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Laryngeal squamous cell cancer (LSCC) is a common malignant tumor with a high degree of malignancy, and its etiology remains
unclear. Therefore, screening potential biomarkers is necessary to facilitate the treatment and diagnosis of LSCC. Robust rank
aggregation (RRA) analysis was used to integrate two gene expression datasets of LSCC patients from the Gene Expression
Omnibus (GEO) database and identify differentially expressed genes (DEGs) between LSCC and nonneoplastic tissues. A gene
coexpression network was constructed using weighted gene correlation network analysis (WGCNA) to explore potential
associations between the module genes and clinical features of LSCC. Combining differential gene expression analysis and
survival analysis, we screened potential hub genes, including CDK1, SPC24, HOXB7, and SELENBP1. Subsequently, western
blotting and immunohistochemistry were used to test the protein levels in clinical specimens to verify our findings. Finally,
four candidate diagnostic and prognostic biomarkers (CDK1, SPC24, HOXB7, and SELENBP1) were identified. We propose,
for the first time, that SPC24 is a gene that may associate with LSCC malignancy and is a novel therapeutic target. These
findings may provide important mechanistic insight of LSCC.

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) is an extremely
common malignant tumor of the head and neck and is typ-
ically characterized by squamous cell carcinoma [1]. LSCC
has the second highest mortality among malignant tumors
of the respiratory system, and its etiology thus far remains
unclear [2]. Epidemiological data have confirmed that LSCC
is related to smoking, drinking, virus infection, and other
factors and often results from the synergistic effects of
numerous carcinogenic factors [3]. Recently, the incidence
of LSCC has obviously risen, with higher rates in males than

females (5.8 cases/100,000 vs. 1.2 cases/100,000, respec-
tively) [4]. Moreover, LSCC is highly malignant and aggres-
sive and has a dismal prognosis and a high rate of relapse
[5]. LSCC is locally invasive and metastatic, and the current
clinical strategies mainly adopt multidisciplinary compre-
hensive treatments based on surgery, which preserves and
adapts the function of the larynx to the greatest extent
possible while completely eradicating the tumor [6]. How-
ever, most patients are at advanced stages (III and IV) at
the time of their initial diagnosis [7]. These patients need
both radical resection and radiotherapy, and chemotherapy
with or without biological agents is recommended. The
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former may lead to cosmetic deformities and functional
impairment, which will seriously affect their daily lives [8].
At present, molecular testing does not influence the selection
of treatments for LSCC, and surgical resection is the only
feasible method for complete eradication; however, the
surgical quality is not easily controlled [4]. Therefore, new
therapeutic targets and biomarkers are urgently needed for
diagnostic and prognostic predictions in LSCC.

Many studies have identified some effective biomarkers
that can be used as prognostic markers for patients with
LSCC. Kim et al. [9] have demonstrated that FGFR1 ampli-
fication could be used as a diagnostic marker for predicting
disease-free survival in patients with LSCC. Zhou et al.
[10] suggested that the expression of BCL11A was upregu-
lated in some LSCC tissue, and its upregulation was associ-
ated to the lymph node metastasis and survival of patients.
Ogino et al. [11] showed that downregulation of class I
human leukocyte antigens (HLAs) shortened the survival
times of LSCC patients and could serve as an independent
prognostic biomarker. However, they face the problems of
single origin of tumor tissue and small sample size. There
are only a few studies on the pathogenesis of LSCC, and
the results are not satisfactory.

In recent years, the use of bioinformatics methods to
explore and analyze multiple disease-related genes or pro-
teins has become increasingly effective. Numerous gene
expression datasets of LSCC patients in public databases,
such as the Gene Expression Omnibus (GEO, http://igc1
.salk.edu:3838/bart/) and The Cancer Genome Atlas (TCGA,

https://cancergenome.nih.gov/), can be downloaded for free.
These datasets contain a substantial amount of valuable
information that can be reused based on new algorithms
and analysis methods. Therefore, the aim of this study was
to integrate data from GEO and TCGA through systematic
bioinformatics tools in order to screen hub gene that are
closely associated to the occurrence and progression of
LSCC. Subsequently, we herein identified four hub genes,
CDK1, SPC24, HOXB7, and SELEBNP1, as diagnostic and
prognostic biomarkers of LSCC.

