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The inflammation/immune response pathway is considered a key contributor to the development of Langerhans cell histiocytosis
(LCH) bone metastasis. However, the dynamic changes in the immune microenvironment of LCH bone metastasis and critical
regulators are still unclear. Expression profiling by arrays of GSE16395, GSE35340, and GSE122476 was applied to detect the
immune microenvironment changes in the development of LCH bone metastasis. The single-cell high-throughput sequencing
of GSE133704, involved in LCH bone lesions, was analyzed. The online database Metascape and gene set variation analysis
(GSVA) algorithms were used to detect the gene function of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). The protein–protein interaction (PPI) network of hub regulators was constructed by the STRING database.
In these results, key immune cells, such as Tem cells, NK T cells, CD8(+) T cells, and Th1 cells, were identified in LCH bone
metastasis. These genes, which include LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS, may significantly
correlate with the cellular infiltration of B cells, aDCs, pDCs, cytotoxic cells, T cells, CD8+ T cells, T helper cells, and Tcm
cells. In conclusion, our study constructed an atlas of the immune microenvironment of LCH bone metastasis. Genes including
LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS may be involved in the development of LCH bone
metastasis. The hub gene-immune cell interactive map may be a potential prognostic biomarker for the progression of LCH
bone metastasis and synergetic targets for immunotherapy in LCH patients.

1. Introduction

Langerhans cell histiocytosis (LCH) is an inflammatory mye-
loid neoplasm of mixed cellularity that is clinically heteroge-
neous, ranging from self-resolving skin or single bone lesions
to systemic forms involving the bone marrow, liver, and/or
spleen [1]. The pathological features of LCH include a large
number of Langerhans cells, hyperplasia, infiltration, and
granuloma formation, accompanied by inflammatory cell
infiltration, resulting in tissue destruction and tissue and organ
dysfunction [2]. Both adults and children are susceptible to the
disease, but it tends to be more prevalent in children [3, 4].

Evidence has shown that mutations of B-raf protoonco-
gene-serine/threonine kinase (BRAF) in the mitogen-activated

protein kinase pathway play important roles in the progression
of LCH, although its pathogenesis is not fully understood [5].
Recently, activating somatic mutations in mitogen-activated
protein kinase (MAPK) pathway genes, most notably
BRAFV600E, have been discovered in almost all cases of
LCH. Moreover, Bigenwald et al. also reported that enforced
expression of the BRAF V600E mutation in early mouse and
human multipotent hematopoietic progenitor cells induced a
senescence program that led to hematopoietic progenitor cell
growth arrest, apoptosis resistance, and senescence-associated
secretory phenotype, which contribute to the formation of
LCH lesions [6]. In addition, other members in the MAPK
pathway, such as MAP2K1 and ARAF, were also activated
due to mutation, which could contribute to LCH. However,
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the in-depth exploration of theMAPKpathway has not brought
qualitative improvement to the treatment of LCH [7, 8].We still
need to find more diversified targets for systematic treatment.

It is generally believed that abnormalities of the immune
microenvironment often exist in LCH lesions. Evidence con-
cerning LCH immunology suggests that clonal changes in
dendritic cells (DCs) might underlie the aberrant immune
interaction with T cells, leading to a unique pathological pic-
ture that combines features of carcinogenesis and chronic
inflammation [9]. Moreover, DC-derived osteoclasts may
be directly involved in forms of Langerhans cell histiocytosis,
characterized by the accumulation of immature skin DCs
and chronic lytic bone lesions [10]. In addition, for T cells,
intralesional CD8+ T cells showed blunted expression of
Tc1/Tc2 cytokines and impaired effector function, while reg-
ulatory T cells demonstrated intact suppressive activity [11].
However, the mechanisms that lead to disturbances in the
immune microenvironment also need to be further studied.

The development of single-cell sequencing technology
has brought new ideas to solve this problem. Halbritter
et al. launched a single-cell analysis of LCH and uncovered
an unexpected degree of cellular, transcriptomic, and epige-
nomic heterogeneity among LCH cells, indicative of com-
plex developmental hierarchies in LCH lesions [12].
Moreover, Shi et al. analyzed the differences in the pheno-
types of peripheral immune cells and MAPK pathway
expression of different subsets of cells in children with
LCH by single-cell sequencing and found that the decreased
frequency of plasmacytoid dendritic cells was significantly
correlated with the severity of the disease, which might
contribute to the improvement of clinical diagnostics and
therapeutics and aid in the development of personalized
medicine approaches [13].

