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Background. Several cancers, including lung adenocarcinoma (LUAD), are caused by genes related to necroptosis. However, it is
still unknown how necroptosis-related long noncoding RNAs (IncRNAs) may be involved in LUAD. In order to predict the
prognosis of LUAD patients and personalize immunotherapy, this study set out to construct a necroptosis-related IncRNA
prognostic signature (NLPS). Methods. The Cancer Genome Atlas (TCGA) database was used to download the LUAD
transcriptome data and the associated clinical data. IncRNAs associated with necroptosis were screened using coexpression
analysis. An NLPS was built using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression
analyses. The Gene Expression Omnibus (GEO) database’s GSE30219 was used to validate the NLPS. The prognostic value of
the risk score was assessed using Kaplan-Meier survival, receiver operating characteristic (ROC) Cox regression, multivariate
Cox regression, and nomogram analyses. Then, we looked into the differences between the low- and high-risk groups in the
tumor immune microenvironment, immunotherapy response, and half-maximal inhibitory concentration (IC50). Results. The
14 IncRNAs in a novel NLPS were created. With further validation in the GSE30219 dataset, the risk score according to the
NLPS was an independent prognostic indicator for LUAD patients. Patients with better overall survival (OS) in the low-risk
group, who were characterized by increased immune cell infiltration, tumor mutational burden (TMB), and
immunophenoscore (IPS), may have hot tumors and higher immunotherapy response rates. In addition, the risk score was also
closely linked to sensitivity to various anticancer medications. Conclusions. We constructed a novel NLPS that could predict

OS and sensitivity to immunotherapy in LUAD patients.

1. Introduction

According to estimates, 2.2 million new instances of cancer
and 1.8 million cancer-related deaths will be attributable to
lung cancer in 2020 [1]. Clinically, lung adenocarcinoma
(LUAD) accounts for 53% of non-small cell lung cancer
(NSCLC) cases in China, while NSCLC accounts for 85%
of all instances of lung cancer [2]. Even though the develop-
ment of targeted therapy and immunotherapy has revolu-
tionized the treatment of NSCLC, patients with distant
metastasis show a 5-year survival rate of about 7% [3], and
only 20% of NSCLC patients exhibit a significant response
to targeted therapy and immunotherapy [4]. Therefore, it

is critical to construct a novel robust prognostic signature
to screen out LUAD patients most likely to benefit from
immunotherapy.

Necroptosis is a unique kind of controlled cell death that
excludes the involvement of proteins from the caspase fam-
ily [5]. According to growing research, necroptosis has been
connected to several diseases, including inflammation, myo-
cardial infarction, neurodegenerative disorders, autoim-
mune diseases, infectious diseases, and cancers [6, 7].
Necroptosis plays a double-edged sword in the incidence
and progression of tumors. For instance, necroptosis can
promote tumor cell proliferation, invasion, and metastasis
and is associated with a poor prognosis in many
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malignancies [8-10]. Interestingly, necroptosis can enhance
the antitumor immune response by activating CD8+ T cells,
thereby inhibiting tumorigenesis and development [7, 11]. A
study also found that necroptosis promotes the growth of
pancreatic tumors by creating an immunosuppressive tumor
microenvironment caused by suppressive macrophages [9].
However, it is still unclear what the potential underlying
mechanisms and prognostic significance of necroptosis in
LUAD are.

Long noncoding RNAs (IncRNAs) are RNAs longer
than 200 nucleotides that do not code for proteins.
IncRNAs have the ability to bind to proteins, DNA, and
RNA to control several aspects of gene expression,
including transcription, posttranscriptional —processing,
RNA metabolism, translation, and posttranslational mod-
ification [12]. Numerous studies have shown the signifi-
cance of IncRNAs in programmed cell death, including
apoptosis, ferroptosis, autophagy, and necroptosis [13].
For instance, it has been observed that the miR-675, pro-
duced from the IncRNA HI19, increases p-MLKL and
RIP3 while decreasing the expression of FADD, leading
to the necroptosis of liver cancer cells [14]. Zhao et al.
also used necroptosis-related IncRNAs to forecast the
prognoses of gastric cancer patients [15]. However, the
biological significance of necroptosis-related IncRNAs in
LUAD and their predictive usefulness have not yet been
determined.

