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Background. The rising incidence of hypertension and diabetes calls for a global response. Hypertension and diabetes will rise in
Ghana as the population ages, urbanization increases, and people lead unhealthy lives. Our goal was to create a time series
algorithm that effectively predicts future increases to help preventative medicine and health care intervention strategies by
preparing health care practitioners to control health problems. Methods. Data on hypertension and diabetes from January 2016
to December 2020 were obtained from three health facilities. To detect patterns and predict data from a particular time series,
three forecasting algorithms (SARIMAX (seasonal autoregressive integrated moving average with exogenous components),
ARIMA (autoregressive integrated moving average), and LSTM (long short-term memory networks)) were implemented. We
assessed the model’s ability to perform by calculating the root mean square error (RMSE), mean absolute error (MAE), mean
square error (MSE), and mean absolute percentage error (MAPE). Results. The RMSE, MSE, MAE, and MAPE for ARIMA (5,
2, 4), SARIMAX ð1, 1, 1Þ × ð1, 1, 1, 7Þ, and LSTM was 28, 769.02, 22, and 7%, 67, 4473, 56, and 14%, and 36, 1307, 27, and
8.6%, respectively. We chose ARIMA (5, 2, 4) as a more suitable model due to its lower error metrics when compared to the
others. Conclusion. All models had promising predictability and predicted a rise in the number of cases in the future, and this
was essential for administrative and management planning. For appropriate and efficient strategic planning and control, the
prognosis was useful enough than would have been possible without it.

1. Introduction

More often than not, hypertension (HT) and diabetes melli-
tus (DM) coexist and have become major worldwide health
issues with a significant impact on cardiovascular morbidity
and mortality [1]. Globally, an estimated 1.13 billion and
463 million people (i.e., 1 in every 11 adults (20-79 years)
are affected with HT and DM, respectively [2, 3]. In addition
to draining household resources and increasing healthcare
expenses, they also put the World Health Organization’s
(WHO) goal of decreasing 1/3 of morbidity and mortality

rates from noncommunicable diseases (NCDs) by 2030 in
jeopardy [4, 5]. Therefore, finding models that accurately
predict future increases in HT and DM is critical for tailor-
ing prevention treatments and streamlining intervention
programs.

People in economically developing nations are more sus-
ceptible to suffer from hypertension and diabetes [6], and
Ghana is no exception like any of these countries. In Ghana,
they are the leading cause of noncommunicable diseases
(NCDs) [7]. HT is the third leading cause of hospitalizations
and deaths accounting for 4.7 percent of the total
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hospitalizations and 15.3 percent of the total fatalities [8].
Additionally, for the past 15 years, it has ranked among
the top five most prevalent outpatient diseases [9]. It con-
tinues to be the most important predictor of stroke in
Ghana, with a population-attributable risk of approximately
91 percent [10]. Diabetes, on the other hand, was reported to
have a prevalence of 9.26 percent in some urban areas in
Ghana in 2009. However, it had a 2 percent prevalence in
1964 when Apollonius first identified it. According to a sur-
vey published by the Ministry of Health (MOH) in 2012,
hypertension and diabetes affect 19-48 percent and up to 9
percent of Ghanaian adults, correspondingly [9]. Neverthe-
less, current research shows that Ghanaians have hyperten-
sion and diabetes prevalence rates of 30.3% and 6.46 %,
respectively [11, 12].

For assessing health or illness status and predicting
future events, time series can be invaluable. A mathematical
model can be extrapolated since it uses the progression of
historical datasets across time. However, given the complex-
ity of the underlying techniques, their use remains largely
unexplored [13]. Using time series to model clinical data
has become increasingly popular [14, 15]. However, there
is a paucity of research utilizing a time series approach to
study the incidence of DM and HT in individuals. Those
that do exist are mostly concerned with the occurrence of
DM or HT in the urban areas [16, 17]. HT affects the major-
ity of diabetic patients [1]; also, there is a rising trend in HT
and DM among Ghanaian rural communities [18, 19].
Therefore, understanding this trend effectively minimizes
inpatient care and improves clinical outcomes.