2. Materials and Methods

2.1. Research Plan. Hub genes were identified, functionally
analyzed, and validated according to the flow chart shown
in Figure 1.

2.2. Gene Expression Dataset Collection. All LSCC-related
datasets were downloaded from GEO, a public gene expres-
sion and hybridization array data repository [12]. Each
dataset was then comprehensively evaluated according to
specific criteria. The inclusion criteria were as follows: (1)
the genome expression profiles were compared between
LSCC samples and adjacent nonneoplastic samples through
gene microarray technology, and raw data were provided,
and (2) the DEGs between LSCC and adjacent nonneoplastic
samples were detected in human tumor tissue and not in
human cell lines or whole blood. GSE59102 [13] and
GSE51985 [14] were selected as the datasets for subsequent

Figure 1: Diagram illustrating the study’s design process.
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analysis. An overview of the two GEO datasets included in
this study can be found in Table 1. Finally, 39 LSCC samples
and 23 adjacent nonneoplastic samples were involved in the
study.

2.3. Identification of DEGs. Robust rank aggregation (RRA)
analysis uses probabilistic models to integrate gene ranks
and assign significance scores to each gene, which enables
the integration of gene expression profiles from multiple
datasets [15]. The DEGs between LSCC samples and adjacent
nonneoplastic samples were analyzed by the Bioinformatics
Array Research Tool (BART, http://igc1.salk.edu:3838/bart/)
[16], and RRA analysis was used to integrate the DEGs of
the two datasets. The P value of each gene was calculated,
and the Bonferroni correction was used to reduce the number
of false-positive. DEGs with a P value < 0.05 and a jlog FCj
> 1:0 were considered statistically significant.

2.4. Construction of the Coexpression Network. In this study,
we performed WGCNA software to construct the DEG
coexpression network. In the first step, we calculated Pear-
son’s correlation coefficients of the DEGs using a linear
correlation function [17]. Two genes were correlated if the
absolute value of the correlation coefficient was greater than
or equal to 0.8. In the second step, we used a dynamic tree
cutting algorithm to construct a cluster tree for the gene
coexpression network, and the minimum number of genes
per gene module was set to 30. In the third step, the correla-
tions and confidence levels of each gene in all module were
analyzed to determine the phenotypic traits. The most rele-
vant and significant modules were selected as core modules
for subsequent analysis.

2.5. Functional Enrichment Analysis of Merged Module
Genes. The DAVID database (https://david.ncifcrf.gov/)
[18] was used to conduct Gene Ontology (GO) [19] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [20]
pathway enrichment analyses of the merged key module
genes. The Benjamini and Hochberg test was performed,
and P values < 0.05 indicated statistical significance.

2.6. PPI Network. First, we used the Search Tool for the
Retrieval of Interacting Genes database (STRING, http://
www.string-db.org/) to construct a PPI network for the
merged key modules [21]. We then imported our results into
Cytoscape software for visualization and utilized the
MCODE plug-in to search for clustered subnetworks [22].
Next, we set the following default parameters: node score
cutoff = 0:2, k − core = 2, degree cutoff = 5, and maximum
depth = 100.

2.7. Identification of Prognosis-Related Genes. RNA sequenc-
ing data associated to the survival of 112 LSCC patients were
downloaded from TCGA. The clinicopathological parame-
ters of the LSCC patients, including their age, sex, patholog-
ical stage, living status, smoking status, and overall survival
(OS) status, were used for further analysis to identify hub
genes associated with diagnosis and prognosis. Statistical sig-
nificance was set at P < 0:05. A univariate Cox proportional
hazards regression model was applied to screen candidate

genes that were closely related to survival according to P <
0:05, and a multivariate Cox proportional hazards regression
model was established to identify gene markers correlated
with prognosis based on a cutoff of P < 0:05. Patients with
LSCC were classified into a low-risk cohort and a high-risk
cohort according to their median prognostic risk score,
and the Kaplan-Meier curve analysis revealed the OS rates
for the low-risk and high-risk cohorts. The accuracies of
the prognostic gene markers to predict the 5-year survival
of patients with LSCC were determined by receiver operating
characteristic (ROC) curve analysis, as the area under the
ROC curve (AUC) can assess the predictive performance.

