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Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and
morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play
important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we
explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using
bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs
had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL,
NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had
significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma
prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than
that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis.
Importantly, based on the four CCGs’ circadian oscillations, we revealed that patients sampled at night had higher predictive
ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the
mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK
signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly,
ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide
administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study
provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as
potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of
glioma chronotherapy.

1. Introduction

Glioma is the most common primary intracranial tumor,
accounting for more than 70% of malignant brain tumors,
and is associated with high mortality and morbidity [1]. Gli-
omas commonly occur in the cerebellum, brainstem, and

cortex [2, 3] and are currently classified into low-grade gli-
oma (LGG, grade II and III) and glioblastoma (GBM, grade
IV) [4]. Notably, a considerable proportion of LGG develops
rapidly in a short time and deteriorates into GBM. Analysis
of the isocitrate dehydrogenase status and 1p/19q codeletion
can contribute to personalized diagnosis and prognosis [5].
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Despite these findings, the poor prognosis of glioma still
urgently requires the discovery of novel biomarkers for the
early detection of glioma and to improve patient survival.

The circadian clock is a molecular timekeeping mecha-
nism that exists in all creatures and regulates the daily oscil-
lations of biological processes and behavior [6]. Circadian
clock genes (CCGs) form feedback loops to maintain normal
function of the oscillating system and to keep it in sync with
the environmental cycle. To date, 13 CCGs have been well
identified, including ARNTL/BMAL1 [7], CLOCK [8],
CRY1, CRY2 [9], DBP, NPAS2 [10], NR1D1, NR1D2, PER1,
PER2, PER3 [11], RORA [12], and TIMELESS [13]. Increas-
ing evidence has revealed that CCGs play critical roles in
DNA damage and repair, cell proliferation and metastasis,
immunity, and tumorigenesis [14, 15]. Other studies have
shown that intervening with the circadian clock could effec-
tively influence stem cell growth, tumor aggressiveness, and
drug delivery to improve therapeutic outcomes [16–19]. For
instance, activation of PER1 effectively inhibited the progres-
sion of pancreatic cancer [20]. NR1D2 promoted the prolif-
eration, migration, and invasion of GBM cells through
specific targets [21]. Although a recent study showed that
CCGs have significant prognosis value in glioma [22], the
influence of CCGs rhythmic fluctuations on prognosis has
not been conclusively determined. Therefore, our study
focused on the effect of genes rhythm on glioma prognosis.

In this study, we systematically analyzed the circadian
expression patterns of CCGs in brain tissues. The differential
expression analysis was used to identify possible diagnostic
markers. Kaplan–Meier survival curves, Cox proportional
hazards model, and nomogram were used to assess the prog-
nostic value of CCGs. Besides, CCG-involved cancer-related
pathways and coexpression network analysis were also
launched. Furthermore, CCG-related cellular sensitivity to
temozolomide was demonstrated, which may facilitate gli-
oma chronotherapy.

2. Materials and Methods

2.1. Datasets and Data Availability. Profiles of patients with
glioma were downloaded from The Cancer Genome Atlas
(TCGA) and the Chinese Glioma Genome Atlas (CGGA).
TCGA is a project launched by US in 2006 that contains
data on various human cancers, while CGGA is a biobank
of glioma samples for the Chinese population. A total of
698 cases from TCGA and 1,018 cases from the CGGA
were collected. Glioma patients with missing OS values
or OS < 30 days were excluded to reduce statistical bias
in our analysis. The circadian rhythm data of CCGs in
brain tissues of mice were collected from GSE54652 of
the GEO database.

2.2. Pan-Cancer Analysis and Gene Correlation Analysis.
GSCA (genomic cancer analysis platform) was used for
pan-cancer analysis. The Sangerbox was used to show coex-
pression patterns among CCGs in brain tissues. The clock
correlation distance (CCD), an algorithm that have been
constructed in the literature [23], was used here to infer
circadian clock progression in a group of samples based

on the coexpression of 13 clock genes. Gene expression
data were obtained from GSE54652 and TCGA. Red notes
indicate that the effect of high expression on survival risk
is high and vice versa is indicated by the green notes.
Pearson’s correlation was used to assess the internal rela-
tionship of CCGs.

2.3. CCG Rhythmic Expression in Mouse Brain Tissues. CCG
expression data in the brain tissue downloaded from GEO’s
GES54652. This dataset was collected from different organs
of mice at two hourly intervals over a 48-hour period.
Microarray data were used to show daily changes in gene
expression. To determine if the data is rhythmic, R language
package called “JTK_CYCLE” was used to detect the rhythm
of each gene. The JTK_CYCLE package, with parameters set
to fit time-series data to exactly 24h periodic waveforms and
statistical analysis, was used. When P < 0:05, the gene was
considered to be rhythmically expressed [24]. GraphPad
Prism (v7.0) was used to draw graphs representing cyclical
fluctuations. The rhythm graphs of the CCGs were also con-
structed using GraphPad Prism.

