. Noble, J. A. Bailey et al., “Genetic variation
within the HLA-DRA1 gene modulates susceptibility to type
1 diabetes in HLA-DR3 homozygotes,” Diabetes, vol. 68,
no. 7, pp. 1523–1527, 2019.

[49] T. Siegmund, H. Donner, J. Braun, K. H. Usadel, and
K. Badenhoop, “HLA-DMA and HLA-DMB alleles in German
patients with type 1 diabetes mellitus,” Tissue Antigens, vol. 54,
no. 3, pp. 291–294, 1999.

[50] C. C. Wells, S. Riazi, R. W. Mankhey, F. Bhatti, C. Ecelbarger,
and C. Maric, “Diabetic nephropathy is associated with
decreased circulating estradiol levels and imbalance in the
expression of renal estrogen receptors,” Gender Medicine,
vol. 2, no. 4, pp. 227–237, 2005.

[51] R. W. Mankhey, F. Bhatti, and C. Maric, “17beta-Estradiol
replacement improves renal function and pathology associated
with diabetic nephropathy,” American Journal of Physiology.
Renal Physiology, vol. 288, no. 2, pp. F399–F405, 2005.

[52] R. W. Mankhey, C. C. Wells, F. Bhatti, and C. Maric, “17beta-
Estradiol supplementation reduces tubulointerstitial fibrosis
by increasing MMP activity in the diabetic kidney,” American
Journal of Physiology. Regulatory, Integrative and Comparative
Physiology, vol. 292, no. 2, pp. R769–R777, 2007.

[53] A. Dixon and C. Maric, “17beta-Estradiol attenuates diabetic
kidney disease by regulating extracellular matrix and trans-
forming growth factor-beta protein expression and signaling,”
American Journal of Physiology. Renal Physiology, vol. 293,
no. 5, pp. F1678–F1690, 2007.

[54] J. M. English and M. H. Cobb, “Pharmacological inhibitors of
MAPK pathways,” Trends in Pharmacological Sciences, vol. 23,
no. 1, pp. 40–45, 2002.

19BioMed Research International



[55] A. Junaid and F. M. Amara, “Osteopontin: correlation with
interstitial fibrosis in human diabetic kidney and PI3-kinase-
mediated enhancement of expression by glucose in human
proximal tubular epithelial cells,” Histopathology, vol. 44,
no. 2, pp. 136–146, 2004.

[56] R. N. Brogden, R. M. Pinder, P. R. Sawyer, T. M. Speight, and
G. S. Avery, “Bufexamac,” Drugs, vol. 10, no. 5-6, pp. 351–356,
1975.

[57] C. Schölz, B. T. Weinert, S. A. Wagner et al., “Acetylation site
specificities of lysine deacetylase inhibitors in human cells,”
Nature Biotechnology, vol. 33, no. 4, pp. 415–423, 2015.

[58] T. Liang, C. Qi, Y. Lai et al., “HDAC6-mediated α-tubulin
deacetylation suppresses autophagy and enhances motility of
podocytes in diabetic nephropathy,” Journal of Cellular and
Molecular Medicine, vol. 24, no. 19, pp. 11558–11572, 2020.

[59] M. J. Hadden and A. Advani, “Histone deacetylase inhibitors
and diabetic kidney disease,” International Journal of Molecu-
lar Sciences, vol. 19, no. 9, p. 2630, 2018.

[60] W. Dong, Y. Jia, X. Liu et al., “Sodium butyrate activates NRF2
to ameliorate diabetic nephropathy possibly via inhibition of
HDAC,” The Journal of Endocrinology, vol. 232, no. 1,
pp. 71–83, 2017.

[61] H. B. Lee, H. Noh, J. Y. Seo, M. R. Yu, and H. Ha, “Histone
deacetylase inhibitors: a novel class of therapeutic agents in
diabetic nephropathy,” Kidney International, vol. 72, no. 106,
pp. S61–S66, 2007.

20 BioMed Research International


	Integrated Analysis of Multiple Microarray Studies to Identify Core Gene-Expression Signatures Involved in Tubulointerstitial Injury in Diabetic Nephropathy
	1. Introduction
	2. Materials and Methods
	2.1. Microarray Data Information and DEG Analysis
	2.2. Construction of the Weighted Gene Coexpression Network
	2.3. GSEA
	2.4. KEGG Pathway and GO Analysis
	2.5. PPI Analysis
	2.6. External Validation
	2.7. Clinical Features Analysis
	2.8. CMap Analysis
	2.9. Statistical Analysis

	3. Results
	3.1. Identification of DEGs Specifically Involved in Tubulointerstitial Injury in DN
	3.2. WGCNA and PPI Network Analysis
	3.3. KEGG and GO Enrichment Analyses of Green and Blue Module Genes
	3.4. Core Genes Related to Gene Tubulointerstitial Injury in DN Samples
	3.5. External Validation of the Expression and Diagnostic Capacity of Core Genes in the DN Group
	3.6. Clinical Validation on the Relationship between Core Genes and Kidney Function of Patients with DN
	3.7. Identification of Potential Drugs to Prevent Diabetic Tubulointerstitial Injury by CMap

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