2.8. Prediction of Transcription Factors and Construction of a
Coexpression Network of Hub Genes. The Human Transcrip-
tion Factor Database (HumanTFDB) functions to screen,
classify, and annotate human transcription factor genes.
Transcription factors in the identified hub genes were pre-
dicted by the HumanTFDB, and a coexpression network
was constructed using STRING to analyze the interactions
between the hub genes.

2.9. Ethics Statement. All patients and their families signed
informed consent forms and agreed to provide laryngeal
tissue for scientific research. This research was approved
by the Ethics Committee of the First Affiliated Hospital of
Chongqing Medical University (Chongqing, China).

2.10. Collection of Laryngeal Tissue. The laryngeal tissues in
this study were acquired from patients who were diagnosed
with LSCC before and after surgery who underwent total
laryngectomy at the Department of Otolaryngology, First
Affiliated Hospital of Chongqing Medical University.

2.11. Verification of Differential Gene Expression. To validate
the differential expression of genes in human LSCC and
normal tissues, RNA sequencing datasets were collected
from PubMed, GEO, SRA, ArrayExpress, and the National
Genomics Data Center (NGDC), and only GSE127165
contained our screen hub genes as determined by bioinfor-
matics analysis. GSE127165 (SRP186837, PMID: 32487167)
includes 57 LSCC tissues and 57 adjacent nonneoplastic
tissues [23].

2.12. Verification of Differential Protein Expression. Western
blot (WB) was used to analyze the differences in protein
expression between LSCC tissues and adjacent nonneoplas-
tic tissues. After grinding the tissues on ice, the proteins were
cleaved by RIPA buffer and PMSF protease inhibitor. The
protein homogenate was then cryogenically centrifuged at
12000 rpm, and the supernatant was carefully collected.
The target proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE),

Table 1: Information regarding GSE59102 and GSE51985.

Dataset Platform Number of samples (tumors/controls)

GSE59102 GPL6480 29/13

GSE51985 GPL10558 10/10
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transferred to a polyvinylidene fluoride (PVDF) membrane,
and then incubated at 37°C for 2 hours with a blocking
solution. The membranes were then sequentially incubated
with the corresponding specific primary antibodies over-
night at 4°C and with the appropriate secondary antibody
for 2 hours. The target proteins were detected by enhanced
diaminobenzidine (DAB) solution, and ImageJ was used to
analyze the gray-scale values. The following antibodies
were used in this experiment: anti-HOXB7 (Proteintech,
12612-1-AP, 1 : 500), anti-SPC24 (Novus, NBP2-47264,
1 : 500), anti-SELENBP1 (Novus, NBP1-54805, 1 : 500),
anti-CDK1 (Abcam, ab133327, 1 : 500), and horseradish
peroxidase- (HRP-) conjugated anti-rabbit IgG (H+L)
(ABclonal, AS014, 1 : 2000).

Immunohistochemistry (IHC) assays were performed to
assess the protein levels in LSCC samples and adjacent non-
neoplastic samples. Paraffin-embedded sections of LSCC
tissues and adjacent nonneoplastic tissues were sliced to a
thickness of 3μm and then subsequently dewaxed with
xylene and ethanol and heated in antigen recovery solution
(EDTA). Endogenous peroxidase activity was blocked with
normal goat serum. After preliminary treatment, the sec-
tions were incubated overnight at 4°C with the primary anti-
body and then treated with an HRP-conjugated secondary
antibody. Positive reactions were revealed with DAB solu-
tion, and the samples were counterstained with hematoxy-
lin. After dehydration and xylene treatment, the sections
were sealed with neutral resin and observed and photo-
graphed under a microscope. The primary antibodies were
as follows: anti-HOXB7 (Novus, NBP2-14098, 1 : 50), anti-
SPC24 (Novus, NBP2-47264, 1 : 50), anti-SELENBP1 (Novus,
NBP1-54805, 1 : 50), and anti-CDK1 (Abcam, ab133327,
1 : 50).

