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Introduction. To reveal the mechanisms by which luteolin, the major bioactive component of the Traditional Chinese Medicine
(TCM) Polygonum cuspidatum, inhibits proliferation and promotes apoptosis in nasopharyngeal carcinoma (NPC) CNE2 cells.
Methods. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),
bioactive compounds of P. cuspidatum, potential target genes and NPC disease targets of TCMSP were screened, relationship
networks were constructed using these potential targets of NPC, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses were performed. The predicted compounds, targets and pathways were
corroborated using in vitro experiments, such as MTT, Cytation™ 5 real-time cell monitoring, cell cycle detection, Annexin
V-FITC/PI double staining, Hoechst 33342 staining, and mitochondrial membrane potential (ΔΨm) detection. Results. The
results showed that 10 bioactive compounds (OB≥30% and DL≥0.18), 157 potential target genes from P. cuspidatum, and
56 common targets related to NPC were found. These included important bioactive compounds such as luteolin, quercetin,
and beta-sitosterol. Key common targets included EGFR, MYC, AKT1, CASP3, CCND1, ERBB2, and common targets were
enriched for the PI3K-AKT, JAK/STAT, MAPK, and C-type lectin receptor signaling pathways. The binding energy of
luteolin for six common targets was less than -5.0 kcal·mol-1. After luteolin (20 μM, and 40μM) treatment to CNE2 cells
for 36 h, cell survival rates decreased, accompanied by cell morphology changes, inhibition of the cell cycle at G2/M phase,
and an induction of apoptosis. The expression of the cell proliferation related protein PCNA, the antiapoptosis protein
XIAP, and the PI3K-AKT pathway diagram related proteins p-ERK1/2, ERK1/2, AKT, and PI3K, all decreased. Conclusion.
Luteolin derived from P. cuspidatum inhibited the proliferation of NPC CNE2 cells and promoted cell apoptosis through
the PI3K-AKT signal pathway.

1. Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial cancer
originating from the endometrium of the nasopharyngeal
mucosa, with obvious geographical distribution characteris-
tics, and over 70% of new cases being found in East Asia
and Southeast Asia [1]. With the advancement of imaging

technology and effective population screening methods, the
incidence and mortality rates associated with NPC have
decreased over the past decades [2]. New therapies such as
intensity modulated radiotherapy (IMRT) [3], concurrent
chemoradiotherapy [4], and immunotherapy [5] have
emerged. Nonetheless, early diagnosis of NPC, clinical
management and prevention and treatment of recurrent
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and metastatic disease remains to be addressed. Traditional
Chinese Medicine (TCM), also known as Chinese Herbal
Medicine, has received increasing attention, promoting use
on a global scale and leading to the development and appli-
cation of many herbs as medicine [6]. The herb Polygonum
cuspidatum has been commonly used in TCM. It is the dried
rhizome and root of Polygonum cuspidatum Sieb.et Zucc,
also known as Fallopia japonica and Hu Zhang which is
used, and it is mainly produced in the Guangxi, Guangdong,
and Jiangsu provinces of China. The Leigong paozhilun
written 1500 years ago is the earliest ancient book from
China recording the use of Polygonum cuspidatum as a med-
icine. Bencao gangmu named it “Hu Zhang”, Jiangsu
zhiyaozhi named “Yingyanglian”, Diannan bencao named
“Banzhuang”, and Bencao tujing named “Kuzhang”. P. cus-
pidatum is used to promote blood circulation, relieve pain,
relieve coughs, dissipate phlegm, and promote choleretic
action [7]. The traditional Chinese usage of P. cuspidatum
was mainly as an oral water decoction, also as a topical pow-
der, and an ointment [8, 9].

Clinical observations by Chinese researchers in 1977
confirmed that P. cuspidatum could treat burns and scalds,
control wound infection, and also control Pseudomonas aer-
uginosa infection [10, 11]. It also has significant effects on
the treatment of acute and chronic viral hepatitis, and acute
jaundice infectious hepatitis [12–14] and can be used as a
laxative [15] and natural dye [16]. Studies have confirmed
that the multiple bioactive compounds found in P. cuspida-
tum had positive effects on most diseases and could be used
as anti-inflammatories and anti-infection agents [17], and
could treat hyperlipidemia and AIDS [18]. In particular, it
is most associated with its preventative effects on cardiovas-
cular diseases and tumors [19–21]. A previous study showed
that P. cuspidatum and its bioactive compounds can effec-
tively inhibit NPC [22], lung cancer [23], colon cancer
[24], and breast cancer [25]. The antitumor effect of TCM
P. cuspidatum has the advantages of multiple links and mul-
tiple targets, but it does not conform to the development
trend of precision medicine and individualized medicine in
antitumor drug research. Numerous bioactive compounds
are active ingredients extracted from TCM herbs. They have
clear structure and excellent pharmacological properties,
which are convenient for research and medical application.
Furthermore, there have been reports that a variety of bioac-
tive compounds found in TCM have anti-NPC effects
[26–28]. But, how can bioactive compounds of P. cuspida-
tum treating NPC and the mechanism of action of P. cuspi-
datum as an anti-NPC remains nebulous.

There are thousands of known bioactive compounds,
and the workload of screening and researching compounds
that exert effective anti-NPC activity is huge. It is necessary
to adopt an efficient and high-throughput searching method
to simplify the drug screening process. Nevertheless, there
are few investigations and research methods searching for
effective bioactive compounds against NPC from the numer-
ous compounds in P. cuspidatum, but these search results
are not accurate or comprehensive. In our study, we have
used of network pharmacology, based on network database
analysis and systems biology knowledge, to carry out multi-

target and multichannel system network analysis and pre-
diction of the effective active components of P. cuspidatum,
and then search bioactive compounds with better anti-
NPC effect, and interact more with NPC disease targets.

