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Acute myeloid leukemia (AML) is a blood cancer caused by the abnormal proliferation and differentiation of hematopoietic stem
cells in the bone marrow. The actual genetic markers and molecular mechanisms of AML prognosis are unclear till today. This
study used bioinformatics approaches for identifying hub genes and pathways associated with AML development to uncover
potential molecular mechanisms. The expression profiles of RNA-Seq datasets, GSE68925 and GSE183817, were retrieved from
the Gene Expression Omnibus (GEO) database. These two datasets were analyzed by GREIN to obtain differentially expressed
genes (DEGs), which were used for performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, protein-protein interaction (PPI), and survival analysis. The molecular docking and dynamic simulation were
performed to identify the most effective drug/s for AML from the drug list approved by the Food and Drug Administration
(FDA). By integrating the two datasets, 238 DEGs were identified as likely to be affected by AML progression. GO enrichment
analyses exhibited that the upregulated genes were mainly associated with inflammatory response (BP) and extracellular region
(CC). The downregulated DEGs were involved in the T-cell receptor signalling pathway (BP), an integral component of the
lumenal side of the endoplasmic reticulum membrane (CC) and peptide antigen binding (MF). The pathway enrichment
analysis showed that the upregulated DEGs were mainly associated with the T-cell receptor signalling pathway. Among the top
15 hub genes, the expression levels of ALDH1A1 and CFD were associated with the prognosis of AML. Four FDA-approved
drugs were selected, and a top-ranked drug was identified for each biomarker through molecular docking studies. The top-
ranked drugs were further confirmed by molecular dynamic simulation that revealed their binding stability and confirmed
their stable performance. Therefore, the drug compounds, enasidenib and gilteritinib, can be recommended as the most
effective drugs against the ALDH1A1 and CFD proteins, respectively.

1. Introduction

Acute myeloid leukemia (AML) is a hematopoietic malignancy
(cancer) in which too many immature blood-forming cells are
accumulated in the bone marrow that also interferes with the
production of normal blood cells, such as red blood cells, plate-

lets, white blood cells, and other components [1]. It is the most
common type of leukemia in adults, accounting for roughly
80% of all cases [2]. It is distinguished by the clonal expansion
of immature “blast cells” in the peripheral blood and bone
marrow, which results in ineffective erythropoiesis and bone
marrow failure. Chemotherapy, monoclonal antibody therapy,
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stem cell transplant, and CAR-T cell therapy are designed for
the treatment of AML [3]. Chemotherapy works as a remissive
for AML patients; however, sometimes, within 12 months of
the treatment, the cancer returns, for which the physician rec-
ommends the stem cell transplant, which is unfavorable for
health and also costly. Immunotherapy-based methods have
been proven to be appealing for AML patients, who have
become resistant to chemotherapy over the previous decade.
This innovative therapy can target antigens on the leukemic
stem and blast cells, resulting in decreased toxicity [3]. The
clinical suspects have been diagnosed as AML patients when
they have at least 20% of bone marrow blast cells [4]. Flow
cytometry-based immunophenotyping is used for diagnosing
and determining the lineage of leukemic cells [5, 6]. Themajor-
ity of AML patients display clonal heterogeneity at the time of
diagnosis, showing the presence of both a founding clone and
at least one subclone [7]. During a patient’s relapse, different
patterns of dynamic clonal evolution occur, which most likely
contribute to therapeutic resistance [8]. Once AML was con-
sidered incurable, 35% to 40% of 60-year-old patients or youn-
ger patients are now cured, and patients older than 60 years are
cured by 5% to 15% [6]. Advances in AML treatment for youn-
ger patients gained significant improvement, while the same
for elderly patients remains unclear [9]. Even with the treat-
ments so far developed, up to 70% of patients aged 65 years
and over die from their disease within a year of diagnosis
[10]. In this circumstance, finding the potential key biomarkers
and therapeutic targets of AML would immensely promote the
medication and reduce casualty. The study of high throughput
sequencing can provide an understanding of the pathology and
molecular mechanism of AML. GEO database is a worldwide
web-based depository for high-throughput gene expression,
where various functional genomic data sets are archived and
freely distributed [11]. The identification of appropriate com-
pounds against the prognostic biomarkers is a very crucial
requirement nowadays. A prognostic biomarker is a genetic
indicator that predicts the likelihood of a future clinical event,
disease recurrence, or disease progression in a known popula-
tion. The biological characteristics of the biomarker are objec-
tively measured and evaluated for predicting the course of a
disease or a response to a therapeutic intervention among the
patients. Combined computational and experimental method-
ologies have been proven to be beneficial for identifying and
developing novel promising molecules. This study was per-
formed using two datasets from the GEO database and
obtained the results by exploring the molecular function of
mRNA related to AML. It has been demonstrated that the
molecular dynamics simulation (RMSD, hydrogen bond, Rg,
SASA, RMSF, and MM-PBSA) indicates the degree of move-
ments and conformational changes within the interaction sites
of protein-ligand, which supports our understanding on how
ligands interact and associate with proteins [12–14].