The TCGA database was used to obtain the LUAD
patients’ IncRNA and mRNA expression patterns and clin-
ical data. Then, using univariate Cox regression and
LASSO Cox regression analyses, we created an NLPS using
the TCGA cohort. The NLPS was verified using
GSE30219, retrieved from the GEO database. Next, dis-
crepancies in possible signaling pathways, tumor microen-
vironment (TME), TMB, IPS, and half-maximal inhibitory
concentration (IC50) values between the low- and high-
risk groups were identified according to the NLPS. We
anticipate that our findings will offer a fresh viewpoint
for gauging the LUAD patients’ prognosis and creating
customized immunotherapy.

2. Materials and Methods

2.1. Data Collection. From the TCGA database (https://
portal.gdc.cancer.gov/), we downloaded the expression pro-
file data, mutation data, and associated clinical data of
LUAD patients. The associated clinical information and
sample expression data were then combined. Patients with-
out information on overall survival (OS) were excluded.
The GEO database was used to retrieve GSE30219, which
used the GPL570 platform and contained clinical and tran-
scriptomic data. Using the R package sva, the TCGA and
GEO expression matrixes were adjusted to the same level.
The samples from the TCGA dataset were used as the train-
ing cohort, and the samples from GSE30219, retrieved from
the GEO database, were used as the validation cohort. From
earlier reviews, 67 genes associated with necroptosis were
obtained (Table S1) [15, 16].
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2.2. Construction of an NLPS for LUAD. The Pearson corre-
lation coefficient method was used to screen necroptosis-
related IncRNAs with |R| > 0.4 and P <0.001. A univariate
Cox regression analysis was used to find the necroptosis-
related IncRNAs associated with OS in LUAD patients.
The R package glmnet was employed to conduct LASSO
Cox regression analysis to construct a predictive signature
for necroptosis [17]. The best signature with the lowest
Akaike information criterion (AIC) value was chosen to
reduce the danger of overfitting [18]. The expression levels
and regression coefficients of IncRNAs were utilized to
determine each LUAD patient’s risk score [19]. Risk score
is calculated as follows: BIncRNAI x exp IncRNAI + 3
IncRNA2 x exp IncRNA2 +---.+ BIncRNAn x exp
IncRNAn. The patients were divided into the low- and
high-risk groups separately according to the median risk
score calculated in the training cohort. [20].

2.3. Survival Analysis and Receiver Operating Characteristic
(ROC) Curve Plotting. The R package survminer and survival
was subjected to perform a Kaplan-Meier survival analysis to
compare OS between the low- and high-risk groups in the
training cohort and the validation cohort [21]. For LUAD
patients, we further conducted subgroup OS analysis based
on clinicopathological characteristics. The R package survi-
valROC was used to plot ROC curves and determine the area
under the curve (AUC) values [22].

2.4. Independent Prognostic and Nomogram Analysis. In the
training and validation cohorts, univariate and multivariate
Cox regression analyses were carried out to determine if
the risk score based on the NLPS could be considered an
independent prognostic factor for LUAD patients. Age,
sex, clinical stage, T stage, M stage, N stage, and risk score
were the factors. A nomogram was created based on the risk
score of the NLPS and clinical pathological factors to predict
the 1-year, 3-year, and 5-year survival of LUAD patients
[23]. Calibration curves were produced to assess the nomo-
grams’ effectiveness in predicting OS.

2.5. Principal Component Analysis (PCA) and Gene Set
Enrichment Analysis (GSEA). PCA was performed to exam-
ine the distribution of patients with various risk scores using
the R package stats [24]. The signaling pathways and biolog-
ical processes connected to the low- and high-risk groups
were examined using GSEA software (version 4.1.0) [25].
The c2.cp.kegg.v7.4.symbols.gmt was selected for annotated
gene sets. The normalized enrichment score (NES), as deter-
mined by the Affymetrix chip platform, was computed after
1,000 permutations. Gene sets were significantly differen-
tially enriched with normal P < 0.05 and false discovery rate
(FDR) P <0.25.