However, the mechanism by which different hub genes,
pathways, and immune cells interact with each other, thus
leading to changes in the immune microenvironment and
inducing diseases, is still unknown. Therefore, based on the
public database and bioinformatics analysis, this study was
proposed to analyze different phenotypes of key LCH genes,
pathways, and contacts between the immune microenviron-
ment and different molecular phenotypic differences in the
LCH immune microenvironment to further study the
immunological mechanism of LCH and potential targets
for the accuracy of LCH system treatment.

2. Methods

2.1. Data Processing and DEG Mining. Expression profiling by
arrays from GSE16395 [14], GSE35340 [15], and GSE122476
[16] was downloaded from GEO (http://www.ncbi.nlm.nih
.gov/geo/) [17], expression profiling arrays which were gener-
ated using the GPL570 (HG-U133_Plus_2) Affymetrix Human
Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA)
and GPL17586 Affymetrix Human Transcriptome Array 2.0
(Affymetrix, Santa Clara, CA). All the samples of GSE16395,
including LCH (CD207(+), CD3(+), and control samples), were
selected to explore the immunomodulation atlas of LCH
lesions. Meanwhile, the GSE35340 and GSE122476 datasets
were included to validate the immunomodulation changes. In

addition, single-cell high-throughput sequencing of
GSE133704 [12] was also downloaded for future analysis. The
process of data preprocessing was based on Zou et al. [18, 19].
The Benjamini-Hochberg method was used to adjust the origi-
nal p values, and the false discovery rate (FDR) procedure was
used to calculate fold-change (FC). Gene expression values of
jlog 2 FCj > 1 and adjusted p < 0:05 were used for filtering
DEGs.

2.2. Immune Cell Infiltration Analysis. To compare the dif-
ferences in the immune microenvironment of different
molecular phenotypes of LCH, we performed immune infil-
tration analysis on the downloaded GSE16395 dataset based
on CIBERSORT (https://cibersortx.stanford.edu/) [19, 20].
After the gene expression matrix of GSE16395 containing
all types of LCH, CIBERSORT was run with the following
options: relative and absolute modes together, LM24 signa-
ture gene file, 100 permutations, and quantile normalization
disabled [19]. After the generation of the immune microen-
vironment matrix of each sample, we further analyzed the
immune microenvironment of LCH of each cell phenotype.

2.3. Pseudotime Analysis of Highly Variable Features in Single-
Cell Sequencing. To evaluate the sequence and trajectory of
cell-to-cell transformation and succession in LCH with differ-
ent molecular phenotypes, highly variable feature (HVF) min-
ing and pseudotime analysis were used in GSE133704 based
on R [12]. For HVF, after normalization, genes that expressed
significant differences in samples were identified. The detailed
method of pseudotime analysis can be found in Hafemeister
and Satija’s work [21]. First, after data normalization, the fea-
ture genes that defined a cell’s process were chosen. Then, data
dimensionality was reduced, and pseudotimemarker gene sets
were obtained. The root state parameter was utilized to specify
the starting end. The branch that contained the most cells at
state 0 was then identified.

2.4. Functional Enrichment Analysis and Protein–Protein
Interaction. First, to estimate the variation in pathway activ-
ity among samples with different phenotypes in GSE16359,
gene set variation analysis (GSVA) [22], a nonparametric
unsupervised method, was used based on the gene expres-
sion matrix. Then, to clarify the potential biological func-
tions involved in hub genes such as co-DEGs in different
phenotypes and pseudotime marker genes, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were carried out in the online
database Metascape (https://metascape.org/), and p values <
0.01, minimum counts of 3, and enrichment factors > 1:5
were regarded as significant [23]. Protein–protein interac-
tions concerning hub genes were also enriched in Metascape.

