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The Sahara Desert, one of the most extreme ecosystems in the planet, constitutes an unexplored source of microorganisms such as
mycelial bacteria. In this study, we investigated the diversity of halophilic actinobacteria in soils collected from five regions of the
Algerian Sahara. A total of 23 halophilic actinobacterial strains were isolated by using a humic-vitamin agar medium
supplemented with 10% NaCl. The isolated halophilic strains were subjected to taxonomic analysis using a polyphasic
approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy), and phylogenetic analyses.
The isolates showed abundant growth in CMA (complex medium agar) and TSA (tryptic soy agar) media containing 10%
NaCl, and chemotaxonomic characteristics were consistent with their assignment to the genus Nocardiopsis. Analysis of the
16S rRNA sequence of 23 isolates showed five distinct clusters and a similarity level ranging between 98.4% and 99.8% within
the Nocardiopsis species. Comparison of their physiological characteristics with the nearest species showed significant
differences with the closely related species. Halophilic Nocardiopsis isolated from Algerian Sahara soil represents a distinct
phyletic line suggesting a potential new species. Furthermore, the isolated strains of halophilic Nocardiopsis were screened for
their antagonistic properties against a broad spectrum of microorganisms by the conventional agar method (agar cylinders
method) and found to have the capacity to produce bioactive secondary metabolites. Except one isolate (AH37), all isolated
Nocardiopsis showed moderate to high biological activities against Pseudomonas syringae and Salmonella enterica, and some
isolates showed activities against Agrobacterium tumefaciens, Serratia marcescens, and Klebsiella pneumoniae. However, no
isolates were active against Bacillus subtilis, Aspergillus flavus, or Aspergillus niger. The obtained finding implies that the
unexplored extreme environments such as the Sahara contain many new bacterial species as a novel drug source for medical
and industrial applications.
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1. Introduction

Hypersaline ecosystems represent an extreme environment
in which a relatively low diversity of microbial species can
be found and host a particular native microflora adapted to
these habitats such as halophilic bacteria [1]. The occurrence
of actinobacteria in high salinity environments and tolerance
of these organisms to high concentrations of salt have been
previously studied by many authors, and several novel gen-
era and species of halophilic and halotolerant have been
described such as Streptomonospora litoralis [2], Phytoacti-
nopolyspora halophila [3], P. mesophila [4], Glycomyces sali-
nus [5], Nesterenkonia pannonica [6], N. natronophila [7],
Prauserella isguenensis [8], P. oleivorans [9], Mzabimyces
algeriensis [10], Actinopolyspora salinaria [11], and Brachy-
bacterium halotolerans [12]. Halophiles and halotolerant
actinobacteria have attracted a great attention owing to pro-
duce various bioactive natural compounds, such as antibi-
otics actinopolysporins A-C [13], persiamycin A [14],
anticancer salternamide A [15], cytotoxic compounds nocar-
benzoxazoles A-G [16], salternamides A-D [17], antiviral
xiamycins C-E [18], and enzymes [19].

The Sahara is the third largest (after the cold deserts of
the Antarctic and the Arctic) and hot desert in the world.
The Sahara is one of the harshest environments on Earth,
covering more than 9 million km2, spanning nearly a third
of the African continent [20].

Microbial species found in the Algerian Sahara are
adapted to the extreme environment characterized by high
temperature and often by high salinity encountered in this
area. They develop particular metabolic pathways to survive,
and special phenetic properties are acquired, which can lead
to a production of new substances [21].

Numerous studies have demonstrated the abundance of
actinobacterial biodiversity in Algerian Saharan soil [21].
This biodiversity can lead to the discovery of novel species
and secondary metabolites [22–25]. As part of this program,
we focused our study on halophilic Nocardiopsis isolates,
which were characterized using a polyphasic approach, and
their antagonistic properties were evaluated against several
pathogenic and nonpathogenic microorganisms. Halophilic
actinobacteria are a less explored source for the discovery
of novel bioactive secondary metabolites [26]. At present,
seven of the thirteen validly published genera in the family
Nocardiopsaceae [27], including Haloactinospora, Lipingz-
hangella, Nocardiopsis, Salinactinospora, Spinactinospora,
Streptomonospora, and Thermobifida, contain one or several
halophilic species. The genus Nocardiopsis currently con-
tains 45 validly published species names among which
23 species are halophilic. The strains of Nocardiopsis are
also known for their potential to produce bioactive
metabolites [28–30].