A detailed understanding of the molecular mechanism
for AML pathogenesis is likely to provide a rationale for
developing and designing an appropriate therapy. FDA
approved a list of drugs for medicating AML, but doctors
speculate about prescribing the most effective drug from
the list. However, it is a bit difficult for a doctor to select a
drug having the most effectiveness. So, the doctors are to

prescribe a drug for a patient as if they experiment on
the patient. Our study is aimed at exploring the prognostic
biomarkers and the molecular pathways related to AML
and thereby identifying the best-matched specific thera-
peutic compounds for the appropriate treatment of AML
through molecular docking and molecular dynamic (MD)
simulation.

2. Materials and Methods

The workflow of the present study is presented in Figure 1.

2.1. RNA-Seq Data. This study used the keyword “Acute
Myeloid Leukemia” and searched on the NCBI’s GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/) and selected two
datasets, GSE68925 [15] and GSE183817 [16], because they
were associated with AML prognosis. For this study, seven
data samples were selected from 10 samples having acces-
sion number GSE68925, of which four (GSM1686542,
GSM1686543, GSM1686544, and GSM1686545) were leuke-
mic blast cells as case samples, and three (GSM1686546,
GSM1686547, and GSM1686548) were healthy hematopoi-
etic stem/progenitor cells (CD34+ HSPC) considered as
control samples. The remaining three (GSM1686539,
GSM1686540, and GSM1686541) were excluded because of
nontranscriptomic samples. Another gene expression profile
dataset with accession number GSE183817 has 13 peripheral
blood samples, of which four (GSM5571742, GSM5571743,
GSM5571744, and GSM5571745) were chosen as de novo
AML patients, and three (GSM5571752, GSM5571753, and
GSM5571754) were healthy samples taken as control. The
remaining samples were excluded as they are refractory
secondary AML (GSM5571746, GSM5571747, and
GSM5571748) and refractory/relapsed AML (GSM5571749,
GSM5571750, and GSM5571751). The selected datasets were
analyzed from Homo sapiens, and the tissue system and cell
type were also relevant to AML for both datasets. Detailed
information about the data sets is shown in Table 1.

2.2. Identification of Differentially Expressed Genes in AML.
GREIN (GEO RNA-seq Experiments Interactive Navigator)
[17] is an interactive online analysis tool using an R-based
automated pipeline GREP2. RNA-seq raw sequencing data
from the GEO database were simultaneously downloaded
and processed through GREIN. The absolute log fold change
(log ðFCÞ > 1) and p value < 0.05 were considered as the
selection criteria of differentially expressed genes (DEGs)
for AML samples from two RNA-seq datasets. The distribu-
tion of the DEGs in the datasets was presented as a Venn
diagram using the Venny online tool [18]. Volcano plots
and heat maps were generated for each dataset through
SRplot (http://www.bioinformatics.com.cn/srplot) [19].

2.3. GO and Pathway Enrichment Analysis of DEGs. The
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID, https://david.ncifcrf.gov/) [20] is an online
tool that dispenses a comprehensive set of functional anno-
tation tools to recognize biological information behind a
large list of genes. Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) annotations were
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analyzed using this database. During analysis, we uploaded
an integrated gene list and selected the official gene symbol
at the select identifier option as well as choose the gene list
at the list type setting to perform the GO and KEGG analy-
sis. The p value < 0.05 was defined as significant enrichment.

2.4. Constructions of PPI Network and Identification of Hub
Genes. The STRING (https://string-db.org) database was
used to build the protein-protein interaction (PPI) network
by setting up their interaction score > 0:4 [21], and Cytos-
cape software (version 3.9.0, [22]) was used to visualize
and analyze the PPI network model. The cytoHubba plugin
ranks nodes in a network and identifies the hub genes based
on their network properties. Based on the ranking method of
maximal clique centrality (MCC), this study defined the top
15 genes as the hub genes.