2.6. Tumor Immune Microenvironment Analysis. The ESTI-
MATE method, which incorporates stromal, immune, and
ESTIMATE scores, was utilized to investigate the differences
in the immunological microenvironment between the low-
and high-risk groups. XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBER-
SORT algorithms were used in the Spearman correlation
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FIGURE 1: Schematic diagram of the study design.

analysis of the risk score based on the NLPS and immune
cells [15]. Single-sample GSEA (ssGSEA) was used to deter-
mine the scores of infiltrating immune cells and immune-
related pathways using the R package gsva [26].

2.7. Immunotherapy Response Analysis. We initially com-
pared the levels of gene expression for immune checkpoint-
related proteins across the low- and high-risk groups to inves-
tigate the significance of the NLPS in predicting the outcome
of immunotherapy. According to studies, the TMB and IPS
can indicate how well patients will respond to immunother-
apy, and those who have higher TMB or IPS may benefit from
immune checkpoint inhibitors [19, 27]. For each patient with
LUAD, we determined the TMB and coupled a survival anal-
ysis with a risk score. In addition, we did a differential analysis
between the low- and high-risk groups using the IPS scores of
LUAD patients that we acquired from The Cancer Immu-
nome Atlas (https://tcia.at/).

2.8. IC50 Analysis. The R package pRRophetic was used to
compare the IC50 values of LUAD patients in the low- and
high-risk groups to assess the NLPS in the prospective ther-
apeutic application of LUAD treatment [28]. P < 0.05 was
considered statistically significant.

2.9. Statistical Analysis. For the statistical analysis, R soft-
ware (version 4.1.2) was used. Clinicopathological traits,
immunological state, TMB, IPS score, and IC50 values were
compared between groups using the Wilcoxon test. The sur-
vival of several groups was compared using Kaplan-Meier
curves. The examination of independent prognostic vari-
ables included both univariate and multivariate Cox regres-
sion. The prediction ability of the NLPS was assessed using
ROC curves. P < 0.05 was considered statistically significant.
*P <0.05, **P<0.01, and ***P < 0.001.

3. Results

3.1. Identification of an NLPS in LUAD. A schematic of the
research plan is shown in Figure 1. Patients from the TCGA
dataset were utilized as the training cohort. The coexpression
analysis of 67 necroptosis-related genes with |R| > 0.4 and P
<0.001 resulted in the identification of 2154 necroptosis-
related IncRNAs in total (Figure 2(a), Table S2). 19 IncRNAs
associated with necroptosis were shown to be significantly
correlated with the OS in LUAD patients, according to a
univariate Cox regression analysis (Figure 2(b)). LASSO Cox
regression analysis was utilized to limit the possibility of
overfitting of necroptosis-related prognostic IncRNAs, and
14 of 19 necroptosis-related IncRNAs were selected to create
the NLPS (Figures 2(c) and 2(d)). The risk score of the
NLPS was calculated as follows: risk score = (—0.11275 x TBX
5-AS1) +(1.53372 xFLG —AS1) +(-0.21258 x LINC
00892) + (—0.15068 x LINC00996) + (-0.12119x LINC
00115) + (-0.04065 x LINC00847) + (—0.74594 x SEPSECS
— AS1) + (—0.02410 x COLCA1) + (~0.12741 x CCDC13 —

AS1) +(=0.10122 x LINC01281) + (—0.00085 x HEIH) + (
0.04878 x LINC00626) + (0.32701 x TMPO — AS1)+ (-
0.19790 x PAN3 — AS1). The Sankey diagram showed that
PLK1 and TBX5-AS1 expression levels were negatively
connected, in contrast to the other genes and IncRNAs, whose
expression levels were all positively associated (Figure 2(e)).