2.13. Statistical Analysis. Statistical analyses were performed
using R (version 3.6.0), GraphPad Prism 9.0 (GraphPad, San
Diego, USA), or SPSS 20.0. The following R software
packages were used for processing: survival, ggplot2, RRA,
and WGCNA.

3. Results

3.1. Identification of DEGs. A total of 1622 upregulated genes
and 1634 downregulated genes were identified by RRA anal-
ysis. The top 20 upregulated and downregulated genes are
shown in the heatmap (Figure 2).

3.2. Network Construction via WGCNA. There were no
obvious outliers in the GSE59102 and GSE51985 datasets
after sample clustering. The R package WGCNA was used
to build a weighted coexpression network. In GSE59102,
the power β was set to the soft threshold parameter of β =
7 (scale-free R2 = 0:88) to ensure a scale-free network. In
GSE51985, the power β was set to the soft threshold param-
eter of β = 10 (scale-free R2 = 0:85) to ensure that the
network was scale-free. Nine modules were found in
GSE59102, and 14 modules were found in GSE51985
(Figure 3). The MEDissThres parameter was set to 0.25 to
merge the closed modules into new modules with a feature

vector difference of <0.25 (Figure 3). After the merger, 6
modules were obtained from GSE5102, and 7 modules were
obtained from GSE51985. In GSE59102, the black module
included 70 genes, the green module included 164 genes,
the pink module included 38 genes, the blue module
included 927 genes, the brown module included 116 genes,
and the gray module included 1 gene. In GSE51985, the
black module included 98 genes, the blue module included
155 genes, the gray module included 26 genes, the pink
module included 163 genes, the green-yellow module
included 503 genes, and the green module included 371
genes. Because the genes in the gray modules from both
two datasets did not belong to any functional module, anal-
ysis was not needed. In addition, the correlations between
the gene expression profile and each trait and between the
gene expression profile and each module eigengene were
identified by analyzing the gene significance (GS) and
module membership (MM) scores. The results indicated that
the blue module (0.92, P = 5e − 18) in GSE59102 and the
green-yellow module (0.82, P = 9e − 06) in GSE59102 were
most strongly correlated with tumors (Figure 3). Moreover,
genes belonging to the blue and green-yellow modules had
the highest positive correlation with LSCC (Figure 3). The
selected genes are shown in the heatmap (Figure 3).

3.3. Functional Enrichment Analysis of the Merged Module
Genes. A total of 966 genes were obtained by merging the
blue module genes of GSE59102 and the green-yellow mod-
ule genes of GSE51985. Among them, 464 genes overlapped,
463 genes belonged to only the blue module, and 39 genes
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Figure 2: RRA analysis identifies robust DEGs. P value-based
heatmap showing top 20 genes upregulated and downregulated.
The rows represent genes and the columns represent datasets.
Red indicates upregulation; green indicates downregulation.
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belonged to only the green-yellow module (Figure 4). GO
enrichment analysis showed that the merged genes were
mainly enriched in cell division, mitotic nuclear division,
and protein binding. KEGG enrichment analysis indicated
that the merged genes were mostly enriched in the cell cycle
and cancer pathways (Figure 4).

3.4. PPI Network. The merged genes (966 genes) were
imported into the STRING database to construct a PPI net-
work consisting of 863 nodes and 12081 edges. STRING
software was used to identify 10 significant proteins, among
which CDK1 was identified as the most valuable protein
connecting 194 nodes (Figure 4). Cluster subnets were
generated by using the MCODE plug-in, and a total of 29

clusters were generated. Among them, cluster 1 had the
highest score (MCODE score = 104), with 122 nodes and
6298 edges. Cluster 2 had the second highest score (MCODE
score = 13), with 30 nodes and 201 edges, and cluster 3 had
the third highest score (MCODE score = 13), with 26 nodes
and 172 edges. Functional enrichment analysis of the top 3
clusters was also conducted. The above results suggest that
the genes in these 3 clusters are related to LSCC (Figure S1).

