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Purpose. We want to develop a model for predicting lymph node status based on positron emission computed tomography (PET)
images of untreated ovarian cancer patients. We use the feature map formed by wavelet transform and the parameters obtained by
image segmentation to build the model. The model is expected to help clinicians and provide additional information about what
to do with first-visit patients. Materials and Methods. Our study included 224 patients with ovarian cancer. We have chosen two
main methods to extract information from images. On the one hand, we segmented the image to extract the parameters to
evaluate the clustering effect. On the other hand, we used wavelet transform to extract the image’s texture information to form
the image’s feature map. Based on the above two kinds of information, we used residual neural network and support vector
machine for modeling. Results. We established a model to predict lymph node metastasis in patients with primary ovarian
cancer using PET images. On the training set, our accuracy was 0.8854, AUC: 0.9472, CI: 0.9098-0.9752, sensitivity was 0.9865,
and specificity was 0.7952. On the test set, our accuracy was 0.9104, AUC: 0.9259, CI: 0.8417-0.9889, sensitivity was 0.8125,
and specificity was 1.0000. Conclusions. We used wavelet transform to process the preoperative medical images of ovarian
cancer patients, and the residual neural network can effectively predict the lymph node metastasis of ovarian cancer patients,
which is undoubted of great significance for patients’ staging and treatment options.

1. Introduction

Ovarian cancer is one of the most deadly gynecologic malig-
nancies, with the highest incidence in North America and
Central and Eastern Europe. According to the recent epide-
miological and related cohort studies, the incidence rate of
ovarian cancer shows a gradually increasing trend [1]. How-
ever, the vast majority of serous carcinomas are not diag-
nosed until stage III (51%) or IV (29%) because of the lack
of symptoms prior to entire abdominal metastases [2],
which is very detrimental to the survival of patients. The
global overall 5-year survival rate is as low as 30% [3]. Epi-
thelial ovarian cancer is the most crucial pathological type,
accounting for more than 90% of all ovarian cancer [4]. Its
subtypes include serous, mucinous, endometrioid, and clear

cell carcinoma. According to the current research point of
view, ovarian cancer, especially epithelial type, often has a
high degree of pathological and molecular heterogeneity in
the middle and late stages of the tumor [5], which is also
an important reason for the different responses to treatment
schemes [6]. Although nearly 75% of ovarian cancer patients
achieve pathological remission after primary tumor reduc-
tion surgery and chemotherapy, 40-60% of ovarian cancer
patients will eventually relapse [7], which seriously affects
the quality of life and life safety of patients. According to
FIGO guidelines, lymph node metastasis directly affects the
surgical pathological stage of the tumor [8]. On this basis,
lymph node and other organ involvement affects the extent
of surgical resection, especially in patients who wish to pre-
serve fertility. After operation, tumor stage will also affect
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the choice of chemotherapy regimen. Lymphatic invasion is
known as a predictor of tumor invasion and affects the sur-
vival of patients with ovarian cancer [9]. The lymph node
invasion status of patients with ovarian cancer determines
the scope of lymph node dissection in tumor reduction sur-
gery and may be related to surgical complications [10].
Researchers have made many efforts to integrate molecular
features for accurate prognosis which helps classify patients
into risk groups and may provide more personalized treat-
ment. Information on predictors of lymphatic invasion sta-
tus in patients with ovarian cancer is still lacking, and few
molecular prognostic classifiers are available. A study has
shown that PET/CT images can partly reflect preoperative
lymph node metastasis in patients with ovarian cancer using
traditional artificial imaging diagnostic methods. But this
approach is not entirely satisfactory [11]. Lymph node
metastasis is thought to be associated with the prognosis of
ovarian cancer [12].

Traditionally, radiologists subjectively evaluate medical
images based on their training and experience to provide
an assessment of the diagnostic disease or clinical status.
This method produces irresistible instability in image inter-
pretation. Using more automated imaging analysis tools in
research or clinical trials can reduce this instability, provide
more objective clinical-related information, and seek more
beneficial treatment solutions for patients. Radiomics has
been introduced as an emerging tool for post-processing
images in medical fields such as computed tomography
(CT) or magnetic resonance imaging (MR) and developing
new quantitative indicators to link qualitative and quantita-
tive imaging data with clinical endpoints to form an inter-
pretable mathematical model [13]. This method does not
rely too much on the will of the physician’s supervisor, and
through computer program, reliability and repeatability are
more guaranteed. Texture analysis is a common research
method in medical imaging. It requires researchers to extract
specific texture features and then explore the relationship
between texture features and clinical features. This correla-
tion tends to be relatively simple and restrictive. However,
deep learning can form different features for different tasks
more flexibly and can also better explain the complex rela-
tionship between image features and clinical features. Ovar-
ian cancer is a disease with complex genetic changes, and the
heterogeneity of this genome and tumor microenvironment
is related to the platinum resistance of patients [14]. For
ovarian cancer, a tumor with complex lesions, noninvasive
medical image analysis can better distinguish the heteroge-
neity of related tumors and play a positive role in tumor
patients [15].

