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Purpose. This study aimed to assess whether the third-generation PVAS was superior to percutaneous vertebroplasty (PVP) or
percutaneous kyphoplasty (PKP) in treating patients with OVCFs. Methods. Databases, including Pubmed, Embase, and
Cochrane library, were searched to identify relevant interventional and observational articles in vivo or in vitro comparing the
third-generation PVAS to PVP/PKP in OVCFs patients. A meta-analysis was performed under the guidelines of the Cochrane
Reviewer’s Handbook. Results. 11 in vivo articles involving 1035 patients with 1320 segments of diseased vertebral bodies and
8 in vitro studies enrolling 40 specimens with 202 vertebral bodies were identified. The vivo studies indicated no significant
differences were found in visual analog scale (VAS), Oswestry Disability Index (ODI), operation time, or injected cement
volume (P > 0:05). The third-generation PVAS was associated with significant improvement in vertebral height and Cobb angle
(P < 0:05) and also with a significantly lower risk of cement leakages and new fractures (P < 0:05). The vitro studies suggest
that the third-generation PVAS was associated with better anterior vertebral height (AVH) and kyphotic angle (KA) after
deflation and cement. No significant differences were found in stiffness or failure load after cement between the two groups
(P > 0:05). Conclusion. Based on current evidence, although providing similar improvement in VAS and ODI, the third-
generation PVAS may be superior to PVP/PKP in local kyphosis correction, vertebral height maintenance, and adverse events
reduction. Further high-quality randomized studies are required to confirm these results.

1. Introduction

Over the past few decades, as a minimally invasive procedure,
the PVAS has been considered the optimal management for
symptomatic OVCFs [1–3]. PVP, the first-generation PVAS,
can provide effective and rapid pain relief and spinal stabiliza-
tion via direct injecting polymethylmethacrylate (PMMA)
into the inter-trabecular marrow space of a fractured vertebra
[4]. However, this procedure is challenging to restore vertebral
height and with up to 54.7% of cement leakage [5]. The mat-
ters lead to the evolution of the second-generation PVAS,

PVP, which can correct kyphosis through inflation of a bal-
loon inside the collapsed vertebral body [6]. The balloon could
also create a cavity, allowing more viscous cement to be
injected with lower pressure, thereby significantly reducing
leakage risk [7]. Notwithstanding, PKP has been proved to
be associated with a higher rate of refracture on cemented ver-
tebrae than PVP [8], especially with an intravertebral cleft
(IVC) [9–12].Moreover, secondary loss of the initial reduction
may occur after balloon deflation [13].

These concerns promote the emergence of the third-
generation PVAS. This novel expandable scaffolding device
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is permanently implanted into the vertebral body to restore
reduction mechanically before injecting bone cement. Up
to now, several systems are available: SpineJack® [14–17],
Vertebral Body Stenting® (VBS) [18–20], OsseoFix® System
[21, 22], and Kiva® System [23–25]. In theory, the third-
generation PVAS is superior to PVP/PKP in height restora-
tion and height maintenance. However, inconsistent results
were obtained from different trials comparing clinical symp-
toms recovery, vertebral height restoration, and adverse
events of the third-generation PVAS versus PVP/PKP in
patients with OVCFs [20, 24, 26]. In order to provide more
evidence for clinical decision-making, we conducted a sys-
tematic review and meta-analysis to integrate existing evi-
dence from relevant in vivo or in vitro trials to evaluate the
superiority of third-generation PVAS over PVP/PKP in the
treatment of patients with OVCFs.

2. Methods

2.1. Search Strategy. This systematic review and meta-
analysis was conducted based on the Preferred Reporting
Items for Systematic Reviews and Meta-analyses (PRISMA)
statement [27]. The current systematic review protocol was
registered on INPLASY.COM (ID: INPLASY202110015)
and available in full https://inplasy.com/inplasy-2021-1-
0015/. A systematic computer-based retrieval for all rele-
vant published articles in vivo or in vitro was performed
in medical databases including Pubmed, Embase, and
Cochrane Library from inception to December 31, 2020.
The search terms for the study object: “Spinal Fractures
[Mesh]” OR“Spinal Fracture∗” OR“thoracic fracture∗” OR“

lumbar fracture∗” OR“vertebral fracture ∗ :” The interven-
tion’s search terms are as follow: “KIVA” OR “SpineJack”
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Figure 1: Summary of study selection and inclusion process.
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OR “vertebral body stent∗”OR “Stentoplasty”OR “VBS”OR
“OsseoFix.”We also checked the reference lists of all includ-
ing articles to avoid any initially omitted studies. There was
no publication language and population limitation during
the systematic review. A detailed list of search strategies
could be found in Supplemental Appendix 1.