3.2. Evaluation and Validation of the NLPS. The median risk
score was employed to divide LUAD patients into the low-
and high-risk groups. Samples from the TCGA dataset were
used as the training cohort. The heat map displays the
expression levels of 14 IncRNAs linked to necroptosis
(Figure 3(a)). The risk curves and scatter plots demonstrated
that the training cohort’s LUAD patients had shorter sur-
vival times the higher their risk scores were (Figures 3(b)
and 3(c)). The training cohort’s Kaplan-Meier survival
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FI1GURE 2: Identification of a necroptosis-related IncRNA prognostic signature (NLPS) in LUAD. (a) The coexpression network map of
necroptosis-related genes and long noncoding RNAs with |R| > 0.4 and P < 0.001 as the screening criteria. (b) Prognostic forest map of
necroptosis-related IncRNAs by univariate Cox regression analysis. (¢, d) LASSO Cox regression analysis of 19 prognostic necroptosis-
related IncRNAs. (e) Sankey diagram of necroptosis-related genes and IncRNAs.

analysis showed that the high-risk group’s LUAD patients’
OS was considerably shorter than that of the low-risk
group’s LUAD patients (Figure 3(d)). We conducted a
ROC analysis and estimated the AUC value of the risk
score based on the NLPS to assess the prediction perfor-
mance of the NLPS. The training cohort’s 1-, 3-, and 5-
year AUC values were 0.680, 0.705, and 0.683, respectively
(Figure 3(e)). Additionally, we discovered that the risk
score’s 1-year AUC value exceeded 0.60 and was higher
than the training cohort’s AUC values for age and sex
(Figure 3(f)).

Samples from GSE30219, retrieved from the GEO data-
base, were utilized as the validation cohort to confirm the
NLPS’s applicability. We ran the same study in the valida-
tion cohort and got similar results. The validation cohort’s
14 necroptosis-related IncRNA expression patterns are dis-
played in Figure 4(a). The distributions of the risk score
and survival time in the validation cohort are shown in
Figures 4(b) and 4(c), respectively. Patients with greater risk
ratings had shorter OS than patients with lower risk scores,
as seen in Figure 4(d). The validation cohort’s 1-, 3-, and
5-year AUC values were 0.609, 0.618, and 0.631, respectively
(Figure 4(e)). In the validation cohort, the risk score’s 1-year
AUC value was higher than those of age, sex, and M stage
(Figure 4(f)).

3.3. Subgroup Analysis of the NLPS. We used subgroup anal-
ysis to examine if the NLPS was connected to the clinical
characteristics of LUAD patients. Age (>65 years or 65
years), sex (male or female), T stage (T1-2 or T3-4), N stage
(NO or N1-3), M stage (MO or M1), and clinical stage (stage
I-1T or stage III-IV) were used to separate the groupings.
When sorted by age, sex, T stage, N stage, M stage, and clin-
ical stage, we discovered that the OS of high-risk LUAD

patients was significantly shorter than that of low-risk
LUAD patients (all P <0.05) (Figure 5).

3.4. The Risk Score Is an Independent Prognostic Factor. We
performed univariate and multivariate Cox regression anal-
yses in the training and validation cohorts to see if the risk
score could be an independent prognostic factor for LUAD
patients. Univariate Cox regression analysis of the training
cohort showed that clinical stage (HR =1.577, 1.348-1.845,
P <0.001), T stage (HR=1.579, 1.296-1.923, P <0.001), M
stage (HR=1.843, 1.038-3.272, P=0.037), N stage
(HR=1.706, 1.405-2.072, P<0.001), and risk score
(HR =3.506, 2.558-4.807, P <0.001) predicted worse OS
(Figure 6(a)). Multivariate Cox regression analysis verified
that the risk score was an independent prognostic factor in
LUAD patients (HR=3.128, 2.211-4.424, P <0.001)
(Figure 6(b)). Further evidence that the risk score was a stan-
dalone predictive factor was provided by the validation
cohort’s results (HR=1.466, 1.007-2.133, P =0.046)
(Figures 6(c) and 6(d)). Additionally, we combined the var-
iables of sex, clinical stage, T stage, N stage, and risk score to
create a nomogram that predicted the survival rates of the
training cohort and validation cohort at 1, 3, and 5 years
(Figures 6(e) and 6(g)). The 1-, 3-, and 5-year calibration
curves demonstrated that the projected OS from the nomo-
gram agreed with the actual OS (Figures 6(f) and 6(h)).