3.5. Identification of Prognosis-Related Genes. Based on the
cutoff criteria ðjMMj > 0:8 and jGSj > 0:2Þ, 209 genes from
the blue module and 164 genes from the green-yellow mod-
ule were screened. The two gene sets were merged to obtain
278 genes (Figure 5). The univariate Cox proportional
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Figure 3: The construction of coexpression modules in R using WGCNA. (a) Module clustering dendrogram of GSE59102 and GSE51985.
(b) Clustering of module eigengenes in GSE59102 and GSE51985. Under the red line was the merging threshold, and groups of eigengenes
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hazards regression analysis was performed on the merged
gene sets using TCGA data. Based on the cutoff criterion
of P < 0:05 as the standard, 11 genes were identified,
including HOXC13, CCDC86, ERVMER34-1, SELENBP1,
PNPLA7, SPC24, PKMYT1, HOXB7, MB21D2, TFRC, and
IGF2BP3. The above genes were further analyzed by the mul-
tivariate Cox proportional hazards regression. According to
the criterion of P < 0:05, HOXB7, SELENBP1, and SPC24
were identified as hub genes (Figure 5). SPC24 was identified
as an independent prognostic factor for LSCC patients and
was significantly correlated with their survival status in the
TCGA data (Tables 2 and 3). The results for the remaining
genes are shown in Tables S1–S6. With the prognostic gene
signature, LSCC patients were divided into low- and high-
risk cohorts based on the median prognostic risk score. The
Kaplan-Meier survival analysis showed that the OS rate of
low-risk patients was much better than that of high-risk
patients in the TCGA cohort (Figure 5). Based on the ROC
analysis, we determined the optimal cutoff value (0.678), at
which the specificity and sensitivity were 0.546 and 0.861,
respectively. The prognostic gene markers accurately

predicted survival because the 5-year survival rate had an
AUC value of 0.775 (Figure 5). Figure 6 shows the
correlation between the hub gene expression levels and
LSCC patient survival and the distributions of the
expression levels of the 3 hub genes in the low-risk and
high-risk groups. The expression of CDK1 had no
significant effect on OS. The expression levels of SPC24 (adj.
P value = 6.16E-24), HOXB7 (adj. P value = 2.19E-62), and
CDK1 (adj. P value = 4.46E-24) were higher in LSCC tissues
than in normal tissues in the GSE127165 dataset, but no
expression data were available for SELENBP1.

3.6. Prediction of Transcription Factors and Coexpression
Network Construction. In the HumanTFDB database, the
CDK1 mRNA expression values in TCGA cancers range
from 0 RSEM to 2000 RSEM, while the HOXB7 mRNA
expression values range from 0 RSEM to 1061.6 RSEM.
The HumanTFDB database predicted CDK1 and HOXB7
to transcription factors based on their mRNA expression
values in head and neck squamous cell carcinoma (HNSC)
of 882.7 RSEM and 4.9 RSEM, respectively. Coexpression

G
re

en
ye

llo
w

m
od

ul
e i

n 
G

SE
51

98
5

463 464 39
Bl

ue
m

od
ul

e i
n 

G
SE

59
10

2

(a)

Small cell lung cancer

Proteoglycans in cancer

Protein digestion and absorption

Progesterone-mediated oocyte maturation

Pathways in cancer

p53 signaling pathway

Oocyte meiosis

Focal adhesion

DNA replication

Cell cycle

KE
G

G

Gene ratio
0.050 0.075 0.100 0.125

–Log10 (P value)

12.5

10.0

7.5

5.0

Count
20
30
40

(b)

Edge number
0

BUB1B 162

BUB1 164
KIF11 165

AURKA 163

AURKB 166
CDC20 168

PLK1 169
CCNA2 173

CCNB1 178
CDK1 194

50 100 200150

(c)

MF~protein binding
MF~chromatin binding

MF~ATP binding
CC~spindle microtubule

CC~nucleoplasm
CC~midbody

CC~condensed chromosome kinetochore
CC~centrosome

BP~sister chromatid cohesion
BP~mitotic nuclear division

BP~G1/S transition of mitotic cell cycle
BP~DNA replication
BP~cell proliferation

