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As the most common form of developmental malformation affecting the heart and endothoracic great vessels, congenital heart
disease (CHD) confers substantial morbidity and mortality as well as socioeconomic burden on humans globally. Aggregating
convincing evidence highlights the genetic origin of CHD, and damaging variations in over 100 genes have been implicated
with CHD. Nevertheless, the genetic basis underpinning CHD remains largely elusive. In this study, via whole-exosome
sequencing analysis of a four-generation family inflicted with autosomal-dominant CHD, a heterozygous SMAD1 variation,
NM_005900.3: c.264C>A; p.(Tyr88∗), was detected and validated by Sanger sequencing analysis to be in cosegregation with
CHD in the whole family. The truncating variation was not observed in 362 unrelated healthy volunteers employed as control
persons. Dual-luciferase reporter gene assay in cultured COS7 cells demonstrated that Tyr88∗-mutant SMAD1 failed to
transactivate the genes TBX20 and NKX2.5, two already well-established CHD-causative genes. Additionally, the variation
nullified the synergistic transcriptional activation between SMAD1 and MYOCD, another recognized CHD-causative gene.
These data indicate SMAD1 as a new gene responsible for CHD, which provides new insight into the genetic mechanism
underlying CHD, suggesting certain significance for genetic risk assessment and precise antenatal prevention of the family
members inflicted with CHD.

1. Introduction

Congenital heart disease (CHD) constitutes the most fre-
quent type of birth deformity in humans, inflicting ~1% of
live births globally [1, 2]. Based on cardiac anatomic abnor-
malities, CHD is clinically categorized into >20 distinct
types, including pulmonary stenosis (PS), ventricular septal
defect (VSD), atrial septal defect, patent ductus arteriosus
(PDA), and tetralogy of Fallot [1]. CHD may result in neu-
rodevelopmental abnormality, thromboembolic complica-
tions, infective endocarditis, pulmonary hypertension, heart

failure, arrhythmias, and death [3, 4]. Tremendous advance-
ment has been achieved in pediatric cardiovascular surgery
during recent decades, which enables the overwhelming
majority (up to 97%) of neonates with CHD to survive child-
hood and reach adulthood, and now, CHD adults outnum-
ber CHD children [5, 6]. Unfortunately, prolonged life
span has led to an increasing number of adult CHD survi-
vors, who are prone to suffering from miscellaneous late
complications, with heart failure and cardiac arrhythmias
being the most prominent [7, 8]. Consequently, CHD has
conferred substantial morbidity and mortality as well as
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socioeconomic burden on humans [1]. Despite clinical
importance, the etiologies accountable for CHD remain
largely obscure.

It has been demonstrated that cardiac morphogenesis is
a sophisticated biological process and both genetic defects
and nongenetic precipitating risk factors may disturb this

complex process, giving rise to CHD [2, 9–14]. Well-
documented nongenetic risk factors predisposing to CHD
include maternal diabetes, folate deficiency, viral infections,
autoimmune disorder, and environmental exposures to air
pollutants and medications [9]. However, aggregating evi-
dence indicates that genetic components exert a key effect
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Figure 1: Novel SMAD1 mutation underpinning familial congenital cardiac deformity. (a) Pedigree suffering from congenital heart
deformities. Pedigree members are identified by generations and numbers. “+” Represents a carrier of the heterogeneous SMAD1
variation; “–” means a noncarrier. (b) Sequence chromatogram traces illustrating the SMAD1 variation (in heterozygous status) from the
index patient (mutant) and its wild-type control (in homozygous status) from a healthy family member (wild type). A rectangle symbol
marks a genetic codon, with an arrow directing the nucleotide site where the mutation occurred. (c) Schemas describing the functional
domains of SMAD1. NH2: amino-terminus; MAD: mothers against decapentaplegic; COOH: carboxyl-terminus.
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on the occurrence of CHD, and in addition to chromosomal
alterations (aneuploidies) and copy number variations, path-
ogenic mutations in >100 genes, including TBX20, NKX2.5,
and MYOCD, have been involved in the occurrence of
CHD [2, 10–14]. Nevertheless, the genetic culprit compo-
nents for CHD in up to 55% of cases remain unveiled [12].
Hence, there is still much research work to be fulfilled to
show a complete picture of genetic causes for CHD.