To our knowledge, no research has used time series and
LSTM models to investigate the prevalence of patients with
coexisting HT and DM, or DM and HT, in a rural Ghanaian
community/district. To effectively plan and regulate the
development of HT and DM in individuals in Akatsi South,
we created three forecasting algorithms to identify patterns
and forecast the growth of these conditions in individuals.

2. Materials and Methods

2.1. Study Area. Akatsi South District (see Figure 1) is pre-
dominantly rural, with rural towns comprising 2/3 of the
district’s population (67.7 percent). At the same time, the
district’s urban population accounts for 32.3% of total resi-
dents. It has a total of 29 health centres throughout the area.
HT is among the top 10 diseases in the district [20, 21]. Since
HT and DM are comorbidities [1], it is necessary to investi-
gate the general trend of HT and DM in individuals in order
to integrate the forecasting model effectively into the existing
disease control program and thereby decrease the rate of
associated health problems.

2.2. Data Collection. We gathered the data from Akatsi Dis-
trict Hospital, Sepe Clinic, and Wute Health Centre in the
district. We received 2178 patients with coexisting HT and
DM data from the hospital folders at various outpatient
departments. Study participants were eligible if they had a
medical history of diabetes, had high blood pressure, or
had been previously diagnosed as hypertensive by any health

care professional. During the study period, individuals of all
ages who received prehospital care from any facility were
classified as having “hyperglycemia” or “hypoglycemia.”
For evaluating hypertension, we used the 2017 American
College of Cardiology/American Heart Association High
Blood Pressure Guideline [22]. Hypertension is defined as
a blood pressure reading of 140/90mmHg or greater. The
hypertension and blood glucose levels recorded in patients’
medical charts during routine check-ups were considered
response variables in the study. Other independent/predic-
tor variables considered were age (years), weight (kg), smok-
ing and drinking status, diet and physical exercise, sex, and
family history of hypertension and/or diabetes.

We divided the data into two categories: training and
testing. Training data is data from 2016 to 2019 (36
months). Data from 2020, which is 12 months long, is used
to see how effective the models are at predicting the future.
All facilities provided monthly data with no missing months.
We uploaded the “SampleDate” column in a numeric format
“yyyymm” in order to generate a time series in year/month,
allowing us to decompose the data by month. Two addi-
tional columns were also created. Thus, the “total column”
to indicate the total number of cases (comm1 + comm2 +
comm3) and the “month_name” were later used in visuali-
zations. comm1, comm2, and comm3 represent data from
Akatsi District Hospital, Sepe Clinic, and Wute Health Cen-
tre, respectively. Anonymized and de-identified data were
used to protect the privacy of patients, health care profes-
sionals, and the hospital in this study.

2.3. Statistical Data Analysis. Python 3.6 and TensorFlow 2.0
were used to code and analyze the data. Python is a well-
known high-level programming language for general-
purpose application. The intent behind designing this lan-
guage was code readability. Additionally, some essential
libraries in Python to implement all the work are Pandas,
Statsmodels, Matplotlib, and Seaborn. A total of three fore-
casting methods were used in the study.

2.4. The ARIMA and SARIMAX model. The autoregressive
integrated moving average (ARIMA) modeling procedure
was carried out using monthly data from the three selected
facilities during the study period. The autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF)
plots in time series analysis can be used to observe the sta-
tionary condition of a data series, and the augmented
Dickey–Fuller (ADF) test statistic can be used to verify it.
In addition, to determine the order of seasonality, the ACF
and PACF plots can be used. When the ACF and PACF
components display spikes following differencing, it indi-
cates that a seasonal component can be included. Likewise,
when time series data is nonstationary, the augmented
Dickey–Fuller (ADF) [23] unit root (to obtain a p value of
0.05 or less) is useful to make the data stationary, allowing
forecasting using the ARIMA model, or nonstationarity (p
value > 0.05) is maintained, and the seasonal ARIMA with
exogenous factor (SARIMAX) modeling can be used.