In the field of medical image, deep learning is one of the
most effective methods. Neural network is a kind of model
that simulates human brain in order to realize machine
learning technology like artificial intelligence. This tech-
nique simulates the structure of human neurons to deal with
complex problems. In medical laboratory science,
researchers use neural networks to count microorganisms
[16]. This method can be applied in the environment with-
out human body [17]. In radiology, researchers use deep
learning to identify and segment images. A study on acute

intracranial haemorrhage showed that using deep learning
methods, researchers were able to classify acute intracranial
haemorrhage to the level of manual classification [18]. In
gastroenterology, researchers use endoscopy to distinguish
benign and malignant tumors, which has great significance
in the screening of digestive tract tumors [19]. In assisted
reproduction, researchers use neural networks to identify
sperm [20]. Deep learning has proved its potential in many
medical fields.

Researchers have widely used residual neural networks
in various feature extraction applications. When the number
of layers of deep learning networks is deeper, the target
learning ability will theoretically be stronger. However, when
the depth of the convolutional neural network reaches a cer-
tain level, the classification performance will not be
improved, but the network will converge more slowly, and
the accuracy rate will decrease. Even if we increase the sam-
ple size of the training set to solve the problem of overfitting,
the classification performance and accuracy will not be
improved. Residual neural network is a solution to this prob-
lem. In medicine, residual neural networks are widely used
to deal with pathological and medical images.

2. Materials and Methods

2.1. Study Participants. We reviewed the radiology database
of Shengjing Hospital of China Medical University. We
identified 270 patients who underwent PET/CT from April
2013 to January 2019. 23 of these patients were excluded
due to missing or poor image quality, and 23 were treated
before PET or were diagnosed with nonprimary ovarian
tumors on subsequent tests. Therefore, a total of 224 patients
were included in this study. The inclusion criteria were that
the patients did not have endocrine diseases or other pri-
mary tumors that could affect ovarian imaging, underwent
PET/CT examination, surgery and pathological examination
within two weeks at Shengjing Hospital of China Medical
University, and were diagnosed with primary ovarian can-
cer. Previously, we had excluded patients with advanced
ovarian cancer with severe invasion of other organs, large
necrotic tumors, patients with severe ascites, and patients
with the secondary ovarian cancer.

2.2. PET/CT. Patients fasted from food and water for more
than 6 hours, and their blood glucose was controlled below
7mmol/L. Patients accepted PET/CT 1h after injection of
18F-FDG (GE MINItrace II; GE Healthcare, Milwaukee,
WI) 0.08-0.16 MCI/kg. PET/CT was performed from the
head to the middle of the femur (GE Discovery PET/CT
Elite; GE Healthcare, Milwaukee, WI). A 3D PET model
was used with a 192 ∗ 192 matrix and 2min/bed position
exposure time. Low-dose spiral CT was performed at
120~140 kV and 80mA. After attenuation correction of
CT, PET images were reconstructed using the algorithm of
time-of-flight and point-spread-function, including two iter-
ations and 24 subsets.

We used an advantage workstation 4.6 with PET volume
computation-assisted reading software (PET VCAR; GE
Healthcare, Milwaukee, WI) to measure PET metabolic
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parameters. Two radiologists with 15 years of experience
reviewed the film independently. If no agreement can be
reached, we submit the results to a senior physician for a
final decision. The software uses an iterative adaptive algo-
rithm to calculate PET parameters, automatically determines
the threshold to delineate the tumor edge, and delineates the
region of interest (ROI) based on the above information.
The radiologist manually corrected the obtained ROI again
and determined the final ROI. Ideally, the ROIs should not
contain necrotic or cystic components, as shown in
Figure 1. In the case of unsatisfactory images, the radiologist
delineated the ROIs manually.