2. Materials and Methods

2.1. Recruitment of Research Participants. The current
research was completed in conformity with the guidelines
of the World Medical Association Declaration of Helsinki.
Approval of the research protocol was achieved from the
local institutional medical ethics committee, with an ethical
approval number of LL(H)-09-07. Written informed consent
was provided by the study participants or their parents. For
this research, a four-generation pedigree with high incidence
of autosomal-dominant CHD was enlisted. A total of 362
unrelated ethnicity-matched volunteers without CHD were
recruited as control individuals. All research participants
experienced a comprehensive clinical investigation, encom-
passing review of personal and medical histories as well as
familial histories, careful physical examination, transthoracic
echocardiogram, and electrocardiogram. Diagnosis of CHD
was made as previously described [15]. Peripheral blood
specimen was collected from each study subject, and geno-
mic DNA was prepared from blood leucocytes of each study
subject.

2.2. Molecular Genetic Studies. For a study participant, a
whole-exome library was prepared using 2μg of genomic
DNA and captured with the SureSelect Human All Exon
V6 Kit (Agilent Technologies), as per the manufacturer’s
manual. The exome library was enriched and then
sequenced on the Illumina HiSeq 2000 Genome Analyzer
(Illumina) using the HiSeq Sequencing Kit (Illumina), fol-

lowing the protocol. Bioinformatics assays of the data pro-
duced by whole-exome sequencing (WES) were performed
as previously described [16–19]. The candidate variants
identified by WES and bioinformatical analyses of the
DNA samples from the CHD family underwent Sanger
sequencing analysis in the whole family with CHD. For a
verified genetic variation, the entire coding region and splic-
ing donors/acceptors of the gene were sequenced in all avail-
able family members of the family with CHD and 362
unrelated control persons and such population genetics
database as the Single Nucleotide Polymorphism (SNP)
Database (https://www.ncbi.nlm.nih.gov/) and the Genome
Aggregation Database (gnomAD; https://gnomad
.broadinstitute.org/) were consulted to check its novelty.

2.3. Generation of Eukaryotic Gene Expression Plasmids.
Preparation of cDNAs from discarded human heart samples
was described elsewhere [4]. The full-length cDNA of wild-
type human SMAD1 (accession no. NM_005900.3) was
amplified on a thermocycler (Applied Biosystems) by poly-
merase chain reaction (PCR) utilizing high-fidelity DNA
polymerase (Stratagene) with a specific pair of primers (for-
ward: 5′-GACGCTAGCCCAAGGAGTATAACTAGTGC-
3′; backward: 5′-GTCCTCGAGGTCTGACTCATCCAT
CCTTC-3′). The produced SMAD1 cDNAs and the
pcDNA3.1 plasmid DNAs were doubly digested by NheI
(NEB) and XhoI (NEB), respectively and then purified with
a gel extraction kit (Qiagen), and finally, the purified
SMAD1 cDNA was inserted into the pcDNA3.1 plasmid at
the NheI-XhoI sites to create a recombinant SMAD1-
pcDNA3.1 expression plasmid. The identified genetic varia-
tion was introduced into wild-type SMAD1-pcDNA3.1 via
site-directed mutagenesis using a site-directed mutagenesis
kit (Stratagene) and a complementary pair of primers (for-
ward: 5′-GCCTCATGTCATTTAATGCCGTGTGTGGC
GC-3′; backward: 5′-GCGCCACACACGGCATTAAAT
GACATGAGGC-3′) and was validated by Sanger sequenc-
ing. Likewise, the full-length cDNA of wild-type human
MYOCD (accession no. NM_001146312.3) was amplified
by PCR, doubly digested with NheI (NEB) and XhoI
(NEB), and subcloned into pcDNA3.1 (doubly digested with
NheI and XhoI) at the NheI-XhoI sites to create the eukary-
otic expression plasmid MYOCD-pcDNA3.1. A 980 bp frag-
ment (from –980 to –1) of human TBX20 (accession no.
NC_000007.14) was amplified by PCR from human genomic
DNA utilizing high-fidelity DNA polymerase (Stratagene)
and a specific pair of primers (forward: 5′-GTTGCTAGC
GTCAGCCTGAGTTTACACGG-3′; backward: 5′-AACC
TCGAGCCTGGCGCTCGCTGCCCTGC-3′), cut with NheI
(NEB) and XhoI (NEB), and inserted into the promoter-less
pGL3-basic vector (Promega), which was cut with NheI
(NEB) and XhoI (NEB), to generate a TBX20 promoter-
driven firefly luciferase reporter vector (TBX20-luc). Similar
with a previous report [20], a human NKX2.5 promoter-
driven firefly luciferase reporter vector (NKX2.5-luc) was
constructed. Each construct was confirmed by Sanger
sequencing analysis.