2.4. Differential Expression Analysis. Gene expression pro-
files of brain tissues in glioma patients with clinical grade
were extracted from two datasets (698 tumor samples from
TCGA and 1,018 tumor samples from the CGGA). Gene
expression levels were normalized using the edgeR and
limma packages for TCGA and CGGA data [25, 26], respec-
tively, in R software. P value < 0.05 was considered differen-
tially expressed genes (DEGs).

2.5. Analysis of Methylation, Copy Number Variation (CNV),
and Single-Nucleotide Variation (SNV). GSCA was used to
reveal the role of CNV, methylation, and SNV in the regula-
tion of CCG expression. Significance was set at FDR ≤ 0:05.
The Pearson correlation coefficient was used to analyze the
correlation between CNV, methylation, and gene expression.

2.6. Survival Analysis. The CCG expression in patient tumor
samples from the two datasets with survival data (TCGA
and CGGA) was included in the survival analysis. Survival
curves were plotted by the Kaplan–Meier method using R
software, and the median value of gene expression was set
as the group cut off separating the high-expression and
low-expression groups. Univariate and multivariate Cox
regression analyses were calculated by “survival” package.
The hazard ratio (HR) and P value of each DEG of CCGs
were determined based on gene expression and overall sur-
vival of patients using the univariate Cox regression model
with the survival package in R software. HR > 1 and HR <
1 indicate that the higher expression of the gene is associated
with worse or better overall survival, respectively.

2.7. Prediction Models. R software was used to create Cox
proportional hazards prediction models based on CCG
expression levels and overall survival. Accordingly, the fol-
lowing formula determines the risk score of each patient:
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Risk score = 〠
n

i=1
Coef i × Expi, ð1Þ

where n is the number of involved genes, Coef is the coeffi-
cient of every gene, and Exp is the expression level (log2).
Patients were divided into the high-risk and low-risk groups
according to their risk scores. Receiver operating character-
istic (ROC) curves were presented to show the ability to pre-
dict survival based on the risk scores by R software, and area
under the curve (AUC) values represented the accuracy of
predicting survival. Nomograms have the ability to predict

survival according to age, grade, and CCG prediction model
using R software (the expression level is corrected by log2).

2.8. Pathway Activity and Functional Enrichment Analysis.
The pathway activity of CCGs was analyzed using GSCA
and GSEA. GSCA elucidated the relevant pathway of CCGs
in pan-cancer. GSEA analysis was used to explore the rele-
vant pathways associated with CCGs in glioma, including
the hallmark gene set, KEGG gene set, and GO gene set.
Patient samples from TCGA were divided into the high-
and low-risk groups according to the risk scores based on
CCG expression.
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Figure 1: Pan-cancer analysis and coexpression patterns of CCGs. (a) Pan-cancer analysis of the effect of CCGs on survival risk. (b, c)
Internal coexpression pattern of CCGs in normal brain tissues. (d) Internal coexpression pattern of CCGs in tumor tissues. (e) The
scatter plots of correlation among genes in the same cluster in brain tissues.
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2.9. Coexpression Network Analysis. The WGCNA R package
[27] was used to assess the correlation coefficients between
the CCGs and other hub genes. The coexpressed genes with
correlation > 0:5 were extracted. Cytoscape (v 3.8.0) visual-
ized the correlation between key CGGs and coexpressed
genes in the network.

2.10. Immune Infiltrate Analysis. Six immune cell types, B
cells, CD4+ T cells, CD8+ T cells [28], neutrophils, dendritic
cells (DCs) [29], and macrophages [30], in the tumor micro-

environment have been previously reported. We used the
Tumor Immune Estimation Resource (TIMER), an estab-
lished algorithm, to estimate the correlation between
immune cells and gene expression. Spearman’s correlation
and estimated statistical significance between CCG expres-
sion and immune cell signature infiltration are shown in
scatter plots.

2.11. Drug Sensitivity Analysis. The correlation between key
CCG expression and drug sensitivity was determined
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Figure 2: Circadian oscillations of CCGs in brain tissues. (a, b) Circadian oscillations of mouse cerebellum CCGs at different intervals. (c, d)
Circadian oscillations of mouse brainstem CCGs at different intervals. The intersection of white and black background indicates the
alternation of day and night.
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using GSCA. Drug sensitivity and gene expression profil-
ing data of cancer cell lines were obtained from the
Genomics of Drug Sensitivity in Cancer (GDSC). Spear-
man correlation was calculated based on the relationship

between small molecule/drug sensitivity (IC50) and gene
expression. The positive Spearman correlation means that
the gene with high expression is resistant to the drug,
vice versa.
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Figure 3: Differential expression of CCGs based on glioma grade. (a, b) High expression of cluster I CCGs in glioma grading in TCGA and
CGGA. (c, d) Low expression of in cluster II CCGs in glioma grading in TCGA and CGGA.
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2.12. Statistical Analysis. This study is based on a systematic
purely bioinformatic analyses. Statistical analysis was
performed using R (v4.0.3) and GraphPad Prism (v7.0.0).
The HRs and 95% confidence intervals (CIs) were calculated
to identify genes associated with overall survival. Pearson’s
correlation analysis was used to calculate the correlation
coefficient. P value < 0.05 or FDR < 0:05 were considered
statistically significant.