2.5. Survival Analysis of Hub Genes. Gene Expression Profil-
ing Interactive Analysis (GEPIA, http://gepia2.cancer-pku
.cn/) is an interactive bioinformatics online tool used for

investigating the RNA-sequencing data from the TCGA
and the GTEx projects [23]. Using GEPIA, the relationship
between key gene expression and AML prognosis can be elu-
cidated following log rank. For generating survival plots of
the DEGs, the GEPIA web tool was used with the parameters
of methods (overall survival), group cutoff (high 50% and
low 50%), hazard ratio (yes), 95% confidence interval (yes),
and axis units (months) with the dataset of AML. The differ-
ence between the cutoff high 50% and low 50% was consid-
ered statistically significant when the p value was < 0.05. The
possible effects of hub genes were assessed using the overall
survival (OS) study [24]. These hub genes were designated as
biomarkers because of their role in the prognosis of AML.

2.6. Validation of Hub Genes. GEPIA (http://gepia2.cancer-
pku.cn/) includes different functions such as tumor and nor-
mal differential expression analysis, profiling of cancer types
or pathological stages, and survival analysis of patients.
GEPIA was used to exhibit the box plot for revealing the
results to validate and analyze the expression of key genes.
Log ðFCÞ > 1 and p value < 0.05 were set to screen the data’s
validity.

2.7. Molecular Docking. The three-dimensional structures of
the complexes were predicted based on the binding proper-
ties of each ligand with their cognate proteins. The prognos-
tic biomarkers ((ALDH1A1 (PDB ID: 7JWW [25]) and CFD
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Figure 1: Schematic diagram outlining the workflow of our proposed approach.

Table 1: Details of the AML data in GEO.

Accession no. Platform Control Clinical case DEGs counts

GSE68925 GPL11154 03 04 1965

GSE183817 GPL20301 03 04 1449
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(PDB ID: 5NAT [26])) were taken as model proteins after
validation of the hub genes docked with each of the FDA-
approved drugs for AML treatment. The three-dimensional
structures of the prognostic proteins and FDA-approved
drugs were retrieved from the protein data bank (PDB) data-
base and PubChem database, respectively.

The protein structures were preprocessed by PyMOL
software (version 2.5) [27], where water and other nonessen-
tial residues were removed from the proteins. The potential
energy of the proteins was minimized using Swiss-PDB
Viewer software [28] for better optimization. Hydrogen
atoms have been added to proteins to make them protonated
for better docking performance. Molecular docking was car-
ried out by PyRx software (version 0.8) [29], which is com-
monly used for docking studies.

The grid box was generated, and for ALDH1A1, the
center points of the box were X = 44:018, Y = −14:84, and
Z = 19:702; and dimensions are X = 76:3418565941,
Y = 66:6992212296, and Z = 55:7972505379 (all are
in Angstrom). For CFD, the center points of the
box were X = −1:4345, Y = −0:0011, and Z = 13:0908; and
dimensions are X = 43:7299689674, Y = 43:2379607773, and
Z = 55:4447107124 (all are in Angstrom). Molecular visuali-
zation is important in modelling analysis after docking the
selected compounds with the target proteins. The docking
results were visualized and analyzed using BIOVIADiscovery
studio client 2021 [30].

2.8. Molecular Dynamic Simulation. Molecular dynamic
simulation studies greatly improve our understanding of
protein stability when it binds to a ligand. The ligand and
target protein are physically separated, and the ligand is then
permitted to bond into the groove of the target after “speci-
fied durations of moves” in its conformational space. Inter-
nal (torsional angle rotations) or external (rotational angle
rotations) changes the structure of the ligand involved in
the motion (rotations and translations). It is also more real-
istic to evaluate the molecular recognition between the
ligand and the target protein. Due to the significant energy
dissipation for each conformation, this technique takes a
longer time to determine the best-docked conformer. Fast
optimization methods and grid-based tools have largely
transformed this flaw in recent years, making simulation
more user-friendly [31]. The molecular dynamic simulation
was done in YASARA dynamics [32] using the AMBER14
force field [33]. The cubic simulation cell was built, com-
plexes were tuned, and hydrogen bond networks were ori-
ented. The steepest gradient techniques were employed
using a simulated annealing method to minimize the protein
complexes using a TIP3P water solvation model (0.997 g/L1,
25 c, 1 atm) [34]. The simulated system was neutralized at
0.9% NaCl, 310K, and pH 7.4 [35]. The electrostatic inter-
action was calculated using the particle mesh Ewald
method, with a radius of 8Å cutoff. The simulation cell
was stretched to 20Å on both sides of the system so that
the protein could move freely. A Berendsen thermostat
was employed to maintain the simulation temperature
constant [36]. The simulation was run at 1.25 frames per
second, with the trajectories saved every 100 ps. It was car-