The goal of the present study is to investigate the
biodiversity of halophilic actinobacteria isolated from
Algerian Saharan soils by using a polyphasic approach
and to evaluate their potential to produce bioactive mole-
cules. Actinobacteria are remarkable sources of novel anti-
biotics and compounds which possess medical and
industrial importance.

2. Materials and Methods

2.1. Strain Isolation. Twenty-three halophilic actinobacteria
were isolated by the dilution agar plating method [21], from
extremely saline soil samples obtained from different regions
of the Algerian Sahara. The soils in these regions are charac-
terized by a sandy loam texture, slightly basic pH (7.5 to 8.5),
and high salinity (electric conductivity at 1/5 comprised
between 8 and 15 mS cm-1) [21].

Each dry soil sample was suspended in sterile distilled
water and diluted (10 g soil in 90mL of water). Aliquots
(0.2mL) of each dilution were spread onto a humic-
vitamin agar medium [31] supplemented with NaCl
(10%) and with antifungal cycloheximide (50μg/mL) to
inhibit the growth of fungi. The culture plates were incu-
bated at 30°C for two weeks, and all the colonies were
directly examined by light microscopy to detect Nocar-
diopsis-like isolates. After isolation, the purified strains
were stored at 4°C on agar slants of Bacto tryptic soy
agar (TSA) medium supplemented with NaCl (10%) for
further use.

2.2. Morphological Study. The cultural and morphological
characteristics of selected actinobacteria were studied on yeast
extract-malt extract agar (ISP 2), oatmeal agar (ISP 3), inor-
ganic salt-starch agar (ISP 4) [32], TSA medium, and complex
medium agar (CMA) [33]. All culture media were supple-
mented with 10% NaCl. The colors of aerial and substrate
mycelia were determined with the ISCC-NBS centroid color
charts [34]. The morphology of the strains grown on various
media at 30°C for 12 days was examined by light microscopy
for mycelia organization and sporulation.

2.3. Chemotaxonomic Study. For the chemotaxonomic
analysis, biomass was obtained from a culture grown
on a TSB medium modified with the addition of 10%
NaCl and incubated at 30°C for 5 days. Analysis of dia-
minopimelic acid isomers and whole-cell sugar pattern
was carried out using the method of Becker et al. [35]
and M. Lechevalier and H. Lechevalier [36]. Phospho-
lipids were analyzed according to the procedures devel-
oped by Minnikin et al. [37].

2.4. Physiological Study and Numerical Taxonomy. Fifty
physiological tests were performed, including the utiliza-
tion of 16 carbohydrate compounds [38]; assimilation of
alanine, proline, and serine as nitrogen source; degradation
of adenine, guanine, xanthine, hypoxanthine, milk casein,
testosterone, Tween 80, starch, gelatin, esculin, and arbu-
tin; decarboxylation of sodium acetate and sodium buty-
rate; production of nitrate reductase; growth in the
presence of 0, 7, 10, 15, 20, and 25% NaCl; sensitivity to
lysozyme at 0.005% and to five antibiotics; and growth at
pH 5 and 9 (pH was adjusted accordingly using HCl/
NaOH solutions) and at temperatures 20, 30, 37, and
42°C.

All the results of the physiological study were analyzed
by numerical taxonomy. The data of phenetic characters
were coded in a binary system (1/0). The degree of similarity
between the studied halophilic strains was calculated by
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simple matching (SM), and clustering was performed by the
unweighted-pair group method using average linkages
(UPGMA) in the SPSS package (v.16.0.1).