In this study, a network pharmacology approach was
used to explore potential targets of P. cuspidatum and signal-
ing pathways responsible for its anti-NPC effect. Then a bio-
active compounds-targets-pathways-NPC network was
constructed and subsequent network pharmacological pre-
dictions were validated in vivo using MTT assays, Annexin
V-FITC/PI double staining, Hoechst 33342 staining, mito-
chondrial membrane potential (ΔΨm) detection, and west-
ern blot. We found that luteolin derived from P.
cuspidatum inhibited the proliferation of NPC CNE2 cells
and promoted cell apoptosis through the PI3K-AKT signal
pathway. We have applied network pharmacology to syste-
matically search the bioactive compounds in P. cuspidatum,
and used molecular docking methods and in vitro experi-
ments to explore the interaction mode and signaling path-
ways between the effective compounds in P. cuspidatum
and their targets with the aim of developing novel anti-
NPC drugs. Therefore, our preliminarily study has helped
elucidate the mechanism of action of luteolin, the bioactive
compound in the TCM P. cuspidatum, and its ability to
inhibit the proliferation of NPC cells and promote apoptosis.
This may provide key technical support for drug develop-
ment, clinical diagnosis and personalized diagnosis, and
treatment of NPC. This investigation may provide a new fea-
sible research idea for the research of TCM and the develop-
ment of effective anticancer bioactive compounds in natural
herbs, and may answer to the antitumor mechanism of TCM
at the molecular level.

2. Materials and Methods

2.1. Data Collection. By searching for all the bioactive com-
pounds of P. cuspidatum in the TCM Systems Pharmacol-
ogy Database and Analysis Platform (TCMSP) database
(http://lsp.nwu.edu.cn/tcmsp.php), all bioactive compounds
were filtered with the oral bioavailability ðOBÞ ≥ 30% and
drug − likeness ðDLÞ ≥ 0:18 as filter conditions. The targets
of these bioactive compounds were searched out form the
TCMSP database, the names of these targets were standard-
ized through the combination of Perl language and
Uniports databases, and the standardized target name
(Swiss-Prod ID) of the bioactive compounds were obtained.
Finally, with “nasopharyngeal carcinoma” as the key word,
the disease target information was searched in the Gene-
Cards database (https://www.genecards.org/) to obtain
NPC-related disease targets.

2.2. Bioinformatics Analysis. R software (https://www.r-
project.org/) was used to compare bioactive compounds
of P. cuspidatum with disease targets found in NPC,
and found where they intersect to determine common
targets to construct a Venn diagram. STRING (https://
string-db.org/) website was used to draw a protein-protein
interaction (PPI) network diagram. A bioactive compound-
NPC-target network was constructed with Cytoscape 3.7.2

2 BioMed Research International

http://lsp.nwu.edu.cn/tcmsp.php
https://www.genecards.org/
https://www.r-project.org/
https://www.r-project.org/
https://string-db.org/
https://string-db.org/


software. Through the DAVID website (https://david.ncifcrf
.gov/), Gene Ontology (GO) analysis, and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis was
performed on the common targets in this network, where P
< 0:05 was used as the effective pathway filtering condition.
Subsequently, computers were used to simulate a bioactive
compound as a ligand docked to protein, to explore possible
modes of binding interaction of bioactive compound with
proteins. The top six protein structures with the highest fre-
quency of common targets were downloaded from the RCSB
PDB database (http://www.rcsb.org), imported into Auto-
Dock Tools 1.5.6 software and subjected to Delete Water,
and Add Hydrogens, for the target proteins in pdbqt format
output. Use AutoDock Vina and R software to perform
molecular docking and calculate binding energy, the default
settings are energy range = 5 and num modes = 20. The
smaller the binding energy, the stronger the binding of the
ligand to the protein, PyMol software (http://www.pymol
.org) was used to visualized the docking mode with the lowest
binding energy.

2.3. Drug Dissolution and Dilution. Luteolin (Cat#B20888,
HPLC≥98%) was purchased from Shanghai Yuanye Bio-
Technology Co., Ltd (Shanghai, China) dissolved in DMSO
(Solarbio, Beijing, China), and a 200mM solution was
prepared for storage. It was also diluted to a low concentra-
tion with RPMI-1640 medium (HyClone, Logan, UT,
USA) as needed. Also cis-Diammineplatinum (II) dichlor-
ide (cisplatin, CIS; Sigma-Aldrich, St. Louis, MO, USA)
was dissolved in physiological saline at a concentration
of 3.33mM(1 g/L) and stored until use.

2.4. Cell Culture. The human NPC cell line CNE2 and
normal nasopharyngeal epithelial cells NP69 were purchase
from Beijing Beina Chuanglian Biotechnology Research,
and subcultured in our laboratory. CNE2 cells were cul-
tured in RPMI-1640 medium containing 10% fetal bovine
serum (Gibco, Waltham, MA, USA) and 100 kU/L penicil-
lin-0.1 g/L streptomycin (Procell, Wuhan, HuBei, China).
NP69 were cultured in K-SFM medium containing 2%
fetal bovine serum and 10 kU/L penicillin-0.01 g/L strepto-

mycin. Cells were incubated at 37°C, 5% CO2, and subcul-
tured once every 2 to 3 days.

2.5. MTT Cell Proliferation Assay. At the logarithmic growth
phase, CNE2 and NP69 cells were harvested and digested
with 0.25% EDTA trypsin solution (Solarbio) to prepare
a single cell suspension and 100μL per well was added
to a 96-well plate at a cell density of 4 × 103 cells/well.
After the CNE2 cells became adherent, different concen-
trations of luteolin (5μM, 10μM, 20μM, 40μM, and
80μM) diluted in RPMI-1640 medium was added, includ-
ing a control group (DMSO solvent control group, luteo-
lin, and 0μM), and four repeat wells were used for each
experimental group. Correspondingly, different concentra-
tions of luteolin (5μM, 10μM, 20μM, 40μM, and
80μM) diluted in K-SFM medium was added, including

Table 1: Basic parameters of the major bioactive compounds of P. cuspidatum.