Table 1: Clinical characteristic data and SMAD1 variation status of
the pedigree members suffering from congenital heart disease.

Individual
(family 1)

Gender
Age

(years)

Cardiac
structural
defects

SMAD1
variation
(Tyr88∗)

I-1 Male 69∗ PDA, VSD, PS NA

II-3 Male 55 PDA +/ –
II-5 Male 52 PDA, VSD, PS +/ –
III-5 Male 29 PDA +/ –
III-8 Female 27 PDA +/ –
III-12 Female 26 PDA, VSD, PS +/ –
IV-4 Male 6 PDA +/ –
IV-5 Female 4 PDA +/ –
IV-7 Male 3 PDA, VSD +/ –
NA: not available; PDA: patent ductus arteriosus; PS: pulmonary arterial
stenosis; VSD: ventricular septal defect; +/ – : heterozygote for the SMAD1
variation. ∗Age at death.
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2.4. Cellular Transient Transfection and Reporter Gene
Analysis. COS7 cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (Thermo Fisher Scientific) with 10%
fetal bovine serum (Gibco), 100 IU/mL penicillin (Sigma-
Aldrich,), and 100μg/mL streptomycin (Sigma-Aldrich), in
a cell culture incubator at 37°C with an atmosphere of 95%
air as well as 5% CO2. Cells were cultured in a 12-well plate
24 h before transient transfection. Cells were transiently
transfected with expression plasmids by employing the Via-
Fect™ Transfection Reagent (Promega). The plasmid
pGL4.75 (Promega), which expresses Renilla luciferase, was
cotransfected as an internal control to balance transfection
efficiency, and the total amount of various plasmid DNAs
per well was kept constant by supplementing the empty plas-
mid pcDNA3.1 where necessary. Unless otherwise indicated,
1000 ng of firefly luciferase reporter plasmid (TBX20-luc or
NKX2.5-luc), 20 ng of Renilla luciferase control plasmid
(pGL4.75), and 200 ng of each activator expression plasmid
(wild-type SMAD1-pcDNA3.1, Tyr88∗-mutant SMAD1-
pcDNA3.1 or MYOCD-pcDNA3.1, singly or in combina-
tion) were used. The luciferase activities were analyzed as
described previously [21], with a dual-luciferase analysis sys-
tem (Promega).

2.5. Statistical Analysis. The activity of a promoter was given
as a ratio of firefly luciferase to Renilla luciferase. Values for

promoter activity were expressed as mean ± standard devia-
tion (SD) of the results from three transfection experiments
in triplicate. Student’s t-test was applied to statistical analy-
sis. A two-sided p < 0:05 denoted statistical difference.