2.5. 16S rRNA Gene Sequencing and Phylogenetic Analysis.
DNA preparation was performed according to the method
of Liu et al. [39]. The actinobacterial isolates were grown
in a shaker (250 rpm) at 30°C for 7 days. PCR amplification
of the 16S rRNA gene of the isolates was performed using
two primers: 27f (5′-AGAGTTTGATCCTGGCTCAG-3′)
and 1492r (5′-GTTACCTTGTTACGAC TT-3′). The
sequencing reaction was performed by MilleGen Company
(Toulouse, France). The same primers as before and an auto-
mated sequencer were used for this purpose. The similarities
of the 16S rRNA gene sequences between strains were calcu-
lated on the basis of pairwise alignment using the EzTaxon-e
server [40]. Phylogenetic and molecular evolutionary analy-
ses were carried out using MEGA version 7.0 [41]. The 16S
rRNA gene sequences of the strains were aligned using the
CLUSTAL W program [42] against corresponding nucleo-
tide sequences of Nocardiopsis retrieved from GenBank
and EzTaxon-e. Phylogenetic trees were reconstructed by
using neighbor-joining [43] with the model of Jukes and
Cantor [44], maximum likelihood [45] with Kimura’s two-
parameter model [46], and maximum parsimony [47]. Boot-
strap analysis [48] was performed to evaluate the reliability
of the tree topology.

2.6. Antagonistic Properties. The antimicrobial spectrum
was determined by the conventional agar method (agar
cylinder method) as described by Patel and Brown [49]
subsequently against the pathogenic and nonpathogenic
fungi (Aspergillus niger, A. flavus, Botrytis cinerea, Rhizo-
pus nigricans, Saccharomyces cerevisiae ATCC 4226, and
Kluyveromyces lactis), Gram-positive bacteria (Bacillus sub-
tilis ATCC 6633 and Staphylococcus aureus CIP 7625), and
Gram-negative bacteria (Agrobacterium tumefaciens No.
2410, Klebsiella pneumoniae CIP 82·91, Pseudomonas syr-

ingae, Salmonella enterica, and Serratia marcescens). The
actinobacterial isolates were grown on TSA plates supple-
mented with 10% NaCl for 7 days at 30°C, and then, agar
cylinders (5mm in diameter) were cut out and placed
onto the agar surface (nutrient agar or Sabouraud agar,
covered by 0.2mL of culture containing 5 × 105 cfu/mL
for bacteria or 5 × 104 cfu/mL for fungi, respectively). A
sterile cylinder of TSA, supplemented with 10% NaCl,
was used as control, and the plates were incubated at
30°C for 24-48 h after a diffusion process for 4 h at 4°C.
The diameters of inhibition zones formed around the cyl-
inder were then measured.

3. Results and Discussion

3.1. Cultural Characteristics and Morphology. All isolates
have the same morphology except AH25 and AH26. The
growth after 12 days at 30°C was abundant on CMA and
TSA media, moderate on ISP 2 medium, and poor on
ISP 4 medium. All isolates, except AH25 and AH26, pro-
duced abundant white to pale yellow aerial mycelium, a
pale yellow substrate mycelium, and no diffusible pigment.
Isolate AH25 produced an abundant pale pink aerial
mycelium, a pink to light reddish brown substrate myce-
lium, and a moderate reddish brown diffusible pigment
on ISP 2, CMA, and TSA media. Isolate AH26 showed
only traces (microscopic) of aerial mycelium, orange sub-
strate mycelium, and no diffusible pigment on all media
tested (Table 1 and Figure 1).

All isolates produced long sporulated aerial hyphae,
branched, straight to irregularly curved, often with a zig-
zag shape (except AH26). At the maturation state, these
hyphae fragmented irregularly into long chains of elon-
gated spores.

3.2. Chemical Analysis of Cellular Constituents. Cell wall
hydrolysate of the 23 actinobacterial isolates contained
meso-diaminopimelic acid, but glycine was not detected.

Table 1: Cultural characteristics of 23 halophilic Nocardiopsis isolated from Saharan soils.