2.5. Partial Correlation Analysis.To exclude the interference of
other covariables, we used partial correlation analysis (PCA)
to analyze the correlation between hub genes and immune
cells in different datasets [24]. The correlations of infiltrating
immune cells were determined via the following guide for
the value of partial cor: 0.00–0.19: “very weak,” 0.20–0.39:
“weak,” 0.40–0.59: “moderate,” 0.60–0.79: “strong,” and
0.80–1.0: “very strong.”
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Figure 1: Immune infiltration subtypes and pathway interactive network detection. (a) The burden of infiltrating immune cells among the
different Langerhans cell histiocytosis (LCH) subtypes was identified based on the ssGSEA algorithm with system-level gene expression data.
(b) Hierarchical clustering analysis showed that the immune/inflammation response, hypoxia, and metabolic dysfunction were significantly
detected. (c, d) The pathway interactive networks were identified in the comparison of CD3+ LCH vs control and CD207+ LCH vs control.
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Figure 2: Langerhans cell histiocytosis (LCH) single-cell sequencing analysis. (a) The box plot shows the LCH sample feature count and
mitochondrial content. (b) The dot plot presents the variable features in scRNA analysis. (c) The hub immune marker expression levels
are presented in different cell clusters. (d–f) The spatial distribution (d) and annotation (f) of LCH single-cell clustering were detected
via singleR analysis, as well as the percentage of the cell-cluster ratio (e).
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3. Results

3.1. LCH with Different Molecular Phenotypes Had Different
Immune Microenvironments. After selection, all samples of
GSE16395 were enrolled in our study containing the types of
LCH (CD207(+), CD3(+), and control samples). Immune cell
infiltration analysis showed that immune cells such as Tem
cells, NK T cells, CD8(+) T cells, and Th1 cells were signifi-
cantly different among different cell phenotypes (Figure 1(a)),
indicating that different phenotypes of LCH had different
immune microenvironments. Moreover, GSVA and pathway
enrichment analysis also showed that they had different signal-
ing pathways among different groups (Figures 1(b)–1(d)).

3.2. Functional Enrichment Analysis of Marker Genes in
Pseudotime Clusters. After quality control, all 7 samples from
GES133704 were used for single-cell sequencing analysis
(Figure 2(a)). 2000 HVF were found (Figures 2(b) and
2(c)). After t-SNE, 11 clusters were found, and those in the
middle were related to LCH (Figures 2(d)–2(f)).

After pseudotime analysis, 3 clusters were enriched
(Figures 3(a) and 3(b)). We analyzed the enrichment of HVF
in these three clusters, which were involved in different biolog-
ical processes (Figure 3(c)). The first cluster was involved in

mRNAmetabolic process (FDR = 9:46E − 04), cellular macro-
molecule catabolic process (FDR = 2:32E − 03), nuclear-
transcribed mRNA catabolic process (FDR = 1:26E − 02),
and so on, while Cluster 2 was involved in synapse pruning
(FDR = 5:55E − 03) and cell junction disassembly
(FDR = 2:15E − 02), and Cluster 3 was involved in protein
geranylgeranylation (FDR = 1:47E − 04) and cardiac muscle
cell membrane potential (FDR = 2:87E − 04).

3.3. Co-DEGs Play Roles in LCH via Different Pathways.
After mining GSE16395 and GSE133704, we found that 85
of the hub genes were significant in both the pseudotime
analysis and two cell phenotypes (Figure 4(a)). Figure 4(b)
illustrates the expression value of all 85 genes. Through gene
enrichment analysis, we found that these 85 genes partici-
pate in the regulation of multiple signaling pathways, and
most of them are related to immune cells and inflammatory
responses (Figures 4(c) and 4(d)).

3.4. Hub Genes Involved in the Immune Microenvironment
in Different Phenotypes of LCH. In GSE35340, we found 82
significant genes in 4 groups (Figure 5(b)), and the interac-
tive network showed that some of these genes were hub
genes, including LAG3, TSPAN5, LPAR5, VEGFA, CXCL16,
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CD74, and MARCKS (Figure 5(a)). Interestingly, these hub
genes were also significant in GSE35340 and GSE16395,
and partial correlation analysis showed that these genes were
correlated with immune cells with a high correlation coeffi-
cient (Figures 5(c) and 5(d)). Furthermore, there are strong
correlations between hub genes and immune cells and
between immune cells and other types of immune cells, sug-
gesting that gene-immune cell and immune cell-immune cell
interactions are involved in different mechanisms of LCH of
different cell phenotypes.