3. Results

3.1. Pan-Cancer Analysis and Coexpression Patterns of CCGs.
The prognostic influence of CCGs on the survival risk of
several cancers was performed (Figure 1(a)). LGG exhibited
the highest P value in pan-cancer analysis, with 10 signifi-
cant prognostic CCGs in total. The results indicated that
among all cancers, glioma was affected mostly by CCGs.
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Figure 4: Correlations of DNA methylation, CNV, and SNP with CCGs. (a) Correlation between methylation and CCGs’ mRNA
expression. The size of the point represents the statistical significance, where the bigger the dot size, the higher the statistical significance.
(b) Correlation of CNV with CCGs’ mRNA expression. The size of the point represents the statistical significance, where the bigger the
dot size, the higher the statistical significance. (c) SNP mutation frequency of CCGs in Pan cancer. (d) Graph of genes regulated by CNV
and methylation. FDR: false discovery rate; cor: correlation.
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Figure 5: Survival analysis of CCGs in glioma patients from TCGA. (a) Kaplan–Meier survival curves of cluster I genes in TCGA. (b)
Kaplan–Meier survival curves of cluster II genes in TCGA. (c) ROC curves of each CCG in glioma.
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Figure 6: Survival analysis of CCGs in glioma patients from CGGA. (a) Kaplan–Meier survival curves of cluster I CCGs in CGGA.
(b) Kaplan–Meier survival curves of cluster II CCGs in CGGA. (c) ROC curves of each CCGs in glioma.
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Table 1: Univariate analysis and multivariate analysis of clinicopathological characteristics and CCGs for overall survival in glioma patients
from TCGA.

Variables
Total n = 628 Univariate analysis Multivariate analysis

n (%) HR (95% CI) P HR (95% CI) P

Age

<60 483 (76.9%) 1 (reference) 1 (reference)

≥60 145 (23.1%) 1.073 (1.062-1.085) ∗∗∗ 1.047 (1.034-1.062) ∗∗∗

Gender

Female 270 (43.0%) 1 (reference)

Male 358 (57.0%) 1.08 (0.821-1.419)

Grade

G2+G3 476 (75.8%) 1 (reference) 1 (reference)

G4 152 (24.2%) 9.553 (7.036-12.97) ∗∗∗ 1.802 (1.168-2.779) ∗∗

ARNTL

Low exp 336 (53.5%) 1 (reference) 1 (reference)

High exp 292 (46.5%) 2.612 (2.165-3.145) ∗∗∗ 1.525 (1.219-1.908) ∗∗∗

CLOCK

Low exp 304 (48.4%) 1 (reference)

High exp 324 (51.6%) 0.565 (0.440-0.727) ∗∗∗

CRY1

Low exp 329 (52.4%) 1 (reference)

High exp 299 (47.6%) 2.102 (1.555-2.842) ∗∗∗

CRY2

Low exp 274(43.6%) 1 (reference) 1 (reference)

High exp 354(56.4%) 0.426 (0.375-0.484) ∗∗∗ 0.666 (0.522-0.85) ∗∗

DBP

Low exp 293 (46.6%) 1 (reference)

High exp 335 (53.4%) 0.49 (0.416-0.576) ∗∗∗

NPAS2

Low exp 319 (50.8%) 1 (reference) 1 (reference)

High exp 309 (49.2%) 1.431 (1.237-1.654) ∗∗∗ 1.234[1.034-1.472] ∗

NR1D1

Low exp 306 (48.7%) 1 (reference)

High exp 322 (51.3%) 0.613 (0.526-0.713) ∗∗∗

NR1D2

Low exp 271 (43.2%) 1 (reference)

High exp 357 (56.8%) 0.352 (0.297-0.417) ∗∗∗

PER1

Low exp 275 (43.8%) 1 (reference)

High exp 353 (56.2%) 0.853 (0.737-0.987) ∗

PER2

Low exp 294 (46.8%) 1 (reference)

High exp 334 (53.2%) 0.464 (0.385-0.559) ∗∗∗

PER3

Low exp 285 (45.4%) 1 (reference)

High exp 343 (54.6%) 0.489 (0.434-0.551) ∗∗∗
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Next, we revealed the coexpression of CCGs in brain tissues
(Figures 1(b)–1(d)), according to the coexpression correla-
tions in brain, CCGs were apparently divided into two
clusters: cluster I includes ARNTL, NPAS2, CLOCK, and
TIMELESS, and another includes CRY1, CRY2, DBP,
NR1D1, NR1D2, PER1, PER2, PER3, and RORA. Similar
coexpression relationship were found by using the CCD
algorithm [23], indicating that the rhythmic oscillation pat-
terns might be also alike in normal brain tissue and tumor
samples. To further confirm the coexpression relationship
in brain tissues, gene correlation maps were performed,
which indicates that there is a high positive correlation
between CCGs of the same cluster (Figure 1(e)).