3.5. PCA and GSEA. Based on the NLPS, PCA was used to
visualize the patient distribution (Figures 7(a) and 7(b)).
The KEGG enrichment analysis was carried out using GSEA
software to investigate the variations in potential biological
activities between the two subgroups. We found that the
high-risk group was related to the cell cycle, pentose phos-
phate pathway, and DNA replication. In contrast, the low-
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1-, 2-, and 3-year ROC curves. (f) 1-year ROC curves of the risk score and clinical characteristics.

risk group was linked to the JAK/STA, T cell receptor, and B
cell receptor signaling pathways (Figures 7(c)-7(h)).

3.6. Tumor Immune Microenvironment Analysis. ESTI-
MATE analysis was carried out to investigate variations in
the tumor microenvironment between the low- and high-
risk groups. We discovered that patients in the low-risk
group had poor tumor purity because their stromal scores,
immunological scores, and ESTIMATE scores were consider-

ably higher in the low-risk group than in the high-risk group
(Figure 8(a)). A bubble chart created using seven different
algorithms later revealed that the risk score was negatively cor-
related with B cells, T cell CD8+, T cell CD4+, and cancer-
associated fibroblast, while positively correlated with T cell
CD4+ Thl, T cell CD4+ Th2, NK cell resting, and mast cell
resting (Figure 8(b), Table S3). These findings imply that
patients in the low-risk group may have had hot tumors with
more immune cell infiltration. Additionally, the low- and



Risk score

|| |

{0

TBX5.AS1

FLG.AS1

LINC00892

LINC00996

LINCO00115

LINC00847

BioMed Research International

SEPSECS.AS1

COLCA1

CCDCI13.AS1

LINCO01281

HEIH

LINC00626

TMPO.AS1

PAN3.AS1

-4

20

e
wn
|

15 4

|
o
wn
|

10 4

-1.5 4

Survival time (years)

°
\..

Koo

oﬁ‘
_I‘..‘

o o od® o ‘\.
4}.%5-'-0-; ;

T T T T T
100 150 200 250 300

Patients (increasing risk score)

0 50

e High risk
o Low risk

()

FiGure 4: Continued.

0

® Dead
o Alive

50

100

150 200 250 300

Patients (increasing risk score)



BioMed Research International

1.00 -
>~
= 075 -
jg 1.0 4 -
& 0.50 =
= = .
> 0.8 T
.E o ”,'
2 025 r" P
2 0.6 7
2 .
0.00 - Z o 2
T T T T T T T T T T T o
0 2 4 6 8 10 12 14 16 18 20 & 044 g
Time (years) r_’_
0.2
., Highrisk{ 132 82 62 44 33 24 16 14 6 1 0 rf
Z LowriskH161 109 93 67 48 27 18 16 10 5 2 002 : : : : :
T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 00 02 04 06 08 1.0
Time (years) 1 - specificity
Risk —— AUC at 1 years = 0.609
o AUC at 3 years = 0.618
~ Highrisk AUC at 5 years = 0.631
—+ Low risk
(d) (e)
1.0
0.8
_— T
Z
S 0.4 J-r-"'
0.2 4 /|
/
004 F
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity

Risk, AUC = 0.609
Age, AUC = 0.593

Gender, AUC = 0.522
—— Stage, AUC = 0.681

T, AUC = 0.662
—— N, AUC =0.688
—— M, AUC=0.512

®

FIGURE 4: Validation of the NLPS in the GEO cohort. (a) Heat map of 13 necroptosis-related IncRNA expression levels in GSE30219. (b)
Distribution of risk scores. (c) Scatterplot of the survival status. (d) Kaplan-Meier survival curves of the low- and high-risk groups
stratified by the NLPS. (e) 1-, 2-, and 3-year ROC curves. (f) 1-year ROC curves of the risk score and clinical characteristics.

high-risk groups’ immune cell infiltration and immune-related
pathways were compared using ssGSEA. We discovered that
activated dendritic cells (aDCs), B cells, T cell CD8+,
dendritic cells (iDCs), immature dendritic cells (iDCs), mast
cells, neutrophils, plasmacytoid dendritic cells (pDCs), T
helper cells, follicular helper T cell (Tth), Thl cells, tumor-
infiltrating lymphocyte (TIL), and regulatory T cell (Treg)
had higher enrichment scores in the low-risk group than in
high-risk group (Figure 8(c)). Immune function analysis

suggested that APC costimulation, CCR, checkpoint,
cytolytic activity, HLA, inflammation-promoting, T cell
coinhibition, T cell costimulation, and type II IFN response
pathways exhibited higher activity in the low-risk group than
in the high-risk group (Figure 8(d)).