2.3. Lymph Node Status. We obtained pathological slides
from the patients enrolled above. No data were excluded
because the diagnosis was not precise. The Pathology
Department of Shengjing Hospital of China Medical Univer-
sity diagnosed whether lymph nodes were benign or malig-
nant. Each sample was fixed in 10% buffered formalin
solution. Paraffin-embedded and serial sections were made
at a thickness of 0.004mm. Fixed tissues were removed by
dehydration in an automatic tissue processor and stained
with HE. The samples were first dewaxed in xylene and alco-

hol. The samples were stained with hematoxylin for 5
minutes and eosin for 3 minutes [21]. Finally, the samples
were immersed in alcohol and xylene for dehydration and
transparency. The slides were secured with synthetic resin.
A senior pathologist diagnosed the pathological sections to
determine whether the lymph nodes had metastases from
ovarian malignancies.

2.4. Image Segmentation. The main processing of images is
based on Python. Load the images using the nibabel library
[22]. After the image is processed to remove noise, according
to the corresponding gray value of each voxel in the 3D ROI,
the Gaussian mixture model is used to cluster each voxel.
We segmented the PET images according to the clustering
results, as shown in Figure 2.

Finally, we calculated the evaluation cluster parameters
as modeling parameters. Three features are extracted, which
are

(1) Calinski-Harabaz index (CHI)

The score S (Formula (1)) is defined as the ratio of
between-cluster dispersion to within-cluster dispersion and

(a) (b)

Figure 1: An example of ROI. (a) is from a 56-year-old patient with primary ovarian cancer who was positive for lymph node metastases.
(b) shows the ROI determined according to the above method.

(a) (b)

Figure 2: An example of segmentation. The same patient is shown in Figure 1. The black area in (a) is the ROI area, and (b) is the ROI area
segmented into three different subareas according to our segmentation method and marked with different colors.
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is calculated by evaluating between-class and within-class
variance. The smaller the covariance of the data within cat-
egories, the better, and the larger the covariance between cat-
egories, the better, in which case CHI will be significant [23].
To sum up, the higher the score, the better the clustering
effect.

S = SSB
SSW

× N − k
k − 1 : ð1Þ

Formula (1) is the calculation formula of CHI.
SSB represents the intracluster distance, SSW represents

the intercluster distance, the intracluster distance is repre-
sented by the distance between the sample point in the clus-
ter and the center point of the cluster, and the intercluster
distance is represented by the distance between the sample
point and the center point of other clusters. The specific cal-
culation formula is the following formula.

CH =
∑K

k=1 nkck − c2/K − 1
h i

∑K
k=1 ∑

nk
i=1di − ck

2/N − K

3
5: ð2Þ

Formula (2) is the specific calculation formula of CHI.

(2) Silhouette coefficient

Silhouette coefficient is a way to evaluate the clustering
effect [24]. Peter J. Rousseeuw first proposed it in 1986. It
combines two factors: cohesion and separation. Based on
the same original data, it can be used to evaluate the impact
of different algorithms or different operation modes of algo-
rithms on the clustering results (Formula (3)). The average
distance between the sample and other sample points in
the cluster is defined as the cluster cohesion degree a, and

the average distance between the sample and all sample
points in the nearest cluster is defined as the cluster separa-
tion degree b.

s = b − a
max a, bð Þ : ð3Þ

Formula (3) is the silhouette coefficient calculation for-
mula for a single sample.

For all samples, the contour coefficient is the average of
each sample contour coefficient. The value of this index
ranges from -1 to 1. When the degree of separation between
clusters B is much larger than the degree of cohesion A, the
value of the contour coefficient is approximately 1. In this
case, the heterogeneity between clusters is high, but the sim-
ilarity is poor. Therefore, the closer to 1 the value of this
index is, the better the clustering effect.

(3) Davies-Bouldin index

As shown in Formula (4), DBI is an index proposed by
David L. Davis and Donald Bouldin to evaluate the advan-
tages and disadvantages of clustering algorithms [25].

DB = 1
k
〠
k

i=1
max
i≠j

avg Cið Þ + avg Cj

À Á

dcen Ci, Cj

À Á
 !

: ð4Þ

Formula (4) is the DB calculation formula.
The avg ðcÞ represents the closeness of clustering clus-

ters, and the formula is as the following formula.

avg Cð Þ = 2
Cj j Cj j − 1ð Þ 〠

1<i<j≤ Cj j
dist xi, xj
À Á

: ð5Þ

Formula (5) is the avgðcÞ calculation formula.
Calculate the distance of sample points in the cluster, d

(Formula (6)) represents the distance between the center
points of different clusters.

dcen Ci, Cj

À Á
= dist ui, uj

À Á
: ð6Þ

Formula (6) is the d calculation formula.