3.2. Rhythmic Expression of CCGs in Brain Tissues. Based on
the day-night expression data of mouse genes in the
GSE54652 dataset, we performed JTK analysis using bioin-
formatics methods in R software, in which P < 0:05 was
considered a gene with rhythmic expression. The results
showed the rhythmic expression of CCGs in consecutive
48 hours. Apparently, most of cluster CCGs exhibited a
significant rhythmic expression pattern in the cerebellum
(Figures 2(a) and 2(c)), and in brainstem (Figures 2(b)
and 2(d)), respectively. The results covered two circadian
cycles. There was little difference in CCG rhythmic expression
between the cerebellum and brainstem, suggesting that CCGs
rhythmic patterns in brain tissue are stable [31, 32]. The fluc-
tuation patterns of the two clusters were opposite, with cluster
I CCGs reaching the peak in the morning and cluster II CCGs
reaching the peak in the evening.

3.3. CCGs Were Differentially Expressed in the Grade of
Glioma. To investigate the role of CCGs in all grades of gli-
oma, including grade 2-4, we firstly analyzed the differential
expression of CCGs in glioma grade and found that 11/13
CCGs, except for CLOCK and PER1, were recognized as
DEGs in TCGA (Figures 3(a) and 3(b)) and CGGA
(Figures 3(c) and 3(d)), respectively. Interestingly, two clus-
ters’ genes had opposite expression trends, which expression
levels of cluster I and CRY1 were increased with the grades,
whereas cluster II and CLOCK decreased. We then examined
the possible regulatory mechanism of CCG expression by
analyzing methylation and copy number variation (CNV).
All DEGs were negatively regulated by methylation
(FDR < 0:05, Figure 4(a)), except for PER3. Besides, except
for PER1, NPAS2, CLOCK, and ARNTL, the other 9 DEGs
were positively regulated by copy number variation

(FDR < 0:05, Figure 4(b)). The single-nucleotide variation
of CCG was not observed in glioma (Figure 4(c)). The Venn
diagram clearly demonstrated that 8 CCGs, including most
cluster II CCGs, were regulated by both methylation and
CNV (Figure 4(d)). The combination of methylation and
CNV mediated most of the downregulation of cluster II
CCGs. Collectively, these results implied that methylation
and CNV mainly contributed to the differential expression
of CCGs in gliomas.

3.4. CCGs as Prognostic Biomarkers for Glioma Patients. The
prognostic abilities of a single CCG were analyzed and sur-
vival curves showed that 10 differential expressed CCGs
were significantly associated with the survival rates of glioma
patients (P < 0:05). Importantly, high expression of cluster I
and CRY1 was associated with poor survival of glioma
patients in both the TGCA and CGGA databases
(Figures 5(a) and 6(a)). On the contrary, lower expression
of cluster II and CLOCK was related to low survival time
(Figures 5(b) and 6(b)). ROC curves were plotted to assess
CCG predictive accuracy (AUC value ≥ 0:6 as predictive)
[33], which showed that most of CCGs had accurate predic-
tive ability in TCGA (Figure 5(c)) and CGGA (Figure 6(c)).
Therefore, these CCGs were potential prognostic biomarkers
for patients with glioma.

3.5. Prediction Model of CCGs by Cox Regression Analysis.
Univariate and multivariate Cox regression analyses were
performed to investigate the prognostic role of CCG com-
binations. As shown in Tables 1 and 2, univariate Cox
regression analysis demonstrated that the poor survival
of patients was related to grade, cluster I, and CRY1, with
HR > 1 (HR > 1 represents a high-risk factor) [34],
whereas 6 CCGs in cluster II, except for PER1, were con-
sidered low-risk factors. In addition, multivariate Cox
regression analysis indicated that the combination of 6
CCGs, including ARNTL, NPAS2, CRY2, DBP, RORA,
and TIMELESS, was significant for patient survival in both
the TCGA and CGGA databases (Tables 1 and 2). Accord-
ingly, a 6-CCG-based predictive model was constructed,
and the survival curve and ROC curve clearly showed that
the 6-CCG-based prediction model had higher accuracy
than that of the prediction model based on grade in
TCGA (Figure 7(a)) and CGGA (Figure 7(b)). The accu-
racy of ROC analysis was the similar for all grades of gli-
oma (Fig S1). Furthermore, nomogram analysis was
performed, which revealed that 4 of the 6 CCGs in

Table 1: Continued.