3. Results

3.1. Clinical Characteristic Information of the Study Pedigree.
In the present investigation, a large family with CHD span-
ning four generations (Figure 1(a)) was enrolled from the
Chinese Han-race population. In this Chinese family, there
were 32 family members, including 30 living members (15
male members and 15 female members, with ages ranging
from 3 to 55 years) and all the nine affected members had
echocardiogram-documented PDA. In addition, four mem-
bers also suffered from VSD and three members also suf-
fered from PS. Genetic analysis of this four-generation
pedigree (Figure 1(a)) revealed that PDA was inherited in
an autosomal-dominant fashion, with 100% penetrance.
The proband, a three-year-old boy, underwent catheter-
based cardiac repairment due to PDA and VSD. The pro-
band’s affected relatives also underwent interventional pro-
cedures for correction of CHD, except for his mother’s
grandfather (I-1), who died of congestive heart failure at
the age of 69 years. No recognized noninherited risk factors
contributing to CHD were ascertained in all the family

Table 2: Nonsynonymous variations in candidate genes for congenital heart disease discovered via whole-exome sequencing as well as
bioinformatical analysis.

Chr Position (GRCh37) Ref Alt Gene Variation

1 44,595,817 A C KLF17 NM_173484.4: c.874A>C; p.(Lys292Gln)
1 223,176,637 T G DISP1 NM_032890.5: c.1898T>G; p.(Phe633Cys)
2 180,383,314 C A ZNF385B NM_152520.6: c.448C>A; p.(Pro150Thr)
3 118,913,103 A T UPK1B NM_006952.4: c.506A>T; p.(Gln169Leu)
4 146,436,029 C A SMAD1 NM_005900.3: c.264TC>A; p.(Tyr88∗)
5 10,649,993 G A ANKRD33B NM_001164440.2: c.1253G>A
7 147,092,783 C G ; p.(Arg418Gln)

11 40,137,545 A G CNTNAP2 NM_014141.6: c.1581C>G; p.(Asp527Glu)
14 34,263,135 T C LRRC4C NM_020929.3: c.298A>G; p.(Arg100Gly)
16 72,993,460 C G NPAS3 NM_001164749.2: c.1186T>C;

20

58,416,533 G T ZFHX3 p.(Tyr396His)

PHACTR3 NM_006885.4: c.585C>G; p.(Ile195Met)

NM_080672.5: c.1530G>T; p.(Ala510Ser)
Alt: alteration; Chr: chromosome; Ref: reference.

Table 3: Primers for amplification of the coding exons as well as splicing junctions of the SMAD1 gene.

Coding exons Forward primers (5′→ 3′) Backward primers (5′→ 3′) Amplicons (bp)

1 TGTCCTTTTGCATTTGGAGAC CAAATCTGGTACTGGGCACAC 518

2 TTGAGTTGGCAGCAGGACAG ACTGCAGGTTGACCCAGCTT 473

3 GGCAGTGCCTGTAGCCTTTAG CCAGCAATTGTAGTGAGCTTCT 412

4 CCATGATCCTGAGCCAATTC C 483

5 CTGTGTTGAAGCTGCACAGG TGCAAGAGCTTCCAGATAGCAG 590

6 CAGGGAGGAAAGATGCATAG AGCGGTGCTATCTGAATAAGGA 569

C ACAATTTGTCCCTGGCTTGG
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members. The basic clinical information of the affected fam-
ily members with CHD is provided in Table 1.

3.2. Detection of a CHD-Causing SMAD1 Mutation. WES
was carried out in four CHD-inflicted family members
(including III-5, III-12, IV-4, and IV-7) and three unaffected
family members (including III-6, III-11, and IV-3) of the