4. Discussion

In this study, we analyzed the differences in hub genes, path-
ways, and immune microenvironment components of differ-
ent molecular phenotypes of LCH using multiple datasets
and bioinformatics analysis techniques, including difference
analysis, single-cell sequencing analysis, pathway enrich-
ment analysis, and immune infiltration analysis. We found
85 co-DEGs in different phenotypes of LCH, which mainly
correlated with an abnormal immune microenvironment.

Recent evidence has shown that immune indices are pre-
dictive of the severity of LCH [25]. LCH is characterized by
lesions containing inflammatory immune cells, including
myeloid cells and T cells, especially DCs [26]. Paredes et al.
found that the levels of macrophages, mature dendritic cells,
Tregs, and cytotoxic lymphocytes were significantly abnormal
and that different phenotypes of LCH have different immune
microenvironment abnormalities [27]. Zeng et al. also empha-
sized the importance of immune microenvironment changes

in the process of LCH lesions. Their research demonstrated
that the BRAF V600E mutation in LCH may be significantly
correlated with the regulation of programmed cell death 1
ligand 1 (PDL1) expression and forkhead box protein 3
(FOXP3)(+) regulatory T-cell infiltration and closely related
to the long-term survival of patients [28].

In our research, similarly, we found that these immune
cells, including effective memory T cells (Tem), central
memory T cells (Tcm), Th cells, Tregs, and many other
immune cells, were abnormal in LCH and that the pheno-
types of LCH have different abundances of immune cells.
Although the mechanism of these cells, such as Tregs, has
not been clarified [29], we found that various cells may inter-
act with each other to jointly regulate the progression of
LCH through analysis.

Evidence has shown that mutations in members of the
MAPK pathway contribute to LCH via various mechanisms,
including several immune-related signaling pathways [13].
Meanwhile, in our study, we also found that hub genes
represented by members of the MAPK pathway are involved
in multiple inflammatory signaling pathways (such as leuko-
cyte activation, response to cytokines, and cytokine−cyto-
kine receptor interaction), and these hub genes have
common abnormal changes in LCH of different cell
phenotypes and are related to abnormal infiltration of
immune cells.

In addition, we also found that myristoylated alanine-
rich protein kinase C substrate (MARCKS), a member of
the MAPK family and a co-DEG among arrays and single-
cell sequences, is highly related to signaling pathways and
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Figure 4: LCH bone metastasis-related hub regulator detection. (a) The Venn plot shows the hub markers among the comparison of CD3+
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Figure 5: LCH bone metastasis-related hub gene-immune cell interactive network detection. (a) After submitting the 85 bone metastasis-
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an abnormal immune microenvironment. MARCKS is a
ubiquitous, highly conserved membrane-associated protein
involved in the structural modulation of the actin cytoskele-
ton, chemotaxis, motility, cell adhesion, phagocytosis, and
exocytosis, being expressed mostly in innate immune cells
and promoting the inflammation-driven migration and
adhesion of cells and the secretion of cytokines [30].
MARCKS can activate multiple pathways, including NF-
kappa B, to promote tumorigenesis and development [31].
Meanwhile, evidence has shown that MARCKS may influ-
ence M2 polarization and immune escape and is associated
with poor prognosis and immune cell infiltration in tumors
[32]. However, there is little literature on the role of this gene
in LCH. In our research, by enrichment analysis and partial
correlation analysis, we found that MARCKS was highly cor-
related with hub genes such as CD74 and immune cells such
as DCs, which are responsible for LCH. Since MARCKS is
currently viewed as a potential target for immunotherapy
and chemosensitivity, it is reasonable to believe that it will
also be a potential therapeutic target for LCH [33, 34].

However, our research is an integrated analysis of
scRNA and transcriptome microarray datasets in LCH,
which belongs to systematic analysis and inductive research
based on public databases. Although the pathological mech-
anism of LCH systemic damage and bone invasion has been
elaborated to a certain extent, much work, including clinical
tissues, phenotypic association analysis, and molecular
experiments in vitro and in vivo, is still needed to verify
the specific molecular mechanism. In addition, we also can-
not explain the translational value of relevant key regulators
for prognosis prediction and clinical treatment of immuno-
logically related LCH lesions. In the future, we will apply
for corresponding ethical consent and collect LCH patholog-
ical tissues for in-depth research. Further exploration of the
disease will be performed with the help of the findings of this
manuscript.
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