Variables
Total n = 628 Univariate analysis Multivariate analysis

n (%) HR (95% CI) P HR (95% CI) P

RORA

Low exp 297 (47.3%) 1 (reference) 1 (reference)

High exp 331 (52.7%) 0.584 (0.498-0.685) ∗∗∗ 0.745 (0.566-0.981) ∗

TIMELESS

Low exp 343 (54.6%) 1 (reference) 1 (reference)

High exp 285 (45.4%) 2.051 (1.775-2.369) ∗∗∗ 1.39 (1.132-1.707) ∗∗
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Table 2: Univariate analysis and multivariate analysis of clinicopathological characteristics and CCGs for overall survival in glioma patients
from CGGA.

Variables
Total n = 961 Univariate analysis Multivariate analysis

n (%) HR (95% CI) P HR (95% CI) P

Age

<60 847 (88.1%) 1 (reference) 1 (reference)

≥60 113 (11.9%) 1.029 (1.022-1.036) ∗∗∗ 1.015 (1.008-1.022) ∗∗∗

Gender

Female 397 (41.3%) 1 (reference)

Male 564 (58.7%) 1.015 (0.862-1.194)

Grade

G2+G3 590 (61.4%) 1 (reference) 1 (reference)

G4 371 (38.6%) 4.151 (3.509-4.912) ∗∗∗ 1.971 (1.600-2.429) ∗∗∗

ARNTL

Low exp 450 (46.8%) 1 (reference)

High exp 511 (53.2%) 1.282 (1.173-1.4) ∗∗∗

CLOCK

Low exp 510 (53.1%) 1 (reference)

High exp 451 (46.9%) 1.208 (1.080-1.352) ∗∗∗

CRY1

Low exp 466 (48.5%) 1 (reference)

High exp 495 (51.5%) 1.338 (1.225-1.463) ∗∗∗

CRY2

Low exp 467(48.6%) 1 (reference) 1 (reference)

High exp 494 (51.4%) 0.484 (0.441-0.53) ∗∗∗ 0.679 (0.582-0.793) ∗∗∗

DBP

Low exp 447 (46.5%) 1 (reference) 1 (reference)

High exp 514 (53.5%) 0.763 (0.714-0.816) ∗∗∗ 0.872 (0.775-0.981) ∗

NPAS2

Low exp 489 (50.9%) 1 (reference)

High exp 472 (49.1%) 1.317 (1.204-1.441) ∗∗∗

NR1D1

Low exp 436 (45.4%) 1 (reference)

High exp 525 (54.6%) 0.834 (0.773-0.899) ∗∗∗

NR1D2

Low exp 471 (49.0%) 1 (reference)

High exp 490 (51.0%) 0.716 (0.649-0.789) ∗∗∗

PER1

Low exp 433 (45.1%) 1 (reference)

High exp 528 (54.9%) 1.007 (0.943-1.074)

PER2

Low exp 495 (51.5%) 1 (reference)

High exp 466 (48.5%) 0.66 (0.562-0.774) ∗∗∗

PER3

Low exp 486 (50.6%) 1 (reference)

High exp 475 (49.4%) 0.767 (0.703-0.836) ∗∗∗
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combination, including oscillations of ARNTL, NPAS2,
CRY2, and DBP, have significant impacts on the predictive
accuracy of the 6-CCG-based predictive model (Figures 7(c)
and 7(d)). Based on the finding that the expression peak phase
of CCGs shifted by ~12 hours between the mouse and baboon
[35], CCG expression fluctuations throughout the day in mice
and humans, and appropriate sampling time were redisplayed
(Figure 7(e)). For instance, ARNTL and NPAS2 showed peak
of expression in mouse in the morning, whereas in human,
the peak phase occurred in beginning of the evening (about
8:00 pm). On the contrary, CRY2 and DBP exhibited opposite
expression patterns.

3.6. Pathway Enrichment Analysis of the Four Key CCGs.
GSCA and GSEA were further used to analyze the possible
CCG-involved molecular mechanisms that the pie chart
of GSCA demonstrated several pan-cancer pathways
(Figure 8(a)), while GSEA showed key signaling pathways
(Figure 8(b)). In most cases, cluster I genes (ARNTL, NPAS2)
had opposite effects against cluster II genes (CRY2, DBP) in
the same pathway. For instance, ARNTL activated Wnt sig-
naling pathway which was inhibited by CRY2 and DBP.
Besides, cluster II mainly activated Wnt, mTOR pathway
and inhibited cell cycle, DNA damage pathway to promote
proliferation and tumor development. Moreover, key genes
in these classic cancer-related pathways were found and their
expression levels were analyzed, which also exhibited highly
similar rhythmic fluctuations to CCGs (Figure 8C). Together,
these results implied that CCGs regulated these cancer-
related pathways in progression of glioma.