3.7. Immunotherapy Response Analysis. Since the expression
levels of immune checkpoint-related genes have become
markers for treatment choice in LUAD patients, we
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FIGURE 5: Subgroup analysis of the NLPS: (a) Kaplan-Meier survival analysis for age > 65 years, (b) age < 65 years, (c) female, (d) male, (e)
T1-2, (f) T3-4, (g) NO, (h) N1-3, (i) MO, (j) M1, (k) stage I-II, and (1) stage ITI-IV between the low- and high-risk groups.

examined the expression levels of these genes in the low- and
high-risk groups. The findings revealed that the expression
levels of most immune checkpoint-related genes, including
CTLA4, PDCD1, CD274, PD-L1, LAG3, and HAVCR2
(TIM3), were greater in the low-risk group than in the
high-risk group (Figure 9(a)). According to studies, the
TMB and IPS are reliable predictors of immunotherapeutic
response [19, 27]. According to our findings, individuals
with LUAD in the low-risk group had a higher TMB than
those in the high-risk group (Figure 9(b)), which was con-
sistent with their superior OS (Figure 9(c)). Additionally, a

survival analysis that included the TMB and risk score
revealed that the risk score decreased the higher TMB
group’s better prognosis (Figure 9(d)). Furthermore, we
examined the variations between two subgroups after
downloading the IPS score from the TCIA database. Our
findings demonstrated that LUAD patients in the low-
risk group had higher IPS (Ips_ctla4 neg pdl_neg, ips_
ctla4_neg pdl_pos, ips_ctla4d_pos_pdl_neg, and ips_
ctla4_pos_pdl_pos scores) than those in the high-risk
group (Figures 9(e)-9(h)), indicating that these individ-
uals’ immunogenicity was greater. In summary, the better
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FIGURE 7: Principal component analysis (PCA) and gene set enrichment analysis (GSEA). (a) PCA of the low- and high-risk groups in the
TCGA cohort and (b) GEO cohort. (c) The cell cycle, (d) pentose phosphate pathway, and (e) DNA replication were activated in the high-
risk group. (f) The JAK/STAT signaling pathway, (g) T cell receptor signaling pathway, and (h) B cell receptor signaling pathway were
activated in the low-risk group.

outcomes of patients at low risk, according to the NLPS,
occur due to their better response to immune checkpoint
inhibitor treatment.

3.8. Analysis of Drug Sensitivity. We evaluated the variations
in the IC50 values of typical antitumor drugs in the low- and

high-risk groups to investigate whether the NLPS can pre-

dict the responsiveness of LUAD patients to antitumor
drugs. We discovered that LUAD patients in the low-risk

group were more sensitive to axitinib, metformin, metho-
trexate, nilotinib, roscovitine, and vinblastine but less sensi-

tive to bortezomib, dasatinib, docetaxel,

doxorubicin,
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FIGURE 8: Tumor immune microenvironment analysis. (a) Immune microenvironment analysis between the low- and high-risk groups by
ESTIMATE. (b) Spearman correlation analysis of the risk score and immune cells based on the XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms. (¢) Immune cells and (d) immune-related function analyses
between the low- and high-risk groups by ssGSEA. *P < 0.05, **P < 0.01, and ***P < 0.001.

elesclomol, erlotinib, gemcitabine, imatinib, paclitaxel, and
sorafenib (Figure 10). These findings suggested that our
NLPS could be a valuable predictor of drug sensitivity.