Number Compound OB (%) DL

MOL013287 Physovenine 106.21 0.19

MOL013288 Picralinal 58.01 0.75

MOL000492 (+)-catechin 54.83 0.24

MOL002268 Rhein 47.07 0.28

MOL000098 Quercetin 46.43 0.28

MOL002280 Torachrysone-8-O-beta-D-(6′-oxayl)-glucoside 43.02 0.74

MOL002259 Physciondiglucoside 41.65 0.63

MOL000358 Beta-sitosterol 36.91 0.75

MOL000006 Luteolin 36.16 0.25

MOL013281 6,8-Dihydroxy-7-methoxyxanthone 35.83 0.21

309 56 101

Disease targets
Bioactive compound targets
Common targets

Figure 1: Venn diagram of the bioactive compounds from P.
cuspidatum and the targets of NPC disease. A total of 365 disease
targets (the blue circle) with a correlation score of more than 10 for
NPC were obtained from the GeneCards database, and 157 bioactive
compound of P. cuspidatum targets (the vermilion circle) were
retrieved from the TCMSP database, with a total of 56 common
targets (the ruby area in the middle) at the intersection of the two.
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a control group (DMSO solvent control group, luteolin,
and 0μM), and four repeat wells were used for each
experimental group. After incubating at 37°C with a 5%
CO2 atmosphere for 24, 36, and 48 h, the supernatant
was discarded and 100μL of MTT (500μg/mL) (Solarbio)
was added to each well. The cells were then incubated for
4 h and absorbances (OD) were measure at a wavelength
of 490nm and growth curves were constructed, enabling

the calculation of cell proliferation rate and the median
50% inhibition concentration (IC50).

2.6. Cytation™ 5 Real-Time Monitoring of Cell Proliferation
and Morphology. CNE2 cells were added in a 96-well plate
at a cell density of 4 × 103 cells/well. After the cells became
adherent, different concentrations of luteolin (2.5μM,
5μM, 10μM, 20μM, 40μM, and 80μM) were added to each
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Figure 2: Protein-protein interaction (PPI) diagram.
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well, including a control group and positive control group
(cisplatin, CIS, and 10μM) using five replicate wells for each
experimental group. The cells were then placed into a Cyta-
tion™ 5 multifunctional cell imaging microplate detection
system (Perkin-Elmer, Billerica, MA, USA) at 37°C and 5%
CO2 for 48h and cell morphology images were taken every
6 h to monitor cell growth and morphology.

2.7. Cell Cycle Detection Using a Ceilometer K2 Dual
Fluorescence Cell Analyzer. CNE2 cells with different con-
centrations of luteolin (0μM, 20μM, and 40μM) and CIS
(10μM) were incubated for 36 h, they were collected and
washed twice with precooled PBS. Next, 1mL of 75% alcohol
was added to each tube and the cells were resuspended. They
were then placed at -20°C for 15min and wash twice with
precooled PBS, and 100μL of staining solution
(PBS : PI : RNase = 95 : 4 : 1) was added to each tube, and
stained for 30min. After staining, 20μL of sample was aspi-
rated and added to the Cellometer SD100 Cell Counting
Chamber, and placed in the Cellometer K2 Dual Fluores-
cence Cell Analyzer (Nexcelom, Lawrence, MA, USA) for
counting. Each experimental group was triplicate repeated.

2.8. Apoptosis Detection by Annexin V-FITC/PI Double
Staining. CNE2 cells with different concentrations of luteolin
(0μM, 20μM, and 40μM) and CIS (10μM) were incubated
for 36h, the cells were collected and washed twice with pre-
cooled PBS. Then 50μL of 1 × Binding Buffer was added to
each tube to resuspend the cells, along with 5μL Annexin
V-FITC and 5μL Propidium Iodide (PI; BD Biosciences,
San Jose, CA, USA) to each tube. After staining at room tem-
perature for 15min, 50μL of 1 × Binding Buffer was added
to each tube to stop the reaction, and placed in the

Cellometer K2 Dual Fluorescence Cell Analyzer for count-
ing. The experiment was performed in triplicate.

2.9. Apoptosis Detection Using Hoechst 33342 Staining.
CNE2 cells with different concentrations of luteolin (0μM,
20μM, and 40μM) and CIS (10μM) for 36h, the cells were
collected and washed twice with precooled PBS. Then 300μL
of Hoechst 33342 (10μg/mL) (Solarbio) was added to each
well, and stained at 37°C for 20min, then wash twice with
PBS, and place in the Cytation™ 5 to capture cell morphol-
ogy and staining. Image J software was used to analyze the
fluorescence intensity, the experiment were performed in
triplicate.

2.10. Detection ofMitochondrial Membrane Potential (ΔΨm).
CNE2 cells with different concentrations of luteolin (0μM,
20μM, and 40μM) and CIS (10μM) were incubated for
36 h, the cells were collected and washed twice with precooled
PBS and 300μL JC-1 staining solution (Solarbio)was added to
each well, and left to stain at 37°C for 20min, washed twice
with PBS, and place in the Cytation™ 5 to capture cell mor-
phology and staining. Image J software was used to analyze
the fluorescence intensity, and each experiment was triplicate
repeated.