Models such as ARIMA use previous observations to
predict future values by using lag parameter values, asserting
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that the trend will continue to hold. It merges autoregression
(AR) and moving average (MA) models, as well as a
sequence’s differencing preprocessing phase to make it sta-
tionary, which is the integration step (I).

ARIMA is constructed by combining AR, I, and MA. It is
also known as a nonseasonal ARIMA model. In order to
accomplish it, it uses the differencing of raw observations.
AR uses a mathematical technique such as linear regression
to anticipate the next data point by studying the data points
that have come before it [24]. The time series is made sta-
tionary by subtracting an observation from an observation
from a prior time step. MA, on the other hand, makes use
of the link between an observation and residual errors from
a lagged moving average model. By substituting integer
values for the model’s parameters, ARIMA uses a standard
notation known as p, d, and q to express a specific ARIMA
model. The nonseasonal ARIMA model in this example
can be stated as follows:

yt′= c + ϕ1yt−1′ +⋯+ϕpyt−p′ + θ1εt−1+⋯+θqεt−q + εt , ð1Þ

where the differenced series is represented by yt′. Lagged values
of yt (ϕ1yt−1′ +⋯ + ϕpyt−p′ ) and lagged errors ðθ1εt−1+⋯+θq
εt−qÞ are represented on the right by the “predictors” column.
In this case, the ARIMA (p, d, and q) model is used, with the
following parameters: p (AR) denotes the number of lag obser-
vations, also known as the lag order; d (I) denotes the number
of times the raw observations are differentiated, also known as
the degree of differencing; and q (MA) denotes the size of the
moving average term, also known as the order of moving aver-
age or lagged errors. When components are combined to form
complex models, backshift notations (B) are employed. For
example, the nonseasonal ARIMA model can be written in
terms of B as follows:

1 − ϕ1B−⋯−ϕ1 B
pð Þ 1 − Bð Þdyt = c + 1 + θ1B+⋯+θq Bq� �

εt ,
ð2Þ

where ð1 − ϕ1B−⋯−ϕ1 B
pÞ = ARðpÞ, ð1 − BÞdyt = dif f erence

s ðdÞ, and MA ðqÞ = ð1 + θ1B+⋯+θq BqÞεt:
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Figure 1: Map of Akatsi South District. The map of Akatsi South in the district context showing the various district capitals and towns.
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SARIMAX requires four additional orders, the first three
of which are seasonal forms of the ARIMA orders. The
fourth or final orders represent the length of the cycle. In
this case, the parameters of the SARIMAX model are p, d,
and q (P; D; Q; and S), for which p denotes nonseasonal
autoregressive (AR) order, d denotes nonseasonal differenc-
ing, q denotes nonseasonal moving average (MA) order, P
denotes seasonal AR order, D denotes seasonal differencing,
Q denotes seasonal moving average (MA) order, and S
denotes the length of repeating seasonal pattern. The follow-
ing is the general equation:

ϕp Lð ÞeϕP Lsð ÞΔdΔD
s yt = θq Lð ÞeϕQ Lsð ÞΔdΔD

s ytεt + 〠
Π

i=1
Bix

i
t , ð3Þ

where ϕpðLÞ and θqðLÞ are nonseasonal AR and MA lag

polynomials, eϕPðLsÞ and eϕQðLsÞ are seasonal AR and MA
lag polynomials, respectively, the time series, differenced d
times, and seasonally differenced D times are ΔdΔD

s yt , and
∑Π

i=1Bix
i
t is the exogenous term.