4. Discussion

In our work, coexpression analysis was utilized to obtained
2154 IncRNAs related to necroptosis in the training cohort.
Then, an NLPS composed of 14 IncRNAs was created using
LASSO and univariate Cox regression analyses. We calcu-

lated the risk score for each patient and then separated the
patients into low- and high-risk groups according to the
median risk score. The OS of patients in the low-risk group
was higher than those in the high-risk group, demonstrating
that the NLPS may predict LUAD patient prognosis. We
further verified the subgroup survival analysis’s prediction
efficacy. According to the NLPS, the risk score was also dis-
covered to be an independent prognostic indicator for
LUAD patients. A nomogram that combined the risk score
and clinicopathological traits successfully accurately
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F1GURE 9: Immunotherapy response analysis. (a) Immune checkpoint-related gene expression level analysis between the low- and high-risk
groups, which were classified by the NLPS. (b) Tumor mutational burden analysis between the low- and high-risk groups. (c) Survival
analysis of LUAD patients with high and low tumor mutational burden. (d) Survival analysis combined with tumor mutational burden
status and risk score. (e) Ips_ctla4_neg pdl_neg, (f) ips_ctla4_neg pdl_pos, (g) ips_ctlad_pos_pdl_neg, and (h) ips_ctla4_pos_pdl_pos

score analyses between the two subgroups.

forecasted the 1-, 3-, and 5-year survival rates in LUAD
patients. GSE30219 was employed as the validation cohort
to confirm the validity of the NLPS. We calculated the risk
score for each patient in the GSE30219 cohort using the risk
score formula and divided patients into low- and high-risk
groups by the median risk score calculated in the TCGA-
LUAD cohort after adjusting the TCGA-LUAD and
GSE30219 expression profile data to the same level. We car-
ried out the same research on the GSE30219 cohort, and
incredibly, we saw findings that were quite similar, further
demonstrating the NLPS’s remarkable predictive power.
Among the 14 necroptosis-related IncRNAs in the NLPS,
SEPSECS-AS1, CCDC13-AS1, and LINC00626 were first
identified. Studies have shown that TBX5-AS1, a novel prog-
nostic marker [29], is expressed at low levels in NSCLC. It
can inhibit tumor cell proliferation, invasion, and migration
and promote apoptosis through the PI3K/AKT signaling
pathway [29]. A multicenter study showed that FLG-ASI
could be used to forecast the pathological complete response
rates to neoadjuvant chemotherapy and radiation therapy
for esophageal squamous cell carcinoma [30]. However,
there is no relevant research on FLG-AS1 in LUAD. The
previous study demonstrated that LINCO00892 and
LINCO00996 are immune-related IncRNAs and could be used
to forecast the response rate to immunotherapy [31, 32], and
LINC00996 might be a potential LUAD therapeutic target
[32]. Wu et al. demonstrated that LINC00115 promotes
tumor progression through the miR-607/ITGB1 pathway
[33]. Li et al. demonstrated that E2F1-induced LINC00847

promoted NSCLC cell proliferation, invasion, and migration
by targeting the miR-147a/IFITM1 axis [34]. Zheng et al.
constructed a LUAD prognostic signature, and this signature
included COLCA1, TMPO-ASI, and TBX5-AS1 [35], which
were also included in our prognostic signature. Ye et al.
demonstrated that LINC01281 enhanced T cells’ capacity
to migrate to tumor cells using a T cell chemotaxis assay
[36]. In addition, LINC01281 is considered a protective fac-
tor for laryngeal cancer [37]. Ping et al. identified a
ferroptosis-related IncRNA prognostic signature that
included PAN3-AS1 and found it associated with a favorable
prognosis in cancer patients [38]. HEIH is highly expressed
in several tumor types; can promote tumor cell proliferation,
migration, invasion, and drug resistance; and is related to a
poor prognosis [39].