2.11. Western Blot. CNE2 cells with different concentrations
of luteolin (0μM, 20μM, and 40μM) and CIS (10μM) were
incubated for 36 h, total protein was extracted and quanti-
fied, and 50μg of protein was used for western blot analysis.
The appropriate concentration of separating gel and stack-
ing gel was chosen depending upon the molecular weight
of the target protein. The samples were then loaded, onto
the SDS-PAGE gel, electrophoresed and the resolved

STAT1
IL2

IL4
IFNG

HIF1A
SPP1

ICAM1
CDKN1A

CASP9
MMP2
CXCL8
CASP8

BCL2L1
MMP9
PTGS2

EGF
IL6

VEGFA
MAPK1

JUN

CCND1
CASP3
AKT1
MYC

EGFR

0 10 20 30 40 50

49
49

48
48

47
45
45
45
45

43

41
39

38

37
33

32
32

31
31
31

30
30
30
30

29
28
28

37
37

41

ERBB2

IL1B
IL10

MDM2
PPARG

Figure 3: The top 30 common targets with the highest frequency of protein-protein interactions.
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proteins were transferred to a transfer membrane (PVDF),
and blocked. Diluted β-actin (Cell Signaling Technology,
CST, MA, USA), p-ERK1/2 (CST), ERK1/2 (CST), AKT
(CST), PI3K (CST), PCNA (Bioss, Woburn, MA, USA),
and XIAP (CST) at a dilution ratio of 1 : 1,000 were incu-
bated with the PVDF membrane overnight at 4°C, then wash
three times with TBST, for 10min each. Then, the corre-
sponding diluted goat anti-mouse or goat anti-rabbit sec-
ondary antibody was added, and incubated with the PVDF
membrane at room temperature for 2 h, washed with TBST
three times for 10min and then scanned on an ODYSSEY
CLx Infrared Imager (LICOR, Lincoln, NE, USA) to detect
the signal intensities of the immunoreactive bands. Using
β-actin as an internal reference, the comparative protein
expression levels could be calculated, the experiment was
performed in triplicate.

2.12. Statistical Analysis. All experimental data used SPSS
23.0 statistical software for statistical analysis, and GraphPad

Prism 8 software was used for statistical graph drawing, and
the experimental data were all expressed by �x ± s . The data
comparisons between the two groups used an independent
sample t-test method. Comparisons of measured data
between groups used a one-way analysis of variance (one-
way ANOVA), and an LSD test was used for multiple com-
parisons. For uniform variance, and Dunnett’s T3 multiple
test was used for uneven variances and a value of P < 0:05
was considered to be statistically significant.

3. Results

3.1. Selection of the Bioactive Compounds in P. cuspidatum
and Prediction of their Possible Molecular
Mechanism of Action

3.1.1. Target Filtrate and Construction of Interaction
Network. The bioactive compounds derived from P. cuspida-
tum were searched for in the TCMSP database and screened
with OB ≥ 30% and DL ≥ 0:18. A total of 10 bioactive
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compounds were obtained, which were sorted according to
the OB value and results are shown in Table 1. We went
on to further search targets for the bioactive compounds of
P. cuspidatum in the TCMSP database and to standardize

the names of the identified targets and found a total of 213
targets (including repetitions) for the bioactive compounds.
Furthermore, 1,857 disease-related targets for NPC were
found in the GeneCards database. Among them, 365 disease
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targets with a correlation score of more than 10 for NPC and
157 bioactive compounds (without repetition) from P. cuspi-
datum were used to screen out 56 common targets using R
software, and a Venn diagram was produced (Figure 1).
Next, using the STRING platform to input these 56 common
targets, we constructed a Protein-protein interaction (PPI)
diagram (Figure 2). The top 30 common targets with the
highest frequency of protein-protein interactions were
EGFR, MYC, AKT1, CASP3, CCND1, and ERBB2, suggest-
ing that these targets are major regulatory proteins for the
treatment of NPC (Figure 3). Cytoscape 3.7.2 software was
used to construct bioactive compounds from the P. cuspida-
tum-NPC-target network, which contained 56 targets and
three compounds, as can be seen in Figure 4. Based on the
screening results, we selected luteolin to be used in our
in vitro experiments. See Tables S1–S5 in the
Supplementary Material for comprehensive information of
the bioactive compounds of P. cuspidatum.

3.1.2. GO Analysis and KEGG Pathway for P. Cuspidatum in
the Treatment of NPC. The results from the GO analysis
showed that the biological processes involved in the drug
targets for the treatment of NPC included ubiquitin-like

protein ligase binding, cytokine receptor binding, DNA-
binding, transcription factor binding, and receptor ligand
activity (Figures 5 and 6), the KEGG pathway analysis
results are shown in Figures 7 and 8, that shows the KEGG
bubble chart, the larger the node and the closer the color is
to Magenta, and the higher the significance of the signaling
pathway, indicating that the signaling pathway is more
important. A total of 136 signaling pathways were obtained
through this KEGG analysis. Table 2 lists the signaling path-
ways with enriched targets ≥ 15. It also suggested that P. cus-
pidatum may be suitable for the treatment of NPC through
multiple regulatory pathways such as the PI3K-AKT, JAK/
STAT, MAPK, and C-type lectin receptor signaling path-
ways. Figure 9 takes the PI3K-AKT signaling pathway as
an example and shows the potential targets of P. cuspidatum
in the treatment of NPC. Therefore, we selected the PI3K-
AKT signaling pathway for subsequent in vitro experiments.
See Tables S6 and S7 in the Supplementary Material for
comprehensive information of common targets of drug
compounds and diseases.

3.1.3. Molecular Docking Analysis Predicts the Binding
Ability of Luteolin for Its Targets.Molecular docking method
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Figure 8: Dotplot of the top 20 pathways of KEGG pathway analysis.
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confirmed that there was an interaction between luteolin and
its major targets and using Autodock Vina, we calculated the
binding energies for the following major targets: EGFR,
MYC, AKT1, CASP3, CCND1, and ERBB2 (Table 3).We then
found that their main chemical interactions were represented
by hydrogen bonding and π-π stacking and an interaction
mode diagram between the lowest binding energy molecule
and its ligand is shown in Figures 10(a)–10(f).