ried out for over 100 ns, and subsequent trajectory analy-
ses were implemented by SciDAVis software available at
http://scidavis.sourceforge.net. All snapshots were then
subjected to YASARA software’s MM-Poisson–Boltzmann
surface area (MM-PBSA) binding free energy calculation
using Formula (1) below [37].

BFE = EpotR + EsolR + EpotL + EsolL − EpotC
− EsolC⋯⋯⋯ ⋯ ⋯ ⋯ :

ð1Þ

Here, BFE: binding free energy; EpotR: EpotReceptor;
EsolR: EsolvReceptor; EpotL: EpotLigand; EsolL: EsolvLi-
gand; EpotC: EpotComplex; EsolC: EsolvComplex.

With AMBER 14 as the force field, the MM-PBSA bind-
ing energy was estimated in this case using built-in YASARA
macros, where bigger negative energies indicate better bind-
ing [38].

3. Results

3.1. Identification of DEGs. GSE68925 and GSE183817 were
investigated to identify DEGs by comparing blood samples
among healthy and AML patients. A total of 1965 differen-
tial genes in the GSE68925 dataset (1221 upregulated and
744 downregulated genes) and 1449 differential genes in
the GSE183817 dataset (614 upregulated and 835 downreg-
ulated genes) were identified by using GREIN (Table 1).
The upregulated and downregulated genes were detected
according to the logFC (fold change in log2 scale (usually)).
Figures 2(b) and 2(c) show the volcano plots of the two
datasets.

3.2. Integration of DEGs. The aim of the integration of DEGs
is to find out the common DEGs from two datasets. The two
datasets were integrated using the online tool Venny 2.1.0
[18], which identified 238 integrated DEGs (Table 2,
Figure 2(a)). We took 95 integrated DEGs (including 38
upregulated and 57 downregulated genes) for our analysis
based on logFC value. The heatmap of the top 20 DEGs in
each dataset is shown in Figures 2(d) and 2(e).

3.3. GO Enrichment Analysis. GO is a technique for locating
classes of genes or proteins that are overrepresented in a
large collection of genes or proteins and may be related to
disease characteristics. DEGs are categorized according to
their biological process (BP), cellular component (CC), and
molecular function (MF) in GO analysis. The functional
processes of the DEGs were performed using GO analysis,
shown in Tables 3(a) and 3(b) and Figures 3(a) and 3(b).

In BP, the upregulated DEGs were enriched in the
inflammatory response, immune response, CC, extracellular
region, extracellular space, plasma membrane, endosome
membrane, and MF serine-type endopeptidase activity. In
BP, the downregulated DEGs were enriched in the T cell
receptor signalling pathway and costimulation, regulation
of gene expression, embryonic hematopoiesis, antigen pro-
cessing and presentation of peptide or polysaccharide
antigen via MHC class II, positive regulation of T cell activa-
tion, transcription from RNA polymerase II promoter,
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positive regulation of transcription, and DNA templated.
While in CC, the downregulated DEGs were enriched in
integral components of the lumenal side of the endoplasmic
reticulum membrane, trans-Golgi network membrane, and
in MF, peptide antigen binding, transcription factor binding,
transcriptional activator activity, RNA polymerase II core
promoter proximal region sequence-specific binding, MHC
class II receptor activity, and MHC class I protein binding.

3.4. Pathway Enrichment Analysis. Pathway enrichment
analysis is frequently used to understand high throughput
molecular data and produce hypotheses about the underly-

ing biological processes of studies. The downregulated DEGs
were associated with the T cell receptor signalling pathway,
the intestinal immune network for IgA production, antigen
processing and presentation, HTLV-I infection, toxoplasmo-
sis, and the Epstein-Barr virus infection, according to func-
tional enrichment analysis of integrated DEGs (Table 3(c)
and Figure 3(c)).