As shown in Figure 2, models were fitted using the Box-
Jenkins method [25]. Monthly case counts have shown an
increasing trend over the year. An analysis of the time series
yielded Yt = St + Tt + Et , where Yt , St , Tt , and Et are the
actual data plot, seasonal component, the trend (which was
differenced to achieve seasonality), and the residual compo-
nent. Based on the Akaike information criteria (AIC), the
best SARIMA and ARMA parameters were determined.
The AIC uses the probabilistic method for estimating the
range of ARMA models. The logarithm of ð~o2ðkÞÞ + ð2/TÞð
kÞ is thus the AIC. Both the autocorrelation function
(ACF) and partial autocorrelation function (PACF) were
plotted to test stationarity and lags and determine the order
of MA and AR terms within each model. There were many
ways to model the AR and MA terms. Statistical Science
Research relies heavily on the accurate use of error metrics.
Model efficiency is skewed if you choose an incorrect error
metric. Therefore, the overall accuracy metrics are calculated
and defined as follows:

MAE (mean absolute error) was determined as the aver-
age of the prediction error values, in which all the prediction
values obtained are required to be positive to obtain the
mean absolute error. It is given by

MAE = 1
a
〠
a

r=1
Wr − Ŵr

� �
: ð4Þ

MAPE (mean absolute percentage error) was determined
as the average absolute percent error for each period minus
actual values divided by real values and often expressed as
a percentage given by the formula:

MAPE = 〠
a

r=1

Wr − Ŵr

Wr

� �
× 100

a
: ð5Þ

The RMSE (root mean square error) model performance

can be assessed in the near term by periodically comparing
the actual difference between a predicted and reported value.
At times, it can be expressed as a percentage given by the
formula:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a

r=1 wr −w∧rð Þ2
a

r
, ð6Þ

RMSE %ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a

r=1 wr −w∧rð Þ2
q

1/a∑a
r=1ŵr

× 100: ð7Þ

To determine the mean squared error (or MSE), the
squared forecast error numbers are averaged together and
divided by two. In order to make the forecast errors positive,
squaring them increases the weight given to significant
errors. The formula is

MSE = 1
a
〠
a

r

Wr −W∧rð Þ2: ð8Þ

The lower the prediction error, the better the model. For
all formulas,Wr is the actual number of cases for month “r,”
ŵr is the expected number of cases for month “r,” and a is
the total observations.

2.5. The Long Short-Term Memory (LSTM) Model. Recurrent
neural networks (RNN) identify trends in sequential data
and are used in data mining applications including forecast-
ing. In a traditional neural network, all of the inputs are
treated as if they were completely separate from one another.
An issue with this method is that it cannot be used for tasks
that require the network to recall events from previous data.
Hochreiter and Schmidhuber developed LSTM networks,
which are a type of RNN, to prevent the long-term depen-
dency limitation [26]. It is possible to use LSTM to create
clinical decision support systems to manage coexisting
hypertension and diabetes patients because the cells of the
LSTM network’s memory blocks allow it to store long-
term data and control the amount of data kept in the entire
network. Thus, the LSTM manages to keep, forget, or ignore
data points based on a probabilistic model by employing a
series of “gates,” each with its own RNN.

Connected in every possible way, the three gates (forget,
input, and output) in LSTM make it highly effective at han-
dling temporal correlation for time series data. Figure 3
depicts the structure of an LSTM, with the various gates
and equations [27]. Aside from that, LSTMs have two dis-
tinct states between the cells. This refers to the cell and hid-
den states responsible for storing long- and short-term
memories, respectively. The cell state serves as a conveyor
belt to ensure that information flows in the same direction
throughout the entire network, from start to finish, whereas
the “forget gate” is a critical element that acts as a transition
between different time steps within the hidden layer, ensur-
ing that the cell state is controlled and accurate throughout
the entire process. The LSTM algorithm is well-suited for
classifying, processing, and forecasting time series when
time lags of unknown duration are present.
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Here, we used a simple LSTM using Python and the Ten-
sorFlow framework. TensorFlow is a machine learning
framework developed by Google that is free and open
source. We installed the TensorFlow module using Python.
Then the libraries were to define input-output data, allocate
test and training data sets, build, fit a model, optimize the
model for batch and epoch sizes, train the mode, and finally
validate the accuracy scores for prediction output. The data
for LSTM is prepared and preprocessed in a manner that
differs significantly from that of the other algorithms in sev-
eral ways. Before we begin preprocessing the data, few
parameters were established first. They are first; the number
of previous timestamps to use for predictions was indicated
by the term “lag,” and second is lookahead—this parameter
specified the number of timestamps in the future that we
needed to predict. Then, we implemented a simple LSTM
architecture with lag = 24 and lookahead = 12. Thus, we used
2 years of previous data to predict 1 year into the future.
After, we used a 90/10 ratio for the training set and testing
set. With an Early Stopping callback that stops training
when the model’s validation loss no longer decreases, the
training process is accelerated after the initialization of
1000 epochs for the training process. Figure 4 shows the pro-
cess flow used and the architecture of our LSTM model.