2.5. Discrete Wavelet Transform. We used 2D discrete wave-
let transform to process PET images [26]. First, 1D-DWT is
carried out on each image row to obtain the low-frequency
component L and high-frequency component H of the orig-
inal image in the horizontal direction, and then, 1D-DWT is
carried out on each column of the transformed data. The
low-frequency component LL in the horizontal and vertical
directions, the low-frequency component LH in the horizon-
tal and vertical directions, the low-frequency component HL
in the horizontal and vertical directions, and the high-
frequency component HH in the horizontal and vertical
directions of the original image are obtained. We select three
components, LL, LH, and HL, to extract texture information
and form the feature map (Figure 3).

(a) (b)

Figure 3: An example of characteristic map. (a) is a characteristic
map of a 62-year-old patient with ovarian cancer who was
negative for lymph node metastasis and immunohistochemical
results: positive for ER, positive for PR, and negative for P53. (b)
is a characteristic map of a 63-year-old patient with ovarian
cancer who was negative for lymph node metastases and had
immunohistochemical results: positive for ER, positive for PR,
and positive for P53. The difference in their feature maps is
noticeable.
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ResNet50 is established based on the library TensorFlow.
This model is a specific neural network introduced in resid-
ual learning for image recognition by He et al., published in
2015 [27]. Due to the use of the global clustering method
instead of the connection layer, the model’s size is much
smaller, which reduces the size of the ResNet model.
ResNet’s unique feature is looping learning blocks. This
means that each layer must be connected to the next, and
the distance jumps directly into the layer about two to three
hops away. As shown in Figure 4, the model consists of five
maximally pooled convolutional layers, followed by a flat
layer, a dropout layer, and finally, a single FC layer. 70% of
the feature maps are used as training data, and 30% of the
feature maps are used as validation data. The training and
validation sets’ accuracy are the main parameters of super-
vised model training.

2.6. Data Fusion. We obtained features from two different
sources, image texture of image segmentation and wavelet
transform, and different forms of data, analyzed the predic-
tive ability of each feature for lymph node condition,
selected features with strong correlation, and then per-
formed data fusion. On this basis, we established a model
again to predict the lymph node condition.

3. Result

3.1. Clinical Features. The clinical information of the
patients is shown in Table 1.

3.2. Prediction Model. Our model shows good prediction
ability on both training and testing sets. On the training
set, our accuracy was 0.8854, AUC: 0.9472, CI: 0.9098-
0.9752, sensitivity was 0.9865, and specificity was 0.7952
(Figure 5).

On the test set, our accuracy was 0.9104, AUC: 0.9259,
CI: 0.8417-0.9889, sensitivity was 0.8125, and specificity
was 1.0000. As shown in Figure 6, there was no overfitting
or underfitting of the model.

For the training and test sets, we plotted calibration
curves (Figure 7). Our model shows stable and considerable
predictive ability in training and test sets.

4. Discussion

In this study, we obtained the image data of patients with
primary ovarian cancer from the texture feature map formed
by wavelet transform and the parameters extracted after
tumor segmentation. We use the feature map to train the
model, which simplifies the training process of the model
and eliminates the interference of nontumor region infor-
mation to the model. The above two kinds of information
were modeled to predict lymph node metastasis in patients
with primary ovarian cancer. On the one hand, it provides
a reference for radiologists to make a more detailed diagno-
sis of lymph node metastases in patients with imaging find-
ings that are difficult to detect, and on the other hand, it
provides clinicians with additional information at the time
of surgery.

Studies have shown that multiple imaging methods have
a good effect on detecting lymph node metastasis in primary
ovarian cancer [28]. A study has shown that CT or PET/CT
can effectively detect pelvic and para-aortic lymph node
metastasis in ovarian cancer [11]. However, this approach
relies heavily on the personal experience of the radiolo-
gist [29].