BP~cell division

G
O

20

15

10

5

Gene ratio
0.0 0.2 0.4 0.6

–Log10 (P value)

Count
100
200
300

400
500

(d)

Figure 4: PPI network analysis and functional enrichment analysis. (a) Merged 2 key module genes. (b) Kyoto Encyclopedia of Genes and
Genomes enrichment analysis. The abscissa represented GeneRatio, and the ordinate represented the item name. (c) Edge number of each
key gene in PPI network. Gene names were displayed along the y-axis, and the number of genes adjacent to them was displayed along the
x-axis (d) The enrichment results of biological process, cellular component, and molecular function.

6 BioMed Research International



networks based on four hub genes were constructed in
STRING. The results showed that CDK1 and SPC24 were
coexpressed, which was confirmed by correlation analyses
of the expression values of the four hub genes (Figure 7).
Functional enrichment analysis indicated that CDK1 and
spc24 coexpressions mainly function in the cell cycle
pathway.

3.7. Verification of Differential Protein Expression. The
expression of HOXB7, SPC24, SELENBP1, and CDK1 in
LSCC samples and adjacent nonneoplastic samples was
assessed by WB analysis. Figure 8 illustrates that the expres-
sion of HOXB7, SPC24, and CDK1 in tumor samples was
higher than that in nonneoplastic samples, while the expres-
sion of SELENBP1 in tumor samples was lower than that in
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Figure 5: Survival prognosis model of the hub genes. (a) 278 genes were obtained after merging blue module and green-yellow module.
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Table 2: Clinicopathological parameters and SPC24 expression according to the TCGA database.

SPC24 mRNA expression
Parameters Group Low (n = 56) High (n = 55) X2 P value

Age (mean ± SD) 61.61± 8.93 62.05± 9.67

Gender
Female 48 43 92.95 0.39

Male 8 12

Clinical stage
I/II 7 5 89.46 0.5

III/IV 47 50

Living status
Living 19 31 512.31 0.02

Dead 37 24
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Table 3: Univariate and multivariate Cox regression analysis of SPC24 clinical pathologic features according to the TCGA database.

Parameters OS
Univariate analysis Multivariate analysis

HR Lower_95% Upper_95% P value HR Lower_95% Upper_95% P value

Age < 60 vs. ≥60 -0.14 0.47 1.6 0.66 0.29 0.15 0.57 0.0004

Gender female vs. male -1.2 0.15 0.59 0.0005

Clinical stage I/II vs. III/IV 0.36 0.16 0.78 0.01

Smoking 1 vs. 2 0.33 0.12 0.9 0.03 0.4 0.15 1.12 0.08

Smoking 1 vs. 3 0.15 0.04 0.55 0.005 0.2 0.05 0.78 0.02

Smoking 1 vs. 4 0.31 0.11 0.89 0.029 0.44 0.15 1.29 0.13

SPC24 expression low vs. high -0.41 0.44 0.99 0.044 0.33 0.16 0.69 0.003

p = 0.034
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Figure 6: Validation of hub gene. The correlation between the expression levels of hub genes and the survival of LSCC patients. (a) HOXB7,
(b) SPC24, and (c) SELENBP1. (d) Heatmap showing the changing process between down- and upregulation of 3 hub genes. Each column
represents a sample and each row represents a gene. The validation of hub gene expression in GSE127165. (e) HOXB7, (f) SPC24, and (g) CDK1.
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nonneoplastic samples. The IHC results also confirmed
these results.