Using the results obtained, we selected the best model based
on the test set’s lowest RMSE, MSE, MAE, and MAPE.

3. Results

The annual prevalence of hypertension and diabetes in
patients differed significantly from year to year (see
Figure 5(a)), with a mean of 60 cases per year. In December
2019 and March 2016, the greatest and smallest percentage
deviations were recorded, respectively. Yt = St + Tt + Et was
the decomposition of the time series (see Figure 5(b)), where
Yt , St , Tt , and Et represent the actual data plot, seasonality,
trend, and residual component, respectively. To achieve sta-
tionarity, the trend of the data points had to be differentiated
from the actual data plot, and the seasonality of the data points
had to be taken into account. The residual part of the data was
also taken into account. Using the ADF test, the log-returns
for the series were nonstationary (p = 0:2463) and needed
differencing before they could be considered stationary. You
can capture patterns that repeat themselves throughout the
year using the seasonal component.

We created Figure 5(d) with different color bands to better
understand the seasonality within the data. The graph shows
that the pattern repeats itself every seven months, remaining
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the same in the following years. We applied a partial autocor-
relation (see Figure 5(c)) to evaluate the AR model’s order (p)
as the autocorrelation steadily decreased. First, we require a
stationary time series to use the ARIMAmodel for forecasting.
Therefore, the use of second-order differentiation (d = 2) was
conducted to avoid predictive imbalance in the time series

under consideration. After being subjected to d = 2, it met
the ADF test for time series data (p = 0:031). To narrow down
the number of potential ARIMA models for further model
selection, the AIC values for three models were compared
because they all met the condition of white noise for the resid-
ual time series (see Table 1).
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FromTable 1, though ARIMAmodels (5, 2, 1) and (5, 2, 2)
recorded the lowest AIC values, respectively, in the fitting pro-
cess of testing, they however exhibited poor performances

(RMSE = 37 and 43; MSE = 789:67 and 799:75; and MAE =
31 and 39) with the highest confidence interval of the pre-
dicted value vs. the actual value (MAPE = 11%and 19%),
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respectively. Given this, we selected ARIMA (5, 2, 4) as a suit-
able model due to its better performance during testing
(RMSE = 28; MSE = 769:02; and MAE = 22) with the lowest
confidence interval of the predicted value vs. the actual value
(MAPE = 7%). However, it had the highest AIC value
(AIC = 338:30). Second, the ideal ARIMA (p, d, q) (P, D, Q,
S) time series data model parameters were determined pro-
grammatically by a Python script written in Python. The “grid
search” (also known as hyperparameter optimization) was
used to explore various combinations of the parameter contin-
uously. We created a new seasonal ARIMA model with the
SARIMAX function from the Statsmodels module for each
combination of parameters and evaluated the overall quality
of the model for each combination. To narrow down the num-
ber of potential SARIMAXmodels for further model selection,
the AIC values for three models were compared because they
all met the condition of white noise for the residual time series
(see Table 2).

The plot_diagnostics function was used to construct our
model diagnostics which ensured our model’s residuals were
nonstationary, were properly distributed, and had a skew-
ness of 0. SARIMAX ð1, 1, 1Þ × ð1, 1, 1, 7Þ was considered
a suitable model due to its better performance during testing
(RMSE = 67; MSE = 4473; and MAE = 56) with the lowest
confidence interval of the predicted value vs. the actual value
(MAPE = 14%) as well as the lowest AIC value
(AIC = 282:50).