2.2. Inclusion and Exclusion Criteria. Trials eligible for inclu-
sion in this meta-analysis were as follows: (1) interventional
studies (RCTs) and observational studies (cohort or case-
control studies) in vivo or in vitro; (2) clinical or cadaveric
studies compared the efficacy of third-generation PVAS
(SpineJack, KIVA, VBS, or OsseoFix) with PVP or PKP for
OVCFs; and (3) studies reported at least one outcome of
interest: VAS, ODI, KA, Cobb angle, AVH, midline vertebral
height (MVH), posterior vertebral height (PVH), injected
cement volume, cement leakage, or adjacent vertebral
fracture. Exclusion criteria: (1) Pathological fractures due
to primary or metastatic tumors, infection, or tuberculosis;

(2) Non-original articles (case reports, reviews, letters,
meta-analyses, conference abstract, and editorials).

2.3. Selection Criteria. D. CK. and Z. YT. independently
screened eligible studies based on the criteria mentioned
above. Firstly, the titles and abstracts were reviewed to
exclude articles that obviously did not meet the inclusion
criteria. Then, a full-text review was conducted to ensure
met all the inclusion criteria. All disagreements were
resolved by reaching a consensus among the researchers.

2.4. Data Extraction and Quality Assessment. Two investiga-
tors (D. CK. and Z. YT.) independently extracted the follow-
ing characteristics from included studies: author, publication
year, country, study design, interventions, and patient or
human cadaveric information (age, gender, BMD, and
sample size). Data forms were converted according to the
Cochrane Handbook [28], and figure data was extracted by
manual measurement. The methodological quality of the
RCTs and no-RCTs (cohort or case-control studies) was
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Figure 2: The methodological quality of RCTs: risk of bias summary (a) and risk of bias graph (b).
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assessed independently by D. CK. and W. HY. using the
Cochrane Collaboration’s Risk of Bias Tool [29] and
Newcastle-Ottawa scale (NOS) [30], respectively. Any dis-
crepancies of data extraction and quality assessment were
settled by discussing a third independent author (Z.J.).

2.5. Data Analysis. This meta-analysis was conducted with
Review Manager 5.3 software (Cochrane Collaboration,
Oxford, UK). Continuous data were calculated through the
mean difference (MD) or standardized mean difference
(SMD) with 95% CI. We calculated risk ratio (RR) with
95% CI to evaluate the cement leakage and adjacent level
fractures. Heterogeneity across studies was assessed using
Cochran’s Q and I2 statistics, and P < 0:1 and I2 > 50% were
considered statistical heterogeneity [31]. A fixed-effects
model was conducted when I2 ≤ 50%; otherwise, a random-
effects model was performed. Publication bias was assessed
statistically by Stata 12.0 (Begg and Egger tests). Sensitivity
analysis was also introduced to detect the result’s stability.
P < 0:05 was considered statistically significant.

2.6. Search Results. The comprehensive search initially iden-
tified a total of 340 potential articles (PubMed 128, Embase
172, the Cochrane Library 37, and additional in the reference
lists 3), in which 120 duplicates were removed. After screen-
ing the titles and abstracts, 58 full-text articles were assessed
in more detail for eligibility. After excluding 6 reviews, 1 case
report, 1 repeated published, 18 conference papers, 7 inter-
ventions inconsistent, and 6 no results, 11 in vivo [14,
18–20, 23–26, 32–34] and 8 in vitro [21, 22, 35–40] studies
were included in this study (Figure 1).

2.7. Study Characteristics. The in vivo studies included 5
RCTs [14, 20, 23, 25, 26] and 6 retrospective cohort studies
[18, 19, 24, 32–34] involving 1035 patients with 1320 seg-
ments of diseased vertebral bodies. Among them, four trials
[14, 26, 33, 34] compared SpineJack with PVP or PKP, while
four [18–20, 32] compared VBS with PVP or PKP, and three
[23–25] compared KIVA versus PKP. The in vitro studies
consist of 5 RCTs [21, 22, 35, 37, 38] and 3 prospective
cohort studies [36, 39, 40], with a resulting count of 40 spec-

imens and 202 vertebral bodies. In the experimental group,
two studies [35, 38] used SpineJack, three [36, 39, 40] used
VBS, two [21, 22] used OsseoFix, and only one [37] used
Kiva. All control groups were treated with PKP. The detailed
characteristics of the involved in vivo and in vitro studies are
summarized in Tables 1 and 2, respectively.