A study conducted on MR has demonstrated that ovarian
cancer is a biologically heterogeneous tumor [30]. In ovarian
cancer, this heterogeneity is reflected not only in response to
neoadjuvant chemotherapy but also in imaging. From the
pathological point of view, uncontrolled tumor growth is
accompanied the by uneven distribution of tumor paren-
chyma and stroma, including blood vessels. This uneven dis-
tribution of blood vessels will lead to the formation of tumor
subareas with different blood supply and support and the for-
mation of different tumor microenvironments. Under such
survival pressure, mutations in different directions were
formed in each subregion of the tumor, which further aggra-
vated the uneven distribution of parenchyma and interstitium.
In conclusion, the subregion composition of tumors them-
selves can reflect the heterogeneity of the biological behavior
of tumors. In this case, the accuracy of the texture information
extracted from the tumor imaging data in reflecting the het-
erogeneity of the tumor is inferior to the characteristics
describing the relationship between the various tumor subre-
gions. Therefore, different from traditional radiomics analysis,
we did not choose to directly extract texture information from
tumor imaging data or extract texture features of each subre-
gion after segmentation for modeling. After image segmenta-
tion, we did not simply use the percentage of the total
number of voxels in each subregion to the total number of
voxels in ROI as a parameter. However, we extracted three
parameters describing the relationship between subregions
usually used to evaluate the clustering effect of clustering
methods. These three parameters not only consider the differ-
ences between subregions but also describe the similarities
between subregions, which enables us to have a more detailed
description of the subregions within the tumor, that is, the
imaging heterogeneity of the tumor.

Texture representation is an important problem in med-
ical image analysis. Image texture can be defined as the spa-
tial relationship of pixel values in an image region. In
medical images, we consider texture as a local feature pattern
that identifies the image intensity of tissue. Texture also
determines the local spectral or frequency content in the
image. A local texture change should cause a local spatial fre-
quency change. Texture analysis is of interest in medical
imaging because as biological tissues become abnormal dur-
ing the course of the disease, their underlying texture may
also change. In the medical field, wavelet transform is widely
used to process signals and medical images, and noise
removal is undoubtedly the most common field of its use
[31]. At the same time, discrete wavelet transform also
shows its unique advantages in the nuclear magnetic exami-
nation of the human brain [32]. In this experiment, we
selected three wavelet transform subbands containing more
information to form the feature map and then used the deep
learning method to reflect the lymph node metastasis of
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ovarian cancer. In fact, with the development of artificial
intelligence, computer-aided diagnosis is increasingly used
in the field of medicine. According to the global epidemio-
logical situation, there is no doubt that deep learning studies
related to COVID-19 are being widely carried out [33]. In
addition, the computer-aided diagnosis of breast cancer
has been fairly accurate [34]. Due to the number of open

source databases, gastrointestinal cancer research is
undoubtedly the most widely carried out [35]. Ovarian can-
cer is the three most common gynecological diseases in the
world, especially in the field of medical imaging, including
tomography, ultrasonography (US), magnetic resonance
imaging (MRI), and other imaging methods. We have made
great strides in artificial intelligence technology [36].
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Figure 4: Structure of ResNet50. (a) shows the structure of the Conv block, (b) shows the structure of the Identity block, and (c) shows the
structure of ResNet50. In this experiment, we used the classic architecture of ResNet50 without any modification.
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Therefore, ResNet50 was also used to investigate the lymph
node metastasis of ovarian cancer. Previously, ResNet50
was used in the medical field to detect COVID-19 and was
considered good results [37]. In addition, multiple image
segmentation methods have been proposed for deep learning
of pathology [38]. On the inspection side, a neural network
is more effective at identifying microbes [39]. In addition
to the simple recognition and segmentation of medical
images, deep learning can combine the medical information
contained in images with the clinical information of patients
to predict the prognosis of patients. A study has shown that
combining patient pathology, CT, and genetic information
can predict the prognosis of ovarian cancer patients [40].
Of course, manual diagnosis is currently the gold standard

of imaging diagnosis. However, computer-aided diagnosis
is undoubtedly more sensitive and efficient in finding hidden
lesions and exploring the correlation between different med-
ical information of patients. On the one hand, this will effec-
tively reduce the workload of radiologists; on the other hand,
it will also quantify the diagnosis.