Third, the long short-term memory model was built in 3
parts: (1) in the initial stage, the collected information was
classified into two groups: the preceding two years’ data were
used as the testing sample, while the remaining data were
used as the training dataset. When building a model and
finding new potential relationships in data, the training sam-
ples were used, and the test samples were used to assess the
model’s performance built from the training dataset. (2)
Then, using X values as time steps, a set of LSTM models
were built. Assuming the time step was sixty, the sixty-first
data was forecasted using the last 60 sets of data as input.
The ideal model had the lowest RMSE, and (3) at last, the

incidence was forecasted using the optimum model with
the least RMSE allocation. We normalized our data using
the MinMaxScaler; the adaptive moment estimation (Adam)
optimizer and the RMSE were used as our model validation
metrics. We further calculated for the MSE, MAPE, and
MAE to enable better model selection (see Table 3).

We selected the best three performing models (see
Table 4), and based on that, we plotted (see Figure 6) the real
and forecasted values of the HT and DM cases time series to
evaluate our performance for each of the selected model and
to finally enable selection of the best performing model in
terms of forecasting. For the LSTM, we took a random sam-
ple of 12 continuous observations from the test set and the
12 predictions to draw the chart for result comparison.

From Figure 6, all three selected models estimated the
number of cases to increase gradually with time which is
accurate compared to the actual number of cases. Therefore,

Table 2: SARIMAX models comparison for further selection.

Models AIC RMSE MAPE (%) MAE MSE

SARIMAX 1, 1, 1ð Þ × 1, 0, 1, 7ð Þ 298.82 79 19 66 5078

SARIMAX 1, 1, 1ð Þ × 1, 1, 0, 7ð Þ 288.65 68 16 55 4907

SARIMAX 1, 1, 1ð Þ × 1, 1, 1, 7ð Þ 282.50 67 14 56 4473

Note: AIC: Akaike information criteria, RMSE: root mean square error, MAPE: mean absolute percentage error, MAE: mean absolute error, and MSE: mean
square error.

Table 3: LSTM models comparison for further selection.

Models Optimizer RMSE MAPE (%) MAE MSE

1 Adam 36.00 8.60 27 1307

2 Adam 39.87 9.12 27.98 1895

3 Adam 37.99 9.36 27.72 1541

Note: Adam: adaptive moment estimation, RMSE: root mean square error,
MAPE: mean absolute percentage error, MAE: mean absolute error, and
MSE: mean square error.

Table 4: Forecasting performance of selected models.

Error metrics/
models

ARIMA
(5, 2, 4)

SARIMAX
1, 1, 1ð Þ × 1, 1, 1, 7ð Þ LSTM

RMSE 28 67 36

MSE 769.02 4473 1307

MAE 22 56 27

MAPE (%) 7 14 8.6

Note: RMSE: root mean square error, MAPE: mean absolute percentage
error, MAE: mean absolute error, and MSE: mean square error.

Table 1: ARIMA models comparison for further selection.

Models AIC RMSE MAPE (%) MAE MSE

ARIMA (5, 2, 1) 337.75 37 11 31 789.67

ARIMA (5, 2, 4) 338.30 28 7 22 769.02

ARIMA (5, 2, 2) 337.89 43 19 39 799.75

Note: AIC: Akaike information criteria, RMSE: root mean square error, MAPE: mean absolute percentage error, MAE: mean absolute error, and MSE: mean
square error.

8 BioMed Research International



since our goal is to find a forecast that minimizes the errors,
the ARIMA model with a lag value of 5 = AR was chosen as
the best forecasting model due to its low errors. It utilizes I
= 2 to make the time series stationary and MA= 4 for fore-
casting as shown in Table 4.