2.8. Quality of Included Studies. The risk of bias of the
included 10 RCTs was used the Cochrane Collaboration’s
Tool, as shown in Figure 2. The random sequence genera-
tion was low risk in nine studies [14, 20–23, 25, 26, 37,
38], and the illustration of allocation concealment was
unclear for 6 trials [20–22, 35, 37, 38]. The blinding of
researcher was evaluated as “high risk” for all 10 studies
[14, 20–23, 25, 26, 35, 37, 38], and the blinding of outcome
was unclear for 5 trials [20, 22, 35, 37, 38]. 9 cohort studies
were appraised according to the NOS in which 3 studies
[36, 39, 40] assigned 9 scores, 3 studies [19, 33, 34] assigned
8 scores, and 2 studies [18, 32] assigned 7 scores were con-
sidered high quality. One study [24] given 6 scores was
regarded as moderate quality.

3. Meta-analysis of In Vivo Studies

3.1. Pooled Analysis of VAS and ODI. We divided the results
into short-term (≤1 month), mid-term (3~ 6 months), and
long-term (≥12 months). 3 studies [14, 23, 26] on 446
patients reported the short-term and mid-term △VAS and
△ODI. No significant difference was found in short-term
△VAS and △ODI between the 2 groups (MD= 0:25, 95%
CI -0.19 to 0.69, P = 0:26, Figure 3(a); MD= 1:84, 95% CI
-2.00 to 5.69, P = 0:35, Figure 3(b), respectively). The overall
effect also showed no significant difference in mid-term
△ODI (MD= −1:74; 95% CI -5.61 to 2.13; P = 0:38;
Figure 3(d)), whereas the result indicated that the third-
generation PVAS had significantly better improvement in
mid-term △VAS than the PKP (MD= −0:58; 95% CI,
-0.99 to 0.31; P = 0:01; Figure 3(c)). Three studies [14, 23,
26] recorded long-term △VAS and △ODI, the other three
[19, 25, 34] recorded long-term VAS, and two [19, 25]
recorded long-term ODI. The summarized estimate of effect
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Figure 4: Continued.
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size revealed no significant differences in long-term results
between the two groups (MD

△VAS = −0:14, 95% CI -0.60 to
0.31, P = 0:53, Figure 3(e); MDVAS = −0:07; 95% CI -0.16 to
0.02, P = 0:84, Figure 3(e); MD

△ODI = 1:15, 95% CI -2.81 to
5.10, P = 0:57, Figure 3(f); MDODI = 4:50, 95% CI -0.40 to
9.41, P = 0:07, Figure 3(f), respectively).

3.1.1. Pooled Analysis of Vertebral Height and Cobb. Four tri-
als [14, 18, 25, 34] were involved in analyzing short-term
AVH, five [14, 18, 25, 26, 34] for short-term MVH, and
three [14, 18, 25] for short-term MVH. There were two arti-
cles [14, 34] provided data for mid- and long- term AVH
and three [14, 26, 34] for mid- and long- term MVH.
Figure 4 illustrates significant improvements in short-term
AVH (SMD = 0:62, 95% CI 0.09 to 1.15, P = 0:02,
Figure 4(a)), MVH (SMD = 0:86, 95% CI 0.36 to 1.36, P =
0:0007, Figure 4(b)), PVH (SMD = 0:58, 95% CI 0.38 to
0.77, P < 0:00001, Figure 4(c)), mid-term AVH
(SMD = 0:79, 95% CI 0.39 to 1.18, P = 0:0001, Figure 4(d)),
MVH (SMD = 0:78, 95% CI 0.21 to 1.35, P = 0:007,
Figure 4(e)), and long-term AVH (SMD = 1:05, 95% CI
0.64 to 1.46, P < 0:00001, Figure 4(f)) and MVH
(SMD = 0:96, 95% CI 0.36 to 1.56, P = 0:002, Figure 4(g)).