family (Figure 1(a)), yielding approximately 22Gb of
sequence data for each study family member, with ~98%
locating to the human genome (hg19) and~75% mapping
to the target sequences. A mean of 16,206 exonic variants
(ranging from 15,382 to 17,098) per study family member
that passed filtering by the inheritance model, of which 11
heterozygous nonsense and missense variants passed
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filtering by ANNOVAR, was carried by the four CHD-
inflicted family members and was predicted to be disease
causing, with a minor allele frequency < 0:1%, as shown in
Table 2. Further genetic assays unveiled that only the variant
chr4:146,436,029C>A (GRCh37: NC_000004.11), equiva-
lent to chr4:145,514,877C>A (GRCh38: NC_000004.12) or
NM_005900.3: c.264C>A; p.(Tyr88∗), in SMAD1, was ver-
ified by Sanger sequencing with the primer pairs given in
Table 3 and was shown to be in cosegregation with CHD
in the entire family. The electropherogram traces illustrating
the SMAD1 variation in the heterozygous status as well as its
wild-type control base are presented in Figure 1(b). The
schemas exhibiting the key functional domains of wild-
type SMAD1 and Tyr88∗-mutant SMAD1 are exhibited in
Figure 1(c). The identified SMAD1 variant was neither
observed in 724 control chromosomes nor reported in the
databases of SNP and gnomAD, suggesting a novel SMAD1
variant. This SMAD1 variant, NM_005900.3: c.264C>A;
p.(Tyr88∗), was submitted to Leiden Open Variation Data-
base (LOVD; https://databases.lovd.nl/shared/genes/
SMAD1), with a variant number of 0000838399 (https://
databases.lovd.nl/shared/variants/0000838399#00019404)
and an individual identity number of 00401998 (https://
databases.lovd.nl/shared/individuals/00401998).

3.3. Functional Loss of Tyr88∗-Mutant SMAD1. As shown in
Figure 2, wild-type SMAD1 and Tyr88∗-mutant SMAD1
transactivated the promoter of TBX20 by ~9-fold and ~1-
fold, respectively (wild-type SMAD1 versus Tyr88∗-mutant
SMAD1: t = 10:0207; p = 0:00056). When wild-type SMAD1
and Tyr88∗-mutant SMAD1 was cotransfected, the induced
transcriptional activity was ~4-fold (wild-type SMA-
D1+ empty plasmid pcDNA3.1 versus wild-type
SMAD1+Tyr88∗-mutant SMAD1: t = 5:4032; p = 0:00568).

3.4. Nullified Synergistic Transcriptional Activation Between
SMAD1 and MYCOD by the Tyr88∗ Mutation. As shown
in Figure 3, wild-type SMAD1 and Tyr88∗-mutant SMAD1
transactivated the promoter of NKX2.5 by ~4-fold and ~1-
fold, respectively (wild-type SMAD1 versus Tyr88∗-mutant
SMAD1: t = 8:08764; p = 0:00127). In the presence of wild-
type MYCOD, wild-type SMAD1 and Tyr88∗-mutant
SMAD1 transcriptionally activated the promoter of
NKX2.5 by ~29-fold and ~11-fold, respectively (wild-type
SMAD1+wild-type MYCOD versus Tyr88∗-mutant
SMAD1+wild-type MYCOD: t = 7:33082; p = 0:00184).

4. Discussion

In the present study, a four-generation Chinese family suf-
fering from CHD transmitted as an autosomal dominant
trait was enrolled. Via WES analysis of the DNA samples
from the family members, a novel variation in the SMAD1
gene, NM_005900.3: c.264C>A; p.(Tyr88∗), was identified,
which was confirmed by Sanger sequencing analysis to be in
cosegregation with CHD in the whole family. The heterozy-
gous variation was absent from 724 control chromosomes
nor reported in the databases of SNP and gnomAD.
Reporter gene assays demonstrated that Tyr88∗-mutant

SMAD1 failed to transcriptionally activate the promoters
of TBX20 and NKX2.5, two well-established CHD-causing
genes [22, 23]. Moreover, the mutation nullified the syner-
gistic transcriptional activation between SMAD1 and
MYOCD, another CHD-causative gene [11, 24–26]. These
observational results indicate that genetically compromised
SMAD1 predisposes to CHD.