4. Discussion

Studying the temporal trends of individuals with coexisting
hypertension and diabetes in a Ghanaian community, we
projected potential incidence in order to aid in the
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Figure 6: (a) Forecast of the SARIMAX ð1, 1, 1Þ × ð1, 1, 1, 7Þ model. (b) Forecast of the ARIMA (5, 2, 4) model. (c) Forecast of the LSTM
model.
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prevention, treatment, and management of high blood
pressure-high blood glucose diagnoses. As long as there are
no adequate and efficient intervention mechanisms, the
cases will continue to occur and may increase soon. Com-
paring our results, all three forecasting models considered
for the study performed well indicating that monthly inci-
dence of coexisting HT/DM patients in Akatsi South may
be estimated using these models. The ARIMA model outper-
formed the SARIMAX and LSTM models in predicting the
number of patients in the future. However, comparing our
model’s performance is difficult due to the absence of pub-
lished health forecasts on our study topic using LSTM and
the variety of modeling approaches and evaluation methods.
To be clear, it was not a rigorous evaluation of several fore-
casting methods, but rather a choice of the method that best
fits our data.

Applying time series modeling to forecast future occur-
rences is becoming more common in health care. ARIMA,
SARIMAX, and LSTM can analyze and predict time series
data. The ARIMA, ARIMAX, SARIMA, and SARIMAX time
series prediction models have unique advantages over other
methods. These models have been used in a variety of stud-
ies [17, 28, 29]. A possible explanation for the increasing
trend in the survey, which had a 7-month seasonality, could
be attributed in part to the recent climate change in the dis-
trict, which is accompanied by heavy rains during the major
rainfall period between July and September [20]. In addition,
we presume that poor diet and lack of exercise are typical
during the rainy, cold, and wet seasons, which is likely to
increase the risk of obesity, cardiovascular disease, and
diabetes.

Furthermore, the ARIMA model outperformed the
LSTM because LSTM is more advanced, recognizing data
sequence, like nonlinearities and complexities produce better
results for long-term modeling and situations where dataset
is large. In addition, regardless of extensive parameter tun-
ing, an LSTM network trained on one dataset is likely to per-
form poorly on another. In short, the pretty small dataset
and simplistic LSTM architecture may explain why the
LSTM model underperformed compared to the ARIMA
model. Nonetheless, since the LSTM also performed better
than the SARIMAX, it could suggest that utilizing a more
complex LSTM architecture with more data may improve
outcomes.

There are, of course, some drawbacks to our research.
First, the incidence of hypertension and diabetes may be
underestimated due to an individual’s lack of awareness of
their blood pressure and glucose levels, respectively. Follow-
ing that, the short duration of the models could have an
impact on the model’s accuracy. As a result, it is prudent
to utilize the model for short-term forecasting, as the mean
of the series will remain constant for long-term forecasting.
Additionally, our study examined only three of the district’s
29 health facilities. As a result, the findings must be validated
in other health facilities, cities, regions, or geographical loca-
tions to ensure accuracy. Finally, as it is a time series data
evaluation with only one variable solely reliant on time,
additional factors may contribute to the increase in hyper-
tension and diabetes cases.

From this work, we recommend more advanced disease
forecast models (such as the LSTM model) that can incorpo-
rate multiple factors to improve predicting precision and
accuracy in the future. In addition, given the likelihood that
the number of cases would increase, we further urge the local
health directorate to strengthen context-specific and
community-based intervention activities. Lifestyle modifica-
tion should be a part of these programs, but it should not be
the sole focus. Although underestimated, it is a critical com-
ponent of preventing, controlling, and treating diabetes and
hypertension. The changes include but are not limited to
eating more fruits and vegetables, increasing physical activ-
ity (30min of brisk walking per day), and reducing salt
intake.

5. Conclusion

In this study, we used three models to predict the incidence
of hypertension and diabetes in patients. The ARIMA time
series model exhibited the highest accuracy among the tested
models. The findings revealed a statistically significant sug-
gestion for managerial and administrative decision-making
practices.
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