Furthermore, the third-generation PVAS was associ-
ated with significant improvement in Cobb (short-term:
MD= −3:30, 95% CI -4.36 to -2.23, P < 0:00001,
Figure 5(a); mid-term: MD= −5:92, 95% CI -8.87 to
-2.97, P < 0:0001, Figure 5(b); long-term: MD= −8:21,
95% CI -12.45 to -3.96, P = 0:0002, Figure 5(c)) and △Cobb
(short-term: MD= −2:86, 95% CI -4.26 to -1.45, P < 0:0001,
Figure 5(d); mid-term: MD= −5:40, 95% CI -7.62 to -3.17,
P < 0:00001, Figure 5(e); and long-term: MD= −4:63, 95%
CI -8.14 to -1.11, P = 0:010, Figure 5(f)).

3.1.2. Pooled Analysis of Operation Time and Injected
Cement Volume. The data of the operation time were avail-

able for six studies [14, 19, 24–26, 32]. The random-effect
was employed due to the significant heterogeneity between
the studies (P < 0:00001, I2 = 97%). The pooled analysis
declared that no significant difference between the two
groups (MD= −4:36, 95% CI -11.41 to 2.70, P = 0:23,
Figure 6(a)). Six trials [14, 18, 23, 25, 26, 32] included have
compared the bone cement injected between the two pro-
cedures. The pooled analysis of a random-effects model
indicated that the amount of bone cement injected was
similar in the two groups (MD= −0:00, 95% CI -1.92 to
1.92, P = 1:00, Figure 6(b)).

The sensitivity analysis was performed by omitting one
study in each round to examine the impact on the overall
result. The operation time in the third-generation PVAS
group was not significantly different from that in the PKP
group when omitting any of the studies except Schützenber-
ger et al. [19]. In addition, the sensitivity analysis suggested
no significant variation in bone cement injected attributable
to heterogeneity.

3.1.3. Pooled Analysis of Adverse Events. Adverse events
related to bone cement leakage were reported in nine studies
[18–20, 23–26, 32, 33], with a total of 1201 injured vertebra
bodies (616 in the intervention group and 585 in the control
group). Overall, the summarized estimate of effect size indi-
cated a slightly significant difference between the two groups
(RR = 0:82, 95% CI 0.67 to 1.00, P = 0:05, Figure 7(a)),
which favored the third-generation PVAS, with moderate
heterogeneity (I2 = 44%,P = 0:08).

Seven studies offered relevant data on new fractures
between the two groups. The comprehensive meta-analysis
estimated a borderline statistically significant RR of 0.52
(95% CI 0.39 to 0.72; P < 0:0001), suggesting a lower risk
of new fractures with the third-generation PVAS
(Figure 7(b)). The I2 value attributed 32% variation to het-
erogeneity; therefore, a fixed-effects model was used.
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Figure 4: Forest plot and pooled data of short-term AVH (a), MVH (b), PVH (c), mid-term AVH (d), MVH (e), and long-term AVH (f)
and MVH (g) between the two groups in vivo studies.
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Figure 5: Continued.
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The Begg and Egger tests indicated no evidence of pub-
lication bias for bone cement leakage (P = 0:754 and 0.659,
respectively) and new fractures (P = 0:764 and 0.914, respec-
tively) in terms of the 11 articles in vivo.

4. Meta-analysis of In Vitro Studies

4.1. Pooled Analysis of AVH and KA. AVH changes after
reposition and deflation were recorded in two studies [36,
40], changes after cement in three [35, 36, 40], and the final
AVH% after cement in the other two [35, 38]. The overall
pooled analysis suggest no significant difference in AVH
gain after reposition between the two groups (MD= −0:29,
95% CI -1.31 to 0.74, P = 0:58, Figure 8(a)). In contrast,
the loss of AVH in the third-generation PVAS group after
deflation was significantly less than the PKP group
(MD= −1:89, 95% CI -2.26 to -1.51, P < 0:00001,
Figure 8(b)). The pooled analysis showed that the third-
generation PVAS was associated with better AVH gain and
final AVH% after cement when compared with PKP
(MD= 2:34, 95% CI 0.58 to 4.11, P = 0:009, Figure 8(c);

MD= 12:52, 95% CI 7.94 to 17.11, P < 0:00001, Figure 8(d),
respectively).