In previous studies, researcher mainly have adopted two
strategies for predicting of lymph node metastasis. One
strategy adopts the deep learning method, which divides
the tumor’s imaging data into different samples according
to the scanning level, and uses the whole CT or MRI for
learning [41]. Another strategy is to delineate the ROI of
the tumor and perform machine learning on the texture fea-
tures extracted from the ROI [42]. In a variety of different
tumors, ROIs covering tumors were used to predict lymph
node metastasis. Both texture analysis and deep learning
have made good progress. A study has shown that T2
-weighted magnetic resonance imaging (T2WI) texture fea-
tures have a high value in predicting preoperative lymph
node invasion in rectal cancer [43]. In papillary thyroid car-
cinoma, MRI can effectively identify lymph node metastasis
[44]. An MRI texture analysis based on machine learning
has shown that occult lymph node metastases in early oral
tongue squamous cell carcinoma can also be effectively iden-
tified [45]. And a study using deep learning confirmed that
MRI can be used to predict cervical cancer metastasis [46].
The problem with the first strategy is that the tumor is not
a normal physiological structure. If the researchers segment
the tumor image according to the scan level, they undoubt-
edly destroys the integrity of the tumor space. Cancer is a
heterogeneous disease, both within the tumor and between
different patients. So this method of generating datasets is
also difficult to standardise. In addition, this method often
directly learns the features of the metastatic lymph nodes,
ignoring the characteristics of the tumor itself. The problem
with the second strategy is that as deep learning techniques
mature, traditional machine learning algorithms are no

Table 1: Clinical information of patients in test and training sets.

Age (year) Training set Test set

<65 17 7

>65 140 60

Lymph nodes

Positive 74 32

Negative 83 35

HER-2

Positive 93 41

Negative 64 26

PR

Positive 59 23

Negative 98 44

p53

Positive 101 47

Negative 56 20

HER-2: human epidermal growth factor receptor 2; PR: progesterone
receptor. The PR, HER-2, and p53 status of patients was determined by
immunohistochemistry.
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Figure 6: The sensitivity and specificity curve of the test set.
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longer the most advanced. In this experiment, after obtain-
ing the 3D ROI, we conducted deep learning on the
extracted texture information and the segmented parame-
ters. In addition to obtaining more image information, we
pay more attention to the characteristics of the tumor itself,
so as to predict the lymph node metastasis. This approach is
more clinical.

However, despite the consideration of various problems,
there are still several shortcomings in this study. First of all,
the data of this study are all from Shengjing Hospital of China
Medical University, which has few cases and is not a multicen-
ter study. To ensure the quality of images, it is undoubtedly
most important to expand the sample size for radiological
model testing. Second, in image segmentation, we use the
Gaussian mixture model to segment the image into three sub-
regions. Technically, this segmentation method is beyond crit-
icism. However, whether it is the most accurate segmentation
method to reflect the internal subregion of ovarian cancer
tumors still needs further experiments to verify the clinical sig-
nificance of this segmentation method. Typically, imaging
subregional changes in patients who develop resistance during
chemoradiotherapy, or specific binding probes, are potent
answers to this question [47]. A study shows that clustering
after hypersegmentation of images can more accurately
describe the features of the inner subregions of images [48].
In addition, our modeling only considers the imaging charac-

teristics of patients. For an early warning model, there is no
doubt that the inclusion of patients’ clinical information can
improve the model’s accuracy on the premise of ensuring clin-
ical significance. Age, endocrine status, and genetic mutations,
common risk factors for ovarian cancer, were not included
because data sources limited them. Finally, this study was lim-
ited to patients with untreated early-stage ovarian cancer
because it was actually to investigate the relationship between
tumor heterogeneity and its biological behavior. For patients
with treated or advanced ovarian cancer, the heterogeneity
on medical imaging has changed and therefore the conclu-
sions of this study are not applicable. In the future, we may
consider further prospective experiments to include clinical
information to improve the accuracy of the model, follow up
on the prognosis of patients, and complete the monitoring of
the whole course of ovarian cancer patients.

5. Conclusion

In this study, we used PET images of ovarian cancer to seg-
ment the images on the one hand and extract feature param-
eters according to the segmentation results; on the other
hand, we used discrete wavelet transform to process the
images and extract feature maps. We established a model
to predict the presence of lymph node metastasis by the
two aspects of information. This method can provide a

0.0
0.0

0.4

Pr
ob

ab
ili

ty

0.8

0.2 0.4

Predicted probability

Apparent

Bias-corrected

Ideal

0.6 0.8 1.0

(a)

0.0
0.0

0.4

Pr
ob

ab
ili

ty

0.8

0.2 0.4

Predicted probability

0.6 0.8 1.0

Apparent

Bias-corrected

Ideal

(b)

Figure 7: Calibration curve. (a) is the calibration curve of the training set, and (b) is the calibration curve of the test set.
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reference for the treatment of patients, such as surgery and
medication, and the prognosis of patients under the nonin-
vasive condition.
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