3.2. In Vitro Experiments to Verify the Possible Molecular
Mechanisms for Luteolin from P. Cuspidatum

3.2.1. Luteolin Inhibits the Proliferation of Human NPC
CNE2 Cells. The results from our MTT assay showed
(Figure 11(a)) that CNE2 cells treated with luteolin, the
major bioactive compound derived from P. cuspidatum, for
24 h, 36 h, and 48 h resulted in a dose-dependent inhibi-
tion of growth and survival rates and this inhibition was
also increased with an increased drug action time. After
luteolin treatment for 24 h, 36 h and 48 h, the IC50 was
77:19 ± 3:36 μM (F = 33:65, P < 0:0001), 57:10 ± 3:29 μM
(F = 20:69, P < 0:0001), and 39:74 ± 6:77 μM (F = 28:86,
P < 0:0001), respectively. Results from the Cytation™ 5
experiments showed that with a 48 h luteolin treatment,
CNE2 cell growth was inhibited (Figure 11(b)) and their
cell morphology changed significantly after drug treat-
ment (Figure 11(c)). Cell membrane swelling and rupture

began to appear after 24 h of luteolin (20μM) treatment,
and the cell proliferation rate was significantly reduced
when compared to the control group. The morphological
changes seen in CNE2 cells after luteolin (40μM) treat-
ment were even more pronounced showing many dam-
aged and detached cells, and cell number and growth were
also further suppressed. The cell cycle results showed that
when compared to the control group, the cell cycle at the
G2/M phase was significantly prolonged after 36 h luteolin
treatment (F = 12:10, P = 0:0024, Figure 11(d)). On the other
hand, there was no significant difference in the cell viability
rate of normal nasopharyngeal epithelial cells NP69 after
different concentrations of luteolin (0μM, 5μM, 10μM,
20μM, and 40μM) treatment for 36h (Figure 12).

3.2.2. Luteolin Promotes Apoptosis in Human NPC CNE2
Cells. Quantification of cell fluorescence staining using flow
cytometer, the results from Annexin V-FITC/PI fluores-
cence double staining (Figure 13(a)) revealed that when
compared to the control group, the cell apoptosis rate was
significantly higher after a 36h luteolin treatment
(F = 19:92, P = 0:0005). Using Hoechst 33342 staining, we
found that cell morphology and fluorescence intensity were
changed (Figure 13(b)), when compared with the control
group, the blue fluorescence seen in the luteolin group grad-
ually increased, along with the uniform fine mesh, sand-like

Table 2: The signaling pathways with enriched targets ≥ 15 from KEGG analysis.

ID Description geneID Count

hsa05167
Kaposi sarcoma-associated

herpesvirus infection
PTGS2/BAX/CASP9/JUN/CASP3/CASP8/AKT1/VEGFA/CCND1/CDKN1A/

MAPK1/RB1/IL6/NFKBIA/ICAM1/RAF1/HIF1A/STAT1/MYC/CXCL8
20

hsa04151 PI3K-Akt signaling pathway
BCL2/CASP9/EGFR/AKT1/VEGFA/CCND1/BCL2L1/CDKN1A/MAPK1/IL6/

MDM2/ERBB2/IL2/IL4/MET/EGF/RAF1/MYC/SPP1/IGF2
20

hsa05161 Hepatitis B
BCL2/BAX/CASP9/JUN/CASP3/CASP8/AKT1/CDKN1A/MMP9/MAPK1/RB1/IL6/

NFKBIA/PCNA/BIRC5/RAF1/STAT1/MYC/CXCL8
19

hsa05163
Human cytomegalovirus

infection
PTGS2/BAX/CASP9/CASP3/CASP8/EGFR/AKT1/VEGFA/CCND1/CDKN1A/

MAPK1/RB1/IL6/NFKBIA/MDM2/RAF1/MYC/IL1B/CXCL8
19

hsa05205 Proteoglycans in cancer
CASP3/EGFR/AKT1/VEGFA/CCND1/CDKN1A/MMP2/MMP9/MAPK1/MDM2/

ERBB2/MET/PLAU/RAF1/HIF1A/CAV1/MYC/IGF2
18

hsa05215 Prostate cancer
BCL2/CASP9/EGFR/AKT1/CCND1/CDKN1A/MMP9/MAPK1/RB1/NFKBIA/

MDM2/ERBB2/GSTP1/MMP3/PLAU/EGF/RAF1
17

hsa05206 MicroRNAs in cancer
PTGS2/BCL2/CASP3/EGFR/VEGFA/CCND1/CDKN1A/MMP9/MAPK1/TP63/

MDM2/ERBB2/MET/PLAU/RAF1/MYC/RASSF1
17

hsa05219 Bladder cancer
EGFR/VEGFA/CCND1/CDKN1A/MMP2/MMP9/MAPK1/RB1/MDM2/MMP1/

ERBB2/EGF/RAF1/MYC/CXCL8/RASSF1
16

hsa05160 Hepatitis C
BAX/CASP9/CASP3/CASP8/EGFR/AKT1/CCND1/CDKN1A/MAPK1/RB1/NFKBIA/

IFNG/EGF/RAF1/STAT1/MYC
16

hsa05169 Epstein-Barr virus infection
BCL2/BAX/CASP9/JUN/CASP3/CASP8/AKT1/CCND1/CDKN1A/RB1/IL6/NFKBIA/

MDM2/ICAM1/STAT1/MYC
16

hsa05165
Human papillomavirus

infection
PTGS2/BAX/CASP3/CASP8/EGFR/AKT1/VEGFA/CCND1/CDKN1A/MAPK1/RB1/

MDM2/EGF/RAF1/STAT1/SPP1
16

hsa04630 JAK-STAT signaling pathway
BCL2/EGFR/AKT1/CCND1/BCL2L1/CDKN1A/IL10/IL6/IL2/IFNG/IL4/EGF/RAF1/