KA changes after reposition, deflation, and cement were
described in two studies [36, 39] and the final KA after
cement in the other three [35, 39, 40]. The pooled analysis
indicated the absence of significant differences in △KA after
reposition between the two groups (MD= 0:29, 95% CI
-1.52 to 2.10, P = 0:75, Figure 9(a)). In contrast, the loss of
KA was significantly smaller in the third-generation
PVAS after deflation (MD= −2:37, 95% CI -3.92 to -0.82,
P = 0:003, Figure 9(b)). After cement, the final △KA and
KA were also significantly smaller in the third-generation
PVAS compared to the PKP (MD= −1:69, 95% CI -2.82
to -0.57, P = 0:003, Figure 9(c); MD= −4:28, 95% CI -4.75
to -3.81, P < 0:00001, Figure 9(d), respectively).

4.2. Pooled Analysis of Stiffness and Failure Load after
Cement. Adequate data on stiffness after cement was present
in five studies [21, 22, 36, 37, 40], and the difference in over-
all estimate was not statistically significant (SMD = 0:09,
95% CI -0.24 to 0.41, P = 0:60, Figure 10(a)). The data of
failure load was available for four trials [21, 22, 36, 40].
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Figure 6: Forest plot and pooled data of operation time (a) and injected cement volume (b) between the two groups in vivo studies.
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The pooled results demonstrated no significant difference
between the two groups (SMD = 0:53, 95% CI -0.44 to
1.50, P = 0:29, Figure 10(b)).

The sensitivity analysis of failure load indicated no sig-
nificant impact on the final pooled result following when
omitting any of the eligible studies. The results of the Begg
and Egger tests in stiffness and failure load also proved the
absence of significant publication bias in terms of the 8
articles in vitro (P > 0:05).

5. Discussion

As the aging process accelerates, OVCFs contribute to a
major health problem worldwide due to the loss of health-
related quality of life and high healthcare costs [41]. Treat-
ment options usually contain conservative management
(analgesics, bracing, bed rest, and physical therapy) and
minimally invasive surgery (PVP and PKP). Although most
studies suggested PVP and PKP appear to be associated with
longer post-discharge survival rates and a cost-effective
alternative to nonoperative management [2, 41–43], two
high-quality RCTs [44, 45] indicated that patients could
not benefit from vertebral augmentation in resolving pain
and disability. Furthermore, refractures and new fractures,
the most severe complications, were not avoided after PVP
or PKP. Currently, various forms of third-generation PVAS
involving SpineJack, KIVA, VBS, and OsseoFix have been
evaluated by cadaver and clinical studies [15, 20, 25, 37,
39]. However, it is still questionable whether the third-

generation PVAS is superior to PKP or PVP. As far as we
know, our study is the first systematic review and meta-
analysis to comprehensively compare the efficiency of the
third-generation PVAS versus PVP/PKP for OVCFs
in vitro and in vivo.

The application of the third-generation PVAS in OVCFs
has expanded enormously during the last decade [46–50].
Although the facilities of each system are different, all of
them are characterized by implanting permanent expand-
able devices to hydraulically or mechanically control reduc-
tion of the vertebral fracture and the sagittal balance of the
spine [48, 49]. Due to the lack of mechanical reduction abil-
ity of PVP, the recovery of vertebral height depends on
intraoperative posture or the use of stents to induce scoliosis.
PKP can restore vertebral height utilizing a balloon dilata-
tion; nevertheless, it is difficult to maintain height after
balloon deflation, even in a lordotic position, where an
approximately 110N compression is still imposed on the
vertebrae, resulting in the collapse of the created cavity [36].

Concerning in vitro experiments, our meta-analysis indi-
cated that sagittal height restoration and kyphosis correction
were significantly better when using the third-generation
PVAS than PKP. The correction loss of PKP may attribute
to the deflation effect: The created cavity may collapse after
balloon deflation, before cement augmentation, due to the
existing constant preload exerted on the vertebra even in a lor-
dotic position [35]. The third-generation PVAS, as specific
mechanical properties permanent implant devices, can pro-
vide the immediate intraoperative load-bearing capability to
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Figure 7: Forest plot and pooled data of adverse events in vivo studies: bone cement leakage (a) and new fractures (b).
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offset the deflation effect before bone cement injection [36].
Wang et al. [40] found that the VBS could withstand a com-
pressive load of 226N, exceeding the existing preload of
110N which exerted on the vertebrae. Despite the lack of
accurate values for other devices in included studies, we
believe that the effects are similar. No significant differences
were found in failure load and stiffness after cement augmen-
tation between the two groups in our meta-analysis, which
demonstrated that the implanted permanent expandable
devices did not affect the biomechanical behavior of the
treated vertebral body.