Medium with 10% NaCl Group
Number of
isolates

Growth
Color of aerial
mycelium

Color of substrate
mycelium

Diffusible pigment

Yeast extract-malt
extract agar (ISP2)

G1 21 ++ White to pale yellow Pale yellow None

G2 01 ++ Pale pink Light reddish brown Moderate reddish brown

G3 01 ++ None Orange None

Inorganic salt-starch agar (ISP4)

G1 21 + Yellowish Moderate yellow None

G2 01 + None Moderate reddish pink None

G3 01 + None None None

Bacto tryptic-soy agar (TSA)

G1 21 +++ Light yellow Pale yellow None

G2 01 +++ Pale pink Light reddish brown Moderate reddish brown

G3 01 +++ None Orange None

Complex medium agar (CMA)

G1 21 +++ Light yellow Pale yellow None

G2 01 +++ Pale pink Light reddish brown Moderate reddish brown

G3 01 +++ None Orange None

+++ = abundant; ++ = moderate; + = poor. All media were supplemented with 10% (w/v) NaCl (pH 7.2). Colors were taken from ISCC-NBS color charts [32].
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Glucose and ribose were detected in whole-cell hydrolysates.
Diagnostic sugars such as arabinose, madurose, xylose, or
rhamnose were absent. Thus, isolates had cell walls of
type III and sugar pattern type C [50]. The diagnostic
phospholipids detected were phosphatidylcholine. This
pattern corresponds to phospholipids type PIII [51].
Based on the morphological and chemical characteristics,
isolates are attached to the genus Nocardiopsis described
by Li et al. [52].

3.3. Physiological Characteristics and Numerical Taxonomy.
The physiological characteristics based on 50 assays were
subjected to numerical analysis (based on the similarity SM
coefficient and UPGMA clustering). This physiological clas-
sification gave five cluster groups, designated I to V, and
nine single isolates at 93.5% (Figure 2). Cluster I contains
six strains, and clusters II, III, IV, and V contain two strains
each. The numerical taxonomy used in this study enabled a
rational distinction between isolates.

The 23 Nocardiopsis isolates have many similarities
between them, but they also have many differences in
physiological characteristics, as shown in Table 2. All iso-
lates can grow on culture media with a NaCl concentra-
tion ranging from 7 to 15% (except AH19 which grows
at 10 to 15% NaCl), and almost no isolates grow at 0%
(except AH12). Some of them can tolerate up to 20% of
NaCl, and optimal growth was observed at 10% for all iso-
lates. Thus, they can be considered as moderate halophilic
microorganisms, except AH12 which is halotolerant. A num-
ber of physiological characteristic differences were observed
between clusters: 4 tests (clusters I-II), 5 tests (clusters I-III
and III-V), 6 tests (clusters I-IV), 7 tests (clusters III-IV),
and 9 tests (clusters I-V, II-III, II-IV, II-V, and IV-V). Physio-
logical characteristic differences, sometimes more significant,
were observed in the case of some single isolates such as

AH26, which differs from the 22 other isolates ofNocardiopsis
by its inability to degrade adenine, starch, D-glucose, xanthine,
hypoxanthine, and Tween 80, and also several other
characteristics.

(a1)

(a2)

(a)

(b1)

(b2)

(b)

(c1)

(c2)

(c)