4. Discussion

Bioinformatics methods, such as DEG identification, screen-
ing of hub genes based on coexpression networks, and
survival analysis, have been extensively used to screen poten-
tial biomarkers related to LSCC. For example, Chen et al.
[24] combined bioinformatics methods such as DEG identi-
fication, pathway enrichment analysis, PPI network con-
struction, survival analysis, and TCGA dataset validation to
identify potential biomarkers and analyze their predictions.
Li [25] and Zhang et al. [26] combined DEG screening,
WGCNA, pathway enrichment analysis, and PPI network
construction to identify biomarkers. Although the above

studies used a large number of bioinformatics tools to screen
biomarkers, they faced the problems of single dataset and
small sample size. The inconsistency among DEGs reported
in different studies is one of the most important factors
underlying differential conclusions and may be due to
differences in gene expression being caused by a small sam-
ple size from a single dataset or to tumor heterogeneity. To
minimize variability, on the basis of using RRA to integrate
two datasets and thereby obtain DEGs, GSE59102 and
GSE51985 were subjected to WGCNA to identify and
merge their key modules. Functional analysis of the merged
module showed enrichment in mainly the cell cycle, G1/S
transition in the mitotic cell cycle, mitotic nuclear division,
sister chromatid cohesion, cell proliferation, and chroma-
tin binding. Based on these results, we hypothesize that
cell cycle signaling is the key pathway involved in the
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Figure 7: Coexpression network of four hub genes. (a) Visualized coexpression of four hub genes. Visualization of correlation analysis of
gene expression values of the four hub genes. (b) SPC24 vs. CDK1. (c) HOXB7 vs. CDK1. (d) HOXB7 vs. SPC24. (e) SELENBP1 vs.
CDK1. (f) SELENBP1 vs. SPC24. (g) SELENBP1 vs. HOXB7. P < 0:05 considered that there is a significant correlation between the
expression of the two genes.
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development of LSCC, which is consistent with Lu et al.’s
conclusion [27].

CDK1 was identified as a core regulatory protein by the
PPI network. Cox proportional hazards regression and sur-
vival analyses confirmed HOXB7, SELENBP1, and SPC24
to be potential biomarkers of LSCC. To explore the interac-
tions of the hub genes, we constructed a coexpression net-
work, which revealed that SPC24 and CDK1 coexpressions
are closely related to the occurrence and development of
LSCC. CDK1, a member of the Ser/Thr protein kinase fam-
ily, plays an important role in G1/S and G2/M phase transi-
tions in the eukaryotic cell cycle, and studies have shown
that CDK1 can effectively drive the mammalian cell cycle
[28, 29]. SPC24 plays roles in mainly the stable formation
of kinetochore-microtubule anchors and correct chromo-
some separation in mitosis [30–32]. The centromere protein
T must recruit the outer SPC24 and SPC25 complexes to
stabilize kinetochore-microtubule attachment, which is
essential for cell division, and this recruitment process
depends on the phosphorylation of centromere protein T
by CDK1 [33–35]. In addition, perturbations in cdk2- and
cdk1-mediated chromosome stability and some aspects of
S phase and G2/M control are pivotal events in tumorigene-
sis [36–38]. Bednarek et al. [39] showed that the gene
expression of CDK1 was consistently increased in LSCC.
Several researchers have identified that overexpression of
SPC24 promotes tumorigenesis. In some cancers, such as