3.7. Coexpression Network Analysis of the Four Key CCGs.
WGCNA was performed to identify the genes that were
coexpressed with the four key CCGs (ARNTL, NPAS2,
CRY2, and DBP) in glioma (Figure 9(a)). CCGs were dis-
played as red nodes and the coexpressed genes were marked
as blue nodes. Besides, several genes having rhythmic
expression were circled in red. It was found that cluster I
and cluster II genes were tightly linked to each other, respec-
tively. The correlations between the red circle genes (repre-
sentative rhythmic genes) and CCGs were shown by scatter
plots (Figure 9(b)). Correspondingly, these highly positively
correlated genes also demonstrated rhythmic fluctuations in
the cerebellum and brainstem (Figures 9(c) and 9(d)).
Among them, TEF was tightly associated with CRY2, DBP,

and NR1D2 and thus had a similar rhythmic expression as
cluster II genes. Other arrhythmic genes, such as PDK2, have
prognostic abilities in lung adenocarcinoma [36]. Taken
together, these findings suggested that CCGs can regulate
the rhythm of other genes to interfere with the progression
of glioma.

3.8. Immune Infiltrate Analysis of the Four Key CCGs.
Immune infiltration is a pivotal biological characteristic of
tumors. To investigate whether the prognosis of CCGs is
related to immune infiltration, the correlations between
these CCGs and immune cells in glioma were explored using
the online tool TIMER. Four immune cell types with the
close correlation to key CCGs (expression level adjusted by
log2 TPM) were shown in Figure 10. The result showed that
ARNTL and NPAS2 was positively correlated with CD8+ T
cells, whereas CRY2 and DBP were negatively correlated
with neutrophils and macrophages. This revealed that same
cluster CCGs affect patient prognosis in a similar way in
immune infiltration. CRY2 is highly correlated with immune
cells (jcorrelationj > 0:4), suggesting that CRY2 may affect
prognosis through immune infiltration more than other
CCGs. Table 3 showed the important internal biomarkers
of immune cells, in which CCGs affect the state and function
of immune cells through activation or inhibition of these
biomarkers, thus affecting patient survival. Spearman’s cor-
relation in the table indicated that CRY2 had prominent
effect on these biomarkers.

3.9. Drug Sensitivity Analysis of the Four Key CCGs. Drug
sensitivity analysis provided a bubble plot of the relation-
ship between the four key CCGs and various cancer drugs.
(Figure 11(a)). We used bioinformatics to find the drug
sensitivities most associated with the four CCGs in glioma
based on GDSC, which is a database containing data on
drug sensitivity and gene expression profiles of hundreds
of tumor cell lines. The results showed that four CCGs were
associated with the sensitivities of several drugs, among
which temozolomide was found to be an existing clinical
drug for glioma [37]. The blue circle showed negative cor-
relation meant that the higher the expression of ARNTL,
the lower IC50 values (represented higher sensitivity) of
temozolomide in cancer cells. Although other CCGs pre-
sented similar rhythms, they were not significantly associ-
ated with drug sensitivity in the bubble plot. Previous

Table 2: Continued.

Variables
Total n = 961 Univariate analysis Multivariate analysis

n (%) HR (95% CI) P HR (95% CI) P

RORA

Low exp 465 (48.4%) 1 (reference) 1 (reference)

High exp 496 (51.6%) 0.842 (0.745-0.952) ∗∗ 0.854 (0.731-0.999) ∗

TIMELESS

Low exp 513 (53.4%) 1 (reference) 1 (reference)

High exp 448 (46.6%) 1.722 (1.595-1.859) ∗∗∗ 1.335 (1.196-1.491) ∗∗∗

Notes: characteristics with P < 0:05 in the univariate analysis were further screened in the multivariate analysis. Exp: expression; HR: hazard ratio; CI:
confidence interval; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 7: Prediction model of CCGs. (a, b) CCGs-based prediction model has higher accuracy than grade-based prediction model in glioma
patients. (c, d) Nomogram showed risk scores in glioma patients increased in the evening and decreased in the morning. (e) The daily
rhythmic fluctuations of key CCGs in human and mouse brain tissues were demonstrated in detail, and the black and white background
indicates the passage of day and night.
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Figure 8: Pathway analysis of the four key CCGs. (a) The role of CCGs on cancer-related pathways in pan-cancer: red represents activation,
green represents inhibition, and gray represents no effect. (b) Cancer pathways most associated with enrichment of key CCGs in glioma were
showed. (c) In the above pathways, some genes showed rhythmic expression and showed close correlation with CCGs (FABP7, TTC28,
FGFR2, PTPRE, DUSP11, FABP7, TEF, CIART, FMO2, SYSLTR2, GPR17, GJB6, ZBTB16, CALR, SFPQ, and SLC16A1).
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literature suggesting the therapeutic effect of temozolomide
on glioma varies with ARNTL rhythmic expression, the
effect was the best in peak and the worst in the trough
[38]. Accordingly, the time-of-temozolomide sensitivity
curve was plotted (Figure 11(b)), which clearly demon-
strated the different therapeutic potentials of temozolomide
at different time points of administration.