PCA was initially carried out in the TCGA-LUAD
cohort and the GSE30219 cohort better to examine the role
of NLPS in biological function. According to the NLPS, we
discovered that LUAD patients could be distinguished into
two categories. Afterward, GSEA was conducted to investi-
gate biological function variations between the low- and
high-risk groups. We discovered that the low-risk group
had active JAK/STAT, T cell receptor, and B cell receptor
signaling pathways. The JAK/STAT signaling pathway is
thought to be a viable approach for tumor immunotherapy
because it plays a crucial role in immune regulatory pro-
cesses [40]. The body’s immune system consists of T cells
and B cells, both of which can be activated to fight tumors.
Patients in the low-risk group had better OS, which may
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FIGURE 10: Drug sensitivity prediction. (a) IC50 analysis of axitinib, (b) bortezomib, (c) dasatinib, (d) docetaxel, (e) doxorubicin, (f)
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sorafenib, and (p) vinblastine in the low- and high-risk groups, which were classified by the NLPS.

be related to an active tumor immune microenvironment.
As a result, we investigated immunological infiltration
between the two categories in more detail. According to
ESTIMATE analysis, individuals in the low-risk group had
higher stromal, immunological, and ESTIMATE scores,
indicating that these patients had poor tumor purity. Consis-
tently, the risk score was inversely related to most immune
cells, including CD8+ T cells, CD4+ T cells, and B cells.
ssGSEA further demonstrated that patients in the low-risk
group had more immune cell infiltration and active immune
function. Studies have shown that type II IFN, which is con-
nected to the JAK/STAT pathway, can increase the cytotox-
icity of CD8+ T cells and NK cells and accelerate tumor cell
senescence and apoptosis [40-43]. Our research revealed
that the low-risk group of LUAD patients had a more robust
type II IEN response, indicating a link between low-risk
patients’ improved clinical outcomes and an active antitu-
mor immune response. Subsequently, we performed a
response analysis for immunotherapy. We discovered that
immune checkpoint-related genes were expressed at greater
levels in LUAD patients in the low-risk group, such as
CTLA4, PDCD1 (PD1), CD274 (PD-L1), LAG3, and
HAVCR2 (TIM3). According to studies, the TMB and IPS
are reliable predictors of immunotherapeutic response [19,

27]. Higher TMB and IPS patients frequently had improved
OS. Our findings indicated that the low-risk group had a
greater TMB and IPS, implying that patients with LUAD
who are in the low-risk group may benefit more from immu-
notherapy. Studies have shown that tumors that respond to
immune checkpoint inhibitors exhibit higher levels of
immune infiltration and IFN, known as “hot tumors.” In
contrast, “cold tumors” have lower levels of immune infiltra-
tion and are less responsive to immune checkpoint inhibi-
tors [44]. Therefore, we defined low-risk patients as having
“hot tumors,” a higher response rate to immunotherapy,
and a better prognosis, while high-risk patients were defined
as having “cold tumors,” a lower response rate to immuno-
therapy, and a poorer prognosis, which further demon-
strated the superiority of our NLPS.

The efficacy of antitumor drugs is closely related to the
drug sensitivity of patients, and the use of drugs to which
patients are susceptible will significantly enhance the thera-
peutic impact of anticancer medications. Therefore, we fur-
ther analyzed the IC50 values of antitumor drugs in two
subgroups. The results showed that axitinib, metformin,
methotrexate, nilotinib, roscovitine, and vinblastine were
the ideal choices for LUAD patients in the low-risk group,
while bortezomib, dasatinib, docetaxel, doxorubicin,
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elesclomol, erlotinib, gemcitabine, imatinib, paclitaxel, and
sorafenib may work better for LUAD patients in the high-
risk group. Our findings may provide prospective options
for the clinical treatment of LUAD patients.

However, our studies have several shortcomings. First,
this was a retrospective study based on public databases.
We constructed the NLPS using the TCGA-LUAD cohort
and validated it in the GSE30129 cohort. However, large-
scale prospective investigations are still needed in the future
to validate our prognostic signature. In addition, in vivo and
in vitro experiments are required to comprehend the proba-
ble mechanism of the risk score based on the NLPS.

5. Conclusion

Our study constructed a novel NLPS that integrates 14
IncRNAs (TBX5-AS1, FLG-AS1, LINC00892, INC00996,
LINC00115, LINC00847, SEPSECS-AS1, COLCAL,
CCDC13-AS1, LINCO01281, HEIH, LINC00626, TMPO-
ASI, and PAN3-AS1) that can predict prognosis. Moreover,
patients in the low-risk group had a better prognosis, which
may be related to the benefit of immunotherapy. However,
more clinical experiments are needed in the future to verify
the performance of the NLPS.
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