STAT1/MYC
15

hsa04010 MAPK signaling pathway
JUN/CASP3/EGFR/AKT1/VEGFA/MAPK1/ERBB2/MET/EGF/RAF1/MYC/IL1B/

HSPB1/IGF2/RASA1
15
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light blue nuclei seen in the control group, indicating that
the level of cell apoptosis was low. After luteolin treatment,
however, the blue fluorescence in the nuclei became stronger
and brighter, and was accompanied by pyknosis of the
nucleus, with blurred edges. Furthermore, the number of
cells with the uniform fine mesh sand-like light blue nuclei
was significantly reduced, and the overall fluorescence inten-
sity increased along with the gray value of the fluorescent
images. The degree value represents the increase in apopto-

sis rate. The results of mitochondrial membrane potential
assay (ΔΨm) showed (Figure 13(c)) that the mitochondrial
membrane potential of cells in the control group was higher,
and JC-1 dye existed as a polymer on the cell membrane
with red fluorescence. The luteolin promoted CNE2 cells
apoptosis, the mitochondrial membrane potential decreased,
and JC-1 entered the cells as a monomer and showed green
fluorescence, meanwhile the red fluorescence gradually
weakened, and the cells with both green and orange fluores-
cence increased.

3.2.3. Luteolin Induces Changes in the Expression of Related
Proteins in Human NPC CNE2 Cells. According to the
results from the KEGG pathway enrichment analysis, we
chose to detect the expression levels of proteins related to
the PI3K-AKT signaling pathway (Figure 9), and the prolif-
eration and apoptosis-related proteins PCNA and XIAP.
According to our western blot results (Figures 14(a)–14(c)),
we found that luteolin could alter the expression of p-ERK1/
2, ERK1/2, AKT, and PI3K, the related proteins in the PI3K-
AKT signaling pathway diagram, and the expression of the
proliferation and apoptosis-related proteins PCNA and XIAP.
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Figure 9: PI3K-AKT signaling pathway as an example and shows the potential targets of P. cuspidatum in the treatment of NPC.

Table 3: Molecular docking information of luteolin with major
targets.

Target Uniport ID PDBID Affinity(kcal/mol)

EGFR P00533 1IVO -8.3

MYC P01106 1A93 -8.4

AKT1 P31749 1H10 -6.3

CASP3 P42574 1CP3 -7.7

CCND1 P24385 2W96 -8.2

ERBB2 P04626 1MFG -8.4
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When compared to the control group, p-ERK1/2 (F = 71:35,
P < 0:0001), ERK1/2 (F = 18:54, P = 0:0006), AKT
(F = 24:70, P = 0:0002), PI3K (F = 13:79, P = 0:0016), PCNA

(F = 21:79, P = 0:0003), and XIAP (F = 47:56, P < 0:0001)
protein expression levels all decreased to varying degrees after
luteolin treatment for 36h.
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Figure 10: The lowest binding energy interaction mode diagram of luteolin (red frame) with EGFR (a), MYC (b), AKT1 (c), CASP3 (d),
CCND1 (e), and ERBB2 (f).
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Figure 11: Luteolin inhibits the proliferation of human NPC CNE2 cells. (a) The results from our MTT assay showed that CNE2 cells
treated with different concentrations of luteolin (0 μM, 5 μM, 10 μM, 20 μM, 40 μM, and 80μM) for 24 h, 36 h, and 48 h resulted in a
dose-dependent inhibition of growth and survival rates (mean ± SD, n = 5). (b) Real-time monitoring of Cytation™ 5 experiments
showed that with a 48 h luteolin treatment, CNE2 cell growth was inhibited (P < 0:05). (c) Real-time monitoring of Cytation™ 5
experiments showed that with a 48 h luteolin treatment, CNE2 cell morphology changed significantly after drug treatment
(bar = 1000μm, 40×). (d) The cell cycle results showed that when compared to the control group, the cell cycle at the G2/M phase was
significantly prolonged after 36 h luteolin treatment (mean ± SD, n = 3, comparisons of measured data between groups used one-way
ANOVA) vs. control group: ∗P < 0:05, ∗∗P < 0:01.
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4. Discussion

Tumorigenesis and the development of NPC is a multistep
and multifactorial process, with a complicated pathogenesis.
Modern medicine has suggested a variety of mechanisms, by
which proliferation, migration, and invasion of NPC can be
inhibited, while apoptosis can be promoted. In this study, we
conducted a network pharmacology analysis of the Chinese
herbal medicine, P. cuspidatum. With these biological sys-
tems biological network as the goal, we analyzed the bioac-
tive compounds of drugs, drug targets, NPC-related
targets, common drug-disease targets, and pathways in these
networks. Through in vitro experiments, we were verify the
anti-NPC effect of the relate targets of PI3K-AKT pathway
and the major bioactive compounds found in P. cuspidatum.

Network pharmacology can reflect the complex interac-
tional interactions between drug target and biological func-
tion and molecular structure [29]. A single-target drug
may be effective against a single-molecule, but is likely to
be compensated for by other pathways in the body. Network
pharmacology observes the intervention and impact of com-
pounds on disease networks through network analysis, and
analyzes the effects of bioactive compounds on different
nodes of this network, so as to understand the effectiveness
of compounds from a systematic perspective. Therefore, we
used network pharmacology as the entry point for a prelim-
inarily exploration of the targets and mechanisms of action
of compounds derived from the Chinese herbal medicine
P. cuspidatum in the treatment of NPC. Tumor occurrence
and development are related to the interaction of multiple
pathways, multiple gene expression profiles, and multiple
functional proteins. The distinctive feature of TCM is that
it adopts a systematic, holistic view, and dialectical approach
to the prevention and treatment of diseases corresponding to
the basic characteristics of network pharmacology, such as
integrity and systemicity. Network pharmacological analysis
can provide reference for the multichannel and multitar-
geted prevention and treatment of NPC by TCM [30], which
is helpful for in-depth discussion of the material basis,

mechanism of action, and compatibility principles of P.
cuspidatum.