3.5. PPI Network Analysis of DEGs. PPI network analysis
methods are an effective way to quicken our understanding
of the biochemical and molecular interactions that underlie
pathogenesis. A PPI network was built using the STRING

2

1

0

–1

–2

Group
AML
Normal

G
SM

55
71

75
3

G
SM

55
71

75
2

G
SM

55
71

75
4

G
SM

55
71

74
2

G
SM

55
71

74
4

G
SM

55
71

74
5

G
SM

55
71

74
3

Group
RNASE2
SERPINE1
CFD
KCNN4
PTX3
RHOB
HLA-DPA1
ALB
HLA-DQB1
HLA-DPB1
PBX1
KLRG1
NFATC2
GATA3
LEF1
PHGDH
BEX5
GRAP2
ALDH1A1
ICOS

(e)

Figure 2: Identification and confirmation of DEGs. (a) Venn diagram showing the integrated data from the two GEO datasets. (b, c)
Volcano plots of the two datasets, GSE68925 and GSE183817; here, red dots: upregulated DEGs, blue dots: downregulated DEGs, and
black dots: genes with no significant difference in expression. (d, e) Heatmap for top 20 integrated DEGs of each dataset (GSE68925 and
GSE183817); here, brownish: relatively upregulated DEGs and greenish: relatively downregulated DEGs.

Table 2: List of the integrated DEGs in AML.

Upregulated
ADAMTS2, RFX8, MMP19, CLEC5A, PCAT18, PTPN14, CCDC189, PIWIL4, PLPPR3, SCUBE1, PTX3, HOMER3,

PPP1R27, GGT5, SERPINE1, KCNN4, LOC105377267, HHIP, RHOB, ARL4A, PRG2, MICALL2, SLC1A3, NCF4, HLA-
DQB1, IGSF10, PLXNB1, CXCL2, MROH7, CCNA1, LAIR1, CFD, HOXB6, COL23A1, RNASE2, AZU1, FAM227A

Downregulated

SLC25A23, SYDE2, ANKH,MAGEE1, LOC107985075, LDOC1, IFFO2, TAMM41, BCAS4, LGR6, KCNA3, RPP21, SFXN1,
UBASH3A, ZDBF2, SCML4, TAPBP, ALB, TTC39B, AKT3, AKAP12, ALDH1A1, ABLIM1, CYP4F22, PHGDH, KLRG1,
SKAP1, LEF1, C3orf14, NAP1L3, APBB1, DTX3, ADGRG1, GATA3, NUDT11, TUBB, RHOF, CPED1, NFATC2, HLA-
DPB1, FAT4, TC2N, HOPX, TCEAL2, PRSS23, TRPC1, MAGI2-AS3, LZTS3, GRAP2, ICOS, HOOK1, FAM169A, CYFIP2,

PBX1, HLA-DPA1, SALL2, BEX5
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Table 3: Gene Ontology (GO) and pathway analysis of the DEGs.

(a) Significant GO analysis of the integrated upregulated DEGs

Category Term Count p value Genes

Biological process
Inflammatory response 5 0.004964045 GGT5, SCUBE1, PTX3, AZU1, CXCL2

Immune response 4 0.041879060 NCF4, PRG2, CXCL2, HLA-DQB1

Cellular component

Extracellular region 12 5.56E-05
CFD, IGSF10, ADAMTS2, HHIP, SERPINE1, PRG2, MMP19,

PLXNB1, PTX3, AZU1, RNASE2, CXCL2

Extracellular space 7 0.027764289 CFD, SCUBE1, SERPINE1, MROH7, PTX3, AZU1, CXCL2

Plasma membrane 13 0.040982851
GGT5, COL23A1, SERPINE1, SLC1A3, RHOB, ARL4A, CLEC5A,
MICALL2, HOMER3, PLXNB1, KCNN4, LAIR1, HLA-DQB1

Endosome membrane 3 0.041660003 NCF4, RHOB, HLA-DQB1

(b) Significant GO analysis of the integrated downregulated DEGs

Category Term Count p value Genes

Biological process

T cell receptor signalling pathway 5 6:52E − 04 GRAP2, HLA-DPB1, GATA3,
SKAP1, HLA-DPA1

T cell costimulation 4 0.001188945
GRAP2, HLA-DPB1, ICOS,

HLA-DPA1

Positive regulation of signal transduction 3 0.011624363 GRAP2, GATA3, SKAP1

Regulation of gene expression 3 0.029442346 PHGDH, TC2N, TAPBP

Embryonic hemopoiesis 