hepatocellular carcinoma [40] and lung cancer [41], the OS
time of patients with SPC24 high expression is significantly
shorter than that of patients with low expression. This con-
flicts with our results, which may indicate that SPC24 plays
different roles in different types of cancer in humans. Zhang
et al. [42] suggested that the OS time of LSCC patients with
SPC24 high expression is significantly greater than that of
patients with low expression, which was consistent with
our results. However, they did not include SPC24 in subse-
quent analyses due to their greater focus on screening for
those genes whose high expression was able to increase
the risk of LSCC prognosis. The present study identified
SPC24 as a hub gene closely associated with LSCC occur-
rence and development by WGCNA analysis. Univariate
and multivariate Cox analyses were secondarily used to
evaluate its ability as a prognostic gene. Finally, functional
enrichment analysis and coexpression analysis revealed
that CDK1 and SPC24 are coexpressed and involved in
LSCC progression and development through the cell cycle
pathway. We conclude that spc24 is a gene that may associate
with LSCC malignancy and could be identified as indepen-
dent diagnostic and prognostic biomarker. Until now, the
role of CDK1 and SPC24 coexpressions in cancer cells has
not been reported. We speculate that CDK1 and SPC24
participate in the occurrence and development of LSCC
through the cell cycle signaling pathway. SELENBP1, a mem-
ber of the selenoprotein family that mediates the transport of
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selenium in cells [43], may be related to the proliferation,
metastasis, invasion, and therapeutic resistance of tumor
cells [44, 45]. Studies have shown significant downregula-
tion of SELENBP1 in many types of cancer, including lung
cancer [46], gastric cancer [47], prostate cancer [48], and
HNSC [49]. The HOXB7 gene, a member of the homeo-
box gene family, is a transcription factor that regulates
the development and differentiation of embryonic cells
[50]. HOXB7 plays an important role in multiple processes
related to tumor formation and progression, including angio-
genesis, proliferation, transformation, invasion, and metasta-
sis [51–53]. Some epidemiological studies have demonstrated
that overexpression of HOXB7 is correlated with poor prog-
nosis in breast [54], colorectal [55], and gastric [56] cancer,
and upregulation of HOXB7 mRNA and/or protein expres-
sion has been reported in melanoma [57], ovarian cancer
[58], and esophageal squamous cell carcinoma [59]. de
Barros et al. [13] found that HOXC8, HOXC9, HOXC10,
HOXA10, HOXD10, HOXA11-S1, HOXD11, and HOXC13
were significantly overexpressed in LSCC tissues compared
with normal tissues. Moreover, HOXC8, HOXD10, and
HOXD11 were confirmed to be involved in biological pro-
cesses related to tumor formation and progression, such as
clone formation and cell metastasis [60–62]. Therefore,
HOXB7 may be involved in the initiation and progression
of LSCC as a complement to the HOX gene family. In addi-
tion, ROC curves showed that these four hub genes could
be used as biomarkers for LSCC.

We verified the expression of four hub genes in
GSE127165. The expression levels of CDK1, SPC24, and
HOXB7 were significantly higher in tumor tissues than in
normal tissues. However, no data were available for the
expression of SELENBP1, which may be related to LSCC
heterogeneity. Subsequently, WB and IHC were performed
to verify the differential protein expression between LSCC
tissues and adjacent nonneoplastic tissues. The protein
expression of CDK1, SPC24, and HOXB7 was higher in
LSCC samples than in the adjacent nonneoplastic samples,
while the protein expression of SELENBP1 was lower in
LSCC samples than in the adjacent nonneoplastic samples,
which was consistent with the expression changes in the four
hub genes observed in LSCC.

In summary, we herein combined comprehensive bioin-
formatics and molecular biology techniques to identify and
verify four potential diagnostic and prognostic biomarkers
that are closely associated with LSCC. The results regarding
CDK1, HOXB7, and SELENBP1 were consistent with previ-
ous findings. However, the differential expression of SPC24
between LSCC and normal tissues has not yet been reported.
Our prediction showed that CDK1 and SPC24 coexist in
LSCC and may participate in the occurrence and develop-
ment of LSCC. As for its deeper mechanism of action,
although this is not the focus of this paper, it is also the
research direction that our research team is very interested
in at present. We look forward to using more molecular
experiments to explore and prove how CDK1 regulates
SPC24 through the cell cycle signal pathway in subsequent
studies, thus participating in the occurrence and develop-
ment of LSCC. The limitations of this study are that most

of the results were obtained through the analysis of public
data and that geographical or ethnic differences may have
existed in the clinical samples obtained from hospitals.
Therefore, additional research involving a larger population
and elucidation of molecular mechanisms is needed to
confirm our findings.

5. Conclusions

Our study elucidates pathways and hub genes that are
potentially related to LSCC. We herein identify four hub
genes, CDK1, SPC24, HOXB7, and SELEBNP1, as candidate
diagnostic and prognostic biomarkers of LSCC. Moreover,
we propose, for the first time, that SPC24 is a gene that
may associate with LSCC malignancy and is a novel ther-
apeutic target. We predict that CDK1 and SPC24 coex-
pressions are closely associated to the occurrence and
progression of LSCC. However, further molecular experi-
ments are needed to clarify their specific mechanisms.
These findings may provide new insights into the etiology
and prognosis of LSCC.
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