We have constructed a network diagram of the bioactive
compound of P. cuspidatum-NPC-target, which contained
56 common targets and three major compounds. The more
bioactive compounds or targets connected, the greater the
importance was given to the bioactive compound or target,
which contained several key disease targets that appeared
more frequently of protein-protein interactions: EGFR,
MYC, AKT1, CASP3, CCND1, and ERBB2 (Figure 3) and
the major bioactive compounds of P. cuspidatum including
luteolin, quercetin, and beta-sitosterol. Luteolin may inhibit
fat formation and proliferation of nasopharyngeal epithelial
cells, and promote cell apoptosis and necrosis, leading to
inhibition of tumor growth [31] by the inhibition of the
reactivation of Epstein-Barr virus (EBV). This causes a
reduced tendency for tumor deterioration by genome insta-
bility and cell proliferation, migration, and invasion caused
by viral reactivation [32]. |Through enhance protein phos-
phorylation and proteasome degradation, it leads to down-
regulation of cyclin D1, and thus inhibits the cell cycle
progression of NPC cells in G1 phase and prevents them
from entering S phase in a dose-dependent and time-
dependent manner. It also eliminates the insulin effect on
the Akt/glycogen synthase kinase-3β/Cyclin D1 pathway,
thereby inhibiting insulin-induced cell proliferation [33],
and other ways to inhibit the occurrence and development
of nasopharyngeal carcinoma. Quercetin has also been
proven to exert its anti-NPC effect by a variety of mecha-
nisms. It can be added to reduce the dose of cisplatin
required for the treatment of NPC, to below toxic levels
and reduce toxicity-related risk while maintaining or
improving efficacy [34]. By inhibiting the expression of vas-
cular endothelial growth factor (VEGF) in NPC cells, it can
antagonize the formation of new blood vessels and metasta-
sis of NPC [35]. A recent study has reported that using net-
work pharmacology to analyze the mechanism of TCM Lei
Gong Teng against NPC, it was shown that bioactive com-
pounds such as beta-sitosterol also existed in Lei Gong Teng
[36], but other ways of inhibiting NPC have not been
reported.

Our study used molecular docking to elucidate the inter-
action between the ligand luteolin and the key target recep-
tor. Generally, the lower the binding energy of the ligand
and receptor, the greater the stability of the binding confor-
mation. If the binding energy is less than -5.0 kcal·mol-1, it
indicates that the ligand has a good binding ability with
the receptor, and if the binding energy is less than -7.0 kcal·-
mol-1, it indicates that the ligand has a strong binding ability
with the receptor. Luteolin was docked with six major target
proteins, and it was found that it had a strong binding
capacity for EGFR, MYC, AKT1, CASP3, CCND1, and
ERBB2. Some studies have shown that HPLC-TOF/MS
(high performance liquid chromatography time-of-flight
mass spectrometry) has been used to clarify the analysis of
other bioactive compounds in P. cuspidatum herbal, and it
has been identified that P. cuspidatum does contain luteolin
(predicted m/z 463.123 9, measured m/z 463.124 0) [37].
Sun et al. used HSCCC (high-speed countercurrent
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Figure 12: Luteolin inhibits the proliferation of human normal
nasopharyngeal epithelial cells NP69 vs. control group: ∗∗P < 0:01.
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chromatography) method to successfully separate 4.9mg of
luteolin from 600 g of P. cuspidatum ðHPLC = 98%Þ. The
extracted and purified luteolin from P. Cuspidatum was
identified by 1H and 13C NMR spectroscopy, and the chem-
ical structure was consistent with that of the purified luteolin
standard (HPLC≥98%) [38]. These references confirmed the
existence of the compound luteolin in P. cuspidatum, con-
firming that the predicted results of network pharmacology
in this study are reliable. Although the content of luteolin
in P. cuspidatum is very small, compared with the other
two bioactive compounds, it has stronger ability to bind to
the target and the ability to significantly inhibit the prolifer-
ation of nasopharyngeal carcinoma CNE2 cells (Supplemen-
tary Material. Figure S1), so luteolin was selected as the
in vitro cell experiment validated compounds.

We analyzed the common targets through GO analysis
and KEGG pathway enrichment analysis, and the results
showed that the bioactive compounds of P. cuspidatum
may involve ubiquitin-like protein ligase binding, cytokine
receptor binding, DNA-binding, transcription factor bind-
ing, and receptor ligand activity. Moreover, the major bioac-
tive compounds derived from P. cuspidatum may inhibit
tumor development and destruction through the PI3K-
AKT, JAK/STAT, MAPK, C-type lectin receptor signal path-

ways, and consistent with existing clinical reports [39–42],
suggested that the KEGG pathway analysis results can be
trusted. However, research looking at treatment methods
for NPC remains insufficient. Therefore, we further carried
out in vitro experiments to verify a role for luteolin on the
inhibition of NPC CNE2 cells line via the PI3K-AKT path-
way, and furthermore, study its biological mechanism of
the inhibition.