4. Discussion

In this study, we systematically analyzed and explored the
role of CCGs in the diagnosis, prognosis, and chronotherapy
of glioma. Key CCGs, including ARNTL, NPAS2, CRY2, and
DBP, acted as potent diagnosis and prognosis biomarkers of
glioma patients and rhythmically regulated cancer-related
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Figure 9: Coexpression network of the four key CCGs. (a) Coexpression network showed the relationship between key CCGs and related
genes. (b) Scatter plots showed the high correlation between key CCGs and their closely coexpressed genes. (c, d) Rhythmic expression of
closely coexpressed genes in the mouse cerebellum or in brainstem.
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signaling pathways and coexpressed genes to affect drug sen-
sitivity and possible clinic outcomes. The CCG-based predic-
tive model demonstrated higher predictive accuracy than
that of the traditional grade-based model; this new prediction
model can greatly improve the accuracy of glioma prognosis.
Another study also confirmed the ability of CCGs as prog-
nostic markers for gliomas, suggesting that CCGs’ expression
affect immunity and cell cycle [22]. However, the unique

rhythm expression of CCGs has not been analyzed in the
paper. Our study found that the oscillating expression of
CCGs has a great impact on diagnosis and prognosis. Rhyth-
mic expression was firstly introduced into the CCG-based
predictive model. Appropriate sampling time could greatly
improve the ability of early diagnosis and obtain a better
prognosis, while inappropriate sampling time may lead to
misdiagnosis and delay treatment. In addition, we also
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Figure 10: Correlation between immune infiltration and the four key CCGs. (a–d) ARNTL, NPAS2, CRY2, and DBP significantly correlated
with different immune cells, including CD8+ T cell, CD4+ T cell, neutrophil, B cell, dendritic cell, and macrophage.
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predicted the optimal administration time of temozolomide,
which provides an effective reference for the chronotherapy
of glioma.

The differential expression of CCGs in glioma grading
confirmed that cluster I genes (ARNRL, NPAS2, and TIME-
LESS) and CRY1, with cluster II genes (CRY2, DBP, NR1D1,
NR1D2, PER2, PER3, and RORA) showed significantly oppo-
site expression trends in brain tissues (Figure 3). Besides, the
expression of eight CCGs (CRY2, DBP, NR1D1, NR1D2,
PER2, PER3, RORA, and TIMELESS) was negatively regu-
lated by methylation and positively regulated by CNV in gli-
oma, which is consisting with previous studies that DNA
methylation and CNV can promote abnormal gene expres-
sion [39–41]. Furthermore, we found that single CCG has
high independent predictive accuracy and may be a potential
prognostic biomarker for glioma (Figures 5 and 6). Our
CCG-based prediction model had higher accuracy than the
traditional grade-based model (Figures 7(a) and 7(b)) [42].

Four key CCGs, including ARNTL, NPAS2, CRY2, and
DBP, showed opposite behavior in differential expression
and prognosis (Figures 7(c) and 7(d)). Previous studies have
also confirmed the opposite effects of NPAS2 and CRY2 on
cancer prognosis [43]. Moreover, the four key CCGs-based
risk scores varied along the expression fluctuations. Patients

sampled at different times had great impacts on the total
predictive points and survival rates (Figure 7(e)). A recent
study also indicated that ARNTL and PER1 showed peaks
of expression in mice in the morning and evening, respec-
tively, whereas in baboon, the peak phases occurred in oppo-
site time point [35]. Therefore, it was reductive that
sampling glioma patients at beginning in the evening (about
8:00 pm) could obtain higher predictive sensibility whereas
sampling in the morning might result in a misleading
diagnosis.

In addition, the four key CCGs were related to several
pathways, including cell cycle, DNA damage, Wnt, MAPK,
and mTOR pathways (Figure 8(b)), which was consistent
with previous reports showing that NPAS2 activated MAPK
signals to be associated with poor survival of primary tumors
[44, 45]. CRY2 has also been demonstrated to activate the
mTOR pathway to regulate the differentiation and function
of immune cells [46]. ARNTL activated Wnt to promote
tumor cells development [47]. On the contrary, CRY2 and
DBP inhibited DNA damage and cell cycle pathways to
enhance tumor cell growth. These results implied that
abnormal expression of CCGs could affect cancer pathways
to promote glioma progression. Besides, several genes
involved in these pathways were also rhythmically expressed

Table 3: Correlation analysis between four key CCGs and immune cell biomarkers for glioma.

Immune cells Biomarkers
ARNTL NPAS2 CRY2 DBP

P Cor P Cor P Cor P Cor

CD8+T cell
CD8A ∗∗∗ 0.14 ∗∗∗ 0.31 ∗∗∗ -0.27 ∗∗ -0.09

CD8B ∗∗∗ 0.16 ∗∗∗ 0.22 ∗∗∗ -0.32 ∗∗ -0.11

T cell (general)

CD3D ∗∗∗ 0.13 ∗∗∗ 0.17 ∗∗∗ -0.37 ∗∗ -0.12

CD3E ∗ 0.09 ∗∗∗ 0.22 ∗∗∗ -0.34 ∗∗ -0.1

CD2 ∗∗∗ 0.14 ∗∗∗ 0.21 ∗∗∗ -0.37 ∗∗∗ -0.13

B cell
CD19 0.99 0 0.31 0.03 ∗∗∗ -0.16 0.78 0.01

CD79A 0.84 0.01 0.69 0.01 ∗∗∗ -0.15 0.66 -0.01

Tumor-associated macrophage (TAM)