Figure 1: Cultural characteristics of 23 halophilic Nocardiopsis isolated from Saharan soils. (a1, a2) Abundant aerial mycelium of
representative isolates (the same for 21 isolates). (b1) Abundant aerial mycelium of isolate AH25. (b2) Isolate AH25 with brown substrate
mycelium and brown diffusible pigment. (c1) Separate colonies of isolate AH26 without aerial mycelium, orange substrate mycelium, and
no diffusible pigment. (c2) Isolate AH26 without aerial mycelium, orange substrate mycelium, and no diffusible pigment. Isolates of
halophilic Nocardiopsis grown on TSA medium supplemented with 10% NaCl for 12 days at 30°C.
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Figure 2: Dendrogram derived from UPGMA cluster analysis of 50
phenotypic characters, showing the relationships between the 23
halophilic Nocardiopsis strains isolated from Algerian Saharan soils.
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Figure 3: Neighbor-joining tree based on the 16S rRNA gene sequences showing the relationships between the 23 halophilic Nocardiopsis
strains of Saharan soils and the type species of the genus Nocardiopsis. The accession numbers of strain sequences are given in parentheses.
Asterisks indicate branches that are conserved when the neighbor-joining, maximum parsimony, and maximum likelihood methods were
used in reconstructing phylogenetic trees. The numbers at the nodes indicate the levels of bootstrap support based on neighbor-joining
analyses of 1000 resampled data sets; only values over 50% are given. Bar: 0.005 nucleotide substitution per nucleotide position.
Haloactinospora alba YIM 90648T and Streptomonospora salina YIM 90002T have been used as outgroups.
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3.4. Phylogenetic Studies. The 16S rRNA gene sequences
(1529-1544 bp) of the 23 isolates were determined and
deposited in the GenBank data library under the accession
numbers JF777508-JF777530. The sequences were aligned
with those of Nocardiopsis reference species available in the
GenBank database, which confirmed that these 23 strains
belong to the genus Nocardiopsis. It is interesting to note
that the phylogenetic study corresponded in most cases with
phenotypic taxonomy.

The dendrogram constructed by the neighbor-joining
method is shown in Figure 3. The isolates of cluster I
(AH15, AH17, AH33, AH47, AH57, and AH65), cluster II
(AH36 and AH44), and cluster III (AH25 and AH62), as
well as the single isolate AH4, were related to Nocardiopsis
xinjiangensis [53], with 99.4 to 99.8% 16S rRNA gene
sequence similarity. The isolates of cluster IV (AH0 and
AH67) were closely related to Nocardiopsis litoralis [54],
with 99.7% similarity, followed by N. kunsanensis [55], with
99.5% similarity. The isolates of cluster V (AH1 and AH52)
were also shown to be closely related to N. litoralis, but with

lower percentages of similarity (99.3 to 99.6%), and more
distant from N. kunsanensis (99.0 to 99.4%).

Concerning the single isolates AH38, AH19, and
AH37, they exhibited relatively lower percentages of sim-
ilarity, respectively, to N. litoralis (99.2%), N. halotolerans
[56] (99.3%), and N. terrae [57] (99.4%). These percent-
ages of similarity are even lower for the single isolates
AH63 (98.4% with N. litoralis), AH46 (98.4% with N.
xinjiangensis), AH12 (98.7% with N. litoralis), AH26
(98.8%) with N. salina [58], and AH24 (98.9% with N.
xinjiangensis).

High 16S rRNA similarity values were found between
representatives of validly described Nocardiopsis species,
such as the type strains of N. valliformis and N. exhalans
(99.9%) [59], N. sinuspersici and N. arvandica (99.9%)
[60], N. halophila and N. baichengensis (99.9%) [61], N.
litoralis and N. kunsanensis (99.6%), N. metallicus and N.
prasina (99.3%), and N. metallicus [62] and N. exhalans
(99.4%) [59]. It is known that strains with 16S rRNA sim-
ilarity range between 98.65 and 99.99% could be a

Table 3: Differential characteristics between isolates of the first cluster and phylogenetically related species Nocardiopsis xinjiangensis
YIM 90004T.

(a)

Characteristics
Isolates AH N. xinjiangensis

YIM 90004T4 15 17 24 25 33 36 44 46 47 57 62 65

Degradation of organic compounds:

Starch + + + + + + + + + + + + + -

Gelatin + + + + + + + + + + + + + -

Carbon source utilization:

Cellobiose + + + - + + + + + + + + + +

Fructose - - + - + + + + + + + + + +

Galactose - + + + + + + + + + + + + +

Glucose + + + + + + + + + + + + + -

Melibiose - + - - - + + - - + + - + -

Raffinose - - - + - + - - - - + - - -

Ribose + + + - - + + + - + + + + -

Xylose - + + + + + + + - - + + + -

Nitrogen source utilization:

Alanine + - + + + + + + + + + + + +

Proline - + + + + + + + + - + + + +

Serine - + + - - + + + + + - - - +

Nitrate reductase + + + + + + + + + + + + - -

Decarboxylation of sodium salts:

Acetate - + - + + - + + + + - + + -

(b)

Temperature range (optimum) (°C) 28-37 (30) 20-40 (28)

pH range (optimum) 7-9 (7) 6.0-10.0 (7.2)

Diagnostic sugars Glu, rib Xylose, arabinose, and galactose

Major phospholipids PG, PC, PME, and PI PG, PI

+, property present; -, property absent. All experiments were done in duplicates. DPG: diphosphatidylglycerol; PC: phosphatidylcholine; PE:
phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol; PME: phosphatidylmethylethanolamine.
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potential novel species; however, the isolates need to be
the subject of more detailed molecular systematic studies
based on DNA-DNA reassociation or whole-genome
sequencing to determine their taxonomic status. The
results were also supported by the physiological differences
observed between these isolates and the nearest relatives in
the genus Nocardiopsis. The physiological differences are
given in Tables 3–5.

3.5. Antimicrobial Activities. The antimicrobial activities of
Nocardiopsis isolates against several bacteria and fungi
(listed in Table 6) were determined by the cylinder plate
method on TSA medium supplemented with 10% NaCl.

All Nocardiopsis isolates (except isolate AH37) showed
activities against Pseudomonas syringae and Salmonella
enterica (with moderate to high activity). Some isolates
showed activities against Agrobacterium tumefaciens (16

Table 4: Differential characteristics between isolates of the second clade and phylogenetically related species Nocardiopsis litoralis and
N. kunsanensis.

(a)

Characteristics
Isolates AH

N. litoralis JSM 073097T N. kunsanensis HA-9T
0 1 12 38 52 63 64 67

Degradation of organic compounds:

Casein + + + - - + + + - +

Esculin + - - - + + - - - -

Starch + + + + + + + + - +

Tween 80 + + + + + + + + -

Carbon source utilization: ND

Adonitol + + + + - + + + - ND

Arabinose + + - + + + + + - ND

Cellobiose + + + + + + + + - -

Fructose + - + + + + - + - +

Galactose + - - + + + + - - -

lactose - - - + + + + + -

Maltose + + + + + + + + - -

Mannitol + - - + + + + + - -

Melibiose - - - - + + - - - ND

Raffinose - - - + + + - - - -

Rhamnose + - + + + + - + - -

Ribose + + + - + + + + - ND

Trehalose - + - - + + + + - -

Xylose + + - + + + + - + -

Nitrogen source utilization:

Alanine + - + + + + + + + +

Proline + + + + + + + + - -

Serine - + + + + + + + - -

Nitrate reductase + + + - + + + + - -

Decarboxylation of sodium salts:

Acetate + + - + + + + + - -

Citrate + + + + + + + + - ND

(b)

NaCl range (optimum) (%; w/v)
Temperature range (optimum) (°C) 28-37 (30) 20-35 (25) 28-37 (30)

pH range (optimum) 7-9 (7) 6.0-10.5 (8.5) 7.0-11.0 (9.0)

Diagnostic sugars Glu, rib None None

Major phospholipids PG, PC, PME, and PI DPG, PC, and PG DPG, PC, and PG

+, property present; -, property absent; ND: not determined. All experiments were done in duplicates. DPG: diphosphatidylglycerol; PC: phosphatidylcholine;
PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol; PME: phosphatidylmethylethanolamine.
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isolates), Serratia marcescens (15 isolates), and Klebsiella
pneumoniae (16 isolates). In contrast, the activity against
Gram-positive bacteria was observed only by five isolates
of Nocardiopsis against Staphylococcus aureus. However, no
isolates were active against Bacillus subtilis, Aspergillus fla-
vus, or Aspergillus niger.

From these results, we can deduce that the halophilic
actinobacteria produce molecules mainly active against
Gram-negative bacteria, which appears to be interesting.
There are many works reported that Gram-positive bacteria
are potential biocontrol agents against Gram-negative path-
ogens [21–23].