SMAD1 maps on human chromosome 4q31.21, coding
for a protein comprising 465 amino acids, a member of the
SMAD superfamily of proteins like the products of the
Sma gene from Caenorhabditis elegans and the Mad
(Mothers against decapentaplegic) gene from Drosophila
[27, 28]. As a transcription factor and signal transducer that
regulates multiple signal pathways, the SMAD1 protein pos-
sesses two evolutionarily conserved structural domains,
MAD homology 1 (MH1) and MAD homology 2 (MH2),
which are separated by Linker [29]. MH1 functions mainly
to bind to the DNA consensus sequence of GNCN in target
gene promoters and to transcriptionally activate the expres-
sion of target genes, in addition to mediating nuclear accu-
mulation of SMAD1 and interaction of SMAD1 with other
transcription factors. MH2 is responsible for the interaction
of SMAD1 with a wide variety of proteins, provides selectiv-
ity and specificity to SMAD1 function, contributes to the
binding affinity, and is involved in nuclear accumulation of
SMAD1. Linker connecting MH1 and MH2 contains multi-
ple critical peptide motifs, encompassing a nuclear export
signal and several potential phosphorylation sites, and hence
has a role in transcriptional activation [29]. SMAD1 is
highly expressed in the heart throughout embryogenesis,
playing a crucial role in transactivating the expression of tar-
get genes essential for cardiovascular morphogenesis,
including TBX20, NKX2.5, ACTC1, and MYH6, alone or
synergistically with MYOCD and TBX20 [30–32]. Further-
more, loss-of-function variations in TBX20, NKX2.5,
ACTC1, MYH6, and MYOCD have been involved in the
molecular pathogenesis of CHD [11, 22, 23, 33–36]. In the
current study, the variation discovered in cases with familial
CHD was predicted to generate a truncating SMAD1 protein
lacking MH2 and Linker as well as a part of MH1 and func-
tional data demonstrated that Tyr88∗-mutant SMAD1 failed
to transactivate its downstream target genes. These findings
support that haploinsufficiency of SMAD1 is the genetical
mechanism of CHD which occurred in this family.

It may be ascribed to abnormal cardiovascular develop-
ment that SMAD1 mutation gives rise to CHD. In most ani-
mal species, including xenopus, zebrafish, mice, rats, and
humans, SMAD1 is amply expressed in the cardiovascular
system during embryonic development, playing a pivotal
role in cardiovascular morphogenesis via mediating the cel-
lular proliferation, growth, apoptosis, differentiation, and
morphogenesis in the heart and vessels [29, 37]. In mice,
homozygous knockout of Smad1 led to embryonic demise
because the embryos failed to seed the placenta and the
Smad1-null embryos showed markedly impaired allantois
formation and drastically reduced primordial germ cells;
while the embryos with heterozygous deletion of Smad1
developed remarkably normally, probably due to functional
compensation by Smad5 and Smad8, which shared common
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expression profiles and functional characteristics with
Smad1 [38, 39]. Although the mice with heterozygous
knockout of either Smad1 (Smad1 +/−) or Smad5 (Smad5
+/−) developed properly, the murine embryos with double
heterozygous knockout of Smad1 and Smad5 (Smad1 +/−

/Smad5 +/−) died by E10.5 and the double heterozygous
embryos (Smad1 +/−/Smad5 +/−) presented defects of heart
looping and laterality [39]. Furthermore, the mice with con-
ditional knockout of the Smad1 gene by disrupting Smad1
either in endothelial cells or in smooth muscle cells dis-
played increased pulmonary pressure, right ventricular
hypertrophy, and thickened pulmonary arterioles [40]. Col-
lectively, these results from experimental animals suggest
that genetically compromised SMAD1 predisposes to CHD
in human beings.

5. Conclusions

The current investigation indicates SMAD1 as a novel caus-
ative gene responsible for CHD, which provides a new
potential target for antenatal prophylaxis and personalized
treatment of CHD patients.
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