CCL2 ∗∗∗ 0.15 ∗∗∗ 0.17 ∗∗∗ -0.24 ∗∗∗ -0.13

CD68 0.07 0.07 ∗ 0.09 ∗∗∗ -0.4 ∗∗∗ -0.15

IL10 ∗∗∗ 0.15 ∗∗∗ 0.12 ∗∗∗ -0.33 ∗∗∗ -0.18

Neutrophils

CD66b (CEACAM8) 0.4 0.03 0.98 0 ∗ -0.08 0.15 -0.05

CD11b (ITGAM) 0.35 0.03 ∗∗∗ 0.12 ∗∗∗ -0.36 0.39 -0.03

CCR7 0.13 0.06 ∗∗∗ 0.16 ∗∗∗ -0.23 ∗∗∗ -0.13

Natural killer cell

KIR2DL4 0.65 0.02 0.72 0.01 ∗∗∗ -0.23 0.32 -0.03

KIR3DL1 0.06 0.07 ∗∗∗ 0.13 0.05 -0.07 ∗ -0.09

KIR2DS4 0.34 0.03 0.08 0.06 ∗∗∗ -0.17 ∗ -0.07

Dendritic cell

HLA-DPB1 ∗∗ 0.11 ∗∗∗ 0.13 ∗∗∗ -0.44 ∗∗ -0.1

HLA-DQB1 ∗∗ 0.15 ∗∗∗ 0.12 ∗∗∗ -0.4 ∗∗∗ -0.15

HLA-DRA ∗∗∗ 0.19 ∗∗∗ 0.13 ∗∗∗ -0.49 ∗∗∗ -0.19

HLA-DPA1 ∗∗∗ 0.13 ∗∗∗ 0.13 ∗∗∗ -0.44 ∗∗∗ -0.17

BDCA-1 (CD1C) 0.98 0 0.39 0.03 ∗∗∗ -0.14 0.24 -0.04

BDCA-4 (NRP1) ∗∗∗ 0.2 ∗∗∗ 0.44 ∗∗∗ -0.4 ∗∗∗ -0.31

CD11c (ITGAX) 0.24 -0.04 0.92 0 ∗∗∗ -0.33 0.11 0.059

Notes: Cor: R value of Person’s correlation; ∗∗∗P < 0:05, ∗∗P < 0:01, and ∗P < 0:001.
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similar to CCGs (Figure 8(c)). Among closely coexpressed
genes, the rhythmic expression of TEF was exactly the same
as that of cluster II genes. TEF was controlled by the circa-

dian rhythm and affected the expression of other rhythmic
and functional genes [48], suggesting the modulation of
TFE-mediated downstream effectors by CRY2 and DBP.
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Figure 11: Correlation between the four key CCGs and drug sensitivity. (a) Positive correlation represents that the drug is resistant to high
expression of the gene, and vice versa. (b) The drug sensitivity curve of temozolomide varied with the rhythm of ARNTL expression.
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What is more, due to correlation of CRY2 and immune cells,
immune infiltration was mainly contributed by CRY2, thus
influencing the occurrence and progression of glioma.

In general, not all drugs are suitable for chronotherapy,
most chronotherapy focuses on drugs with a half-life of less
than 15 hours [49]. The plasma concentration of temozolo-
mide peaks within 1 hour (T max < 1 h) after oral dosing
and has a plasma half-life of 1.8 h, which makes the drug
suitable for chronotherapy [49–51]. In fact, previous studies
have shown that temozolomide is most effective on glioma
cells at the ARNTL peak and least effective at the trough
[38]. When considering the critical roles of pharmacokinet-
ics and pharmacodynamics in drug metabolism and therapy,
it is reasonable that administrating temozolomide at about
7-8:00 pm is likely to obtain a better curative effect. In our
work, we showed the therapeutic relationship between
temozolomide and ARNTL and pointed out a better time
to administer temozolomide was about 7-8:00 pm (the peak
expression of ARNTL) in the evening (Figure 11(b)), sug-
gesting precise chronotherapy for glioma patients.

5. Conclusion

In summary, we provided a CCGs-based accurate prediction
model and showed that ARNTL, NPAS2, CRY2, and DBP
had great effects on diagnosis and prognosis of glioma.
Besides, if the patient was sampled at night (means to have
a higher expression of CCG), it can lead to early diagnosis
of glioma, whereas sampling in the morning may cause mis-
diagnosis and thus delay the treatment of glioma. Further-
more, according to expression of ARNTL, appropriate timing
of temozolomide administration can effectively improve the
efficacy, which provides a reference for chronotherapy of gli-
oma. Our works strengthen the importance of CCGs as prog-
nosis biomarkers and the clinic implications for glioma
chronotherapy.
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