High activity is obtained against Salmonella enterica and
Pseudomonas syringae, which is interesting, given the toxic-
ity and pathogenicity of S. enterica and the phytopathogeni-
city of P. syringae. The antifungal activity is only limited to
Kluyveromyces lactis (16 isolates) and Rhizopus nigricans
(12 isolates).

Up to now, Nocardiopsis strains and species have been
shown to be the source of many secondary metabolites,
such as 3-trehalosamine [63], griseusin D [64], macrolide
NWA52-A [65], thiopeptide [66], nocapyrones [67], dike-
topiperazines [68], 4-oxo-1,4-dihydroquinoline-3-carboxa-

mide and N-acetyl-anthranilic acid [69], and more
recently angucyclinones [70] and kenalactams [71]. More-
over, Nocardiopsis strains are known to produce many
novel extracellular enzymes such as amylases, inulinases,
chitinases, proteases, xylanases, glucanases, and cellu-
lases [72].

It is interesting to mention that some products derived
from Nocardiopsis species are commercially available such
as the protein kinase and NGF inhibitors K-252a [73].
The K-252a, a kinase inhibitor isolated from the culture
broth of Nocardiopsis sp., selectively inhibits the actions
of nerve growth factor (NGF) on PC12 cells (neuroendo-
crine tumor) [74]. An understanding on the gene clusters
involved in the biosynthesis of bioactive secondary metab-
olites produced by many species and strains of Nocardiop-
sis would allow to increase their production by following
genetic manipulation techniques and their diversity by
using mutasynthetic approaches [73]. With further under-
standing on the biosynthetic capabilities of the several new
strains and/or species, the range of molecules derived from
the members of this genus and the field of “Nocardiopsis
Biotechnology” is projected to grow in the upcoming
years [73].

Table 5: Characteristics distinguishing strain AH37 from related species Nocardiopsis terrae.

Characteristics AH37 Nocardiopsis terrae YIM 90022T

Aerial mycelium color Pale yellow White

Diffusible pigment on ISP2 None Deep brown

Utilization of organic compounds:

Esculin + -

Gelatin + -

Tween 80 + -

Growth on sole carbon source (1%, w/v):
Arabinose + -

Galactose + -

Lactose + -

Mannitol + -

Maltose + -

Melibiose + -

Acetate + -

Proline + -

Growth in the presence of NaCl % (w/v)
0 - -

3 - +++

5 - +++

7 +++ +

10 ++ +

15 ++ +

NaCl range optimum (%; w/v) 7-15 (7) 1-15 (3-5)

pH range optimum 7-9 (7) 6.0-10,5 (8.5)

Temperature range (optimum) (°C) 28-37 (30) 10-45 (30)

Major phospholipids PC, PG, PME, and PI DPG, PC, PG, and PME

+, property present; -, property absent. All experiments were done in duplicates. DPG: diphosphatidylglycerol; PC: phosphatidylcholine; PG:
phosphatidylglycerol; PI: phosphatidylinositol; PME: phosphatidylmethylethanolamine.
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4. Conclusions

The 23 isolates were characterized by morphological charac-
teristics and had chemotaxonomic properties consistent
with their assignment to the genus Nocardiopsis. These iso-
lates were compared phylogenetically and physiologically
with the nearest species. The comparison showed that they
are clearly different from the known species of Nocardiopsis
and suggested the presence of a potential novel species. The
antagonistic properties of the isolates showed antibacterial
activity directed mainly against Gram-negative bacteria for
the majority of isolates, which is interesting given the known
resistance of this group of bacteria to many antibiotics. The
strong activities are obtained against Salmonella enterica,
which is interesting, given the pathogenicity and toxicity of
this germ for humans. The results imply that unexplored
extreme ecosystems such as the Sahara Desert potentially
contain new species of actinobacteria as the source of novel
bioactive secondary metabolites that may serve as a struc-
tural foundation for the development of novel drugs to be
used in medicine and/or other industries.
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