In vitro cell experiments, our data confirmed that treat-
ment with luteolin at concentrations of 20μM and 40μM
for 36h significantly inhibited the proliferation of NPC
CNE2 cells and our MTT assay showed that the cell survival
rate decreased after treatment. MTT also verified that the
concentration of luteolin (0μM, 5μM, 10μM, 20μM, and
40μM) used in the in vitro experiment had no effect on
the cell viability rate of human normal nasopharyngeal
NP69 cells. Cytation™ 5 real-time monitoring of cell prolif-
eration confirmed that treatment with luteolin decreased
both growth rate and cell number, which were accompanied
by changes in cell morphology. Moreover, our study of the
cell cycle suggested that luteolin associated with NPC
CNE2 cell proliferation by blocking their G2/M phase. Using
Annexin V-FITC/PI double staining, Hoechst 33342 stain-
ing, and mitochondrial membrane potential measurements
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Figure 13: Luteolin promotes apoptosis in human NPC CNE2 cells. (a) Flow cytometry quantitative detection of Annexin V-FITC(+)/PI(-)
for early apoptotic cells (lower right) and Annexin V-FITC(+)/PI(+) for apoptotic cells (upper right). Compared to the control group, the
cell apoptosis rate was significantly higher after a 36 h luteolin treatment (mean ± SD, n = 3, comparisons of measured data between groups
used one-way ANOVA). FL1: Annexin V-FITC, FL2: PI. (b) Hoechst 33342 staining showed that cell morphology and fluorescence intensity
were changed, when compared with the control group, the blue fluorescence seen in the luteolin group gradually increased (bar = 1000μm,
200×). (c) JC-1 staining showed that the cells with both green and orange fluorescence increased after luteolin treatment for 36 hours
(bar = 1000μm, 200×). vs. control group: ∗P < 0:05, ∗∗P < 0:01.
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(ΔΨm), we were able to infer that luteolin may also inhibit
the occurrence and development of NPC by inducing cell
apoptosis [26]. Furthermore, western blot results showed
that after treatment with luteolin (20μM and 40μM) for
36 h, expression of the cell proliferation and apoptosis-
related proteins PCNA and XIAP were downregulated, and
when compared to the control group, key proteins found
in the PI3K-AKT signaling pathway were marked in red,
such as p-ERK1/2, ERK1/2, AKT, PI3K, and others. This
demonstrated that the PI3K-AKT signaling pathway may
play an important role in the inhibitory effect of luteolin
on NPC, which is consistent with the predicted results from
our network pharmacology analysis. Therefore, our results
showed that luteolin may inhibit the proliferation of NPC
CNE2 cells and promote their apoptosis through the PI3K-
AKT signal pathway.

Although there have been previous studies on the anti-
cancer activity of luteolin or P. cuspidatum [43–45], our
study is the first to use network pharmacology and experi-
mental verification to preliminarily analyze the material
basis and molecular mechanism of P. cuspidatum against
NPC. Our research ideas and analysis methods are different
from other studies. Our study not only confirmed that luteo-
lin inhibits the proliferation of NPC CNE2 cells in vitro and
promotes apoptosis of CNE2 cells through the PI3K-AKT
signaling pathway but also showed that the common drug-
disease targets. The enrichment analysis showed that the
bioactive compounds of P. cuspidatum in the anti-NPC
treatment may involve biological processes and signaling
pathways, which is a systematic and comprehensive network
prediction. These findings may provide key information for
the development of herbal medicines, clinical diagnosis and

ERK1/2 p-ERK1/2 AKT PI3K
0.0

0.5

1.0
Re

lat
iv

e l
ev

er
 o

f p
ro

te
in

⁎⁎

⁎⁎

⁎

⁎⁎

⁎⁎
⁎ ⁎⁎

⁎⁎
⁎⁎⁎⁎

⁎⁎

⁎⁎

Control
Luteolin 20 𝜇M

Luteolin 40 𝜇M
CIS 10 𝜇M

(a)

Re
la

tiv
e l

ev
er

 o
f p

ro
te

in

PCNA XIAP
0.0

0.5

1.0
⁎

⁎⁎⁎

⁎⁎

⁎⁎

Control
Luteolin 20 𝜇M

Luteolin 40 𝜇M
CIS 10 𝜇M

(b)

200 40 10

p-ERK 1/2

ERK 1/2

AKT

PI3K

PCNA

XIAP

-Actin

Luteolin ( M) CIS ( M)

(c)

Figure 14: Luteolin induces changes in the expression of related proteins in human NPC CNE2 cells. (a‑c) Western blot results showed
when compared to the control group, the expression of p-ERK1/2, ERK1/2, AKT, and PI3K, the related proteins in the PI3K-AKT
signaling pathway diagram, and the expression of the proliferation and apoptosis-related proteins PCNA and XIAP expression levels all
decreased to varying degrees after luteolin treatment for 36 h (average relative level of protein ± SD, n = 3, comparisons of representative
data between groups used one-way ANOVA) vs. control group: ∗P < 0:05, ∗∗P < 0:01.
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personalized diagnosis, and treatment for NPC. However,
our study is only a preliminary exploratory study, and there
are still some limitations. Network pharmacology is mainly
for prediction and screening, and our in vitro experimental
verification part is not comprehensive enough. We have not
been able to conduct studies on the NPC CNE2 cell line
with the whole plant or luteolin-enriched plants of P. cuspi-
datum, and we have not been able to isolate the luteolin
compound in P. cuspidatum and compare its activity with
the luteolin standard. Moreover, our experimental verifica-
tion is in vitro cell model verification, lacking animal exper-
iments or randomized controlled clinical trials, and more
in-depth and systematic research is needed on the anti-
nasopharyngeal cancer research of P. cuspidatum.

5. Conclusions

Here, we have combined network pharmacology methodol-
ogy with in vitro experimental verification to clarify the pos-
sible mechanism of action of luteolin, the major bioactive
compound found in P. cuspidatum, used in the treatment
of NPC. The results show that 157 bioactive compounds
from P. cuspidatum regulated 56 common drug-disease tar-
gets, and downregulated PI3K-AKT and other signaling
pathways found in NPC. Our data also revealed possible
pathways and mechanisms of action of P. cuspidatum as
being associated with the proliferation of NPC cells and
inducing their apoptosis. However, research on the pharma-
cological mechanism and clinical application of P. cuspida-
tum and luteolin remains unclear; therefore, more in-depth
and innovative studies on P. cuspidatum and luteolin are
needed to confirm their efficacy and ultimately drug safety.
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