Without considering the influence of surrounding soft
tissue, in vitro studies simulate the conditions of immediate
post-operation and offer a promising result for the third-
generation PVAS, whereas the effects of healing and gradual
restoration of activity cannot be evaluated. Thus, we also
compared the radiological and clinical results of the third-
generation PVAS and PVP/PKP in clinical studies in our
systems review. Similar to cadaver studies, experimental
results in clinical indicate that the third-generation PVAS
was more effective in restoring vertebral body height and
correcting kyphosis angle than PVP/PKP at all time points.

On the contrary, no significant differences were observed
in terms of short-, mid-, and long-term VAS and ODI,
except the mid-term VAS. Previous meta-analysis [7, 51]
had found that painful and functional improvement were
positive correlated with vertebral height recovery and
kyphosis correction after PKP/PVP for OVCFs, which is
not consistent with our research. To date, it could not yet
be established with certainty that height gain and improved
outcomes in pain relief and quality of life are clinically rele-
vant. Crucially, the common denominator for pain relief
after the third-generation PVAS or PKP/PVP is the internal
cement splint [52]. In addition, the surrounding ligaments,
muscles and osteoporosis could also affect the outcomes.

Treatment-associated complications, such as cement
leakage and new fractures, have caused widespread concern
among surgeons. Our results illustrate that the third-
generation PVAS could lower the risk of cement leakage
and refracture compared to PKP/PVP. It is generally
accepted that the high-pressure injection of low-viscosity
bone cement would lead to a higher risk of cement leakage
[7, 53]. Just like PKP, the third-generation PVAS can create
a cavity composed of the expandable intravertebral implant
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Figure 9: Forest plot and pooled data of △KA after reposition (a), △KA after deflation (b), △KA (c), and KA (d) after cement in vitro
studies.
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Figure 10: Forest plot and pooled data of stiffness (a) and failure load (b) after cement in vitro studies.

14 BioMed Research International



and the supported surrounding trabeculae for low-pressure
injection. In contrast to PKP, the new system maintains
the cavity under the expandable intravertebral implant sup-
port, which, in theory, further reduces the possibility of
cement extravasation [54]. Moreover, retaining the implant
can reduce the use of bone cement, thus theoretically
decreasing the occurrence of cement leakage. However, our
meta-analysis indicated no differences in the amount of
bone cement injected between the 2 groups, which may be
attributed to the good maintenance of the cavity supported
by expandable implants. Thoracic fractures are often
referred to as kyphotic fractures for being associated
kyphotic spinal angulation, which lead to the center of grav-
ity being shifted more anteriorly, increasing the lever arm of
the forces and the forward bending moments on the already
fragile spine. These mechanical changes often result in a fur-
ther compression of the fractured vertebral but also put adja-
cent vertebrae at a higher risk of developing new fractures
[48]. Although it is still controversial whether these adjacent
fractures are due to the surgical procedure or natural evolu-
tion, obtaining and maintaining a more adequate reduction
via these expandable implants is essential to prevent the
domino effect, which is the consecutive occurrence of
OVCFs in adjacent vertebrae due to excessive anterior over-
load after the first uncorrected wedge-shaped vertebral body
[54]. Our results also prove that expandable intravertebral
implants could provide adequate stability without increasing
vertebral stiffness to decrease the risk of adjacent fractures.

The limitations of our meta-analysis were as follows:
First, the lack of random allocation, allocation concealment,
and blinding in the no-RCTs might result selective and
performance bias; second, the methods using for evaluating
vertebral height change and other outcomes, surgical tech-
nologies, and instruments varied among studies, all of which
increased the risk of heterogeneity; and third, given the lim-
ited number of the included studies in the analysis, the find-
ings should be confirmed in future research with more
relevant RCTs to obtain more reliable and conclusive data.

6. Conclusions

Based on our current evidence, third-generation PVAS pro-
vided a similar effect on pain relief and functional improve-
ment compared with PVP/PKP at each follow-up period.
However, the third-generation PVAS was more effective
for local kyphosis correction, vertebral height maintenance,
and with a significantly reduced risk of incidence of cement
leakage and new fractures. Further high-quality RCTs are
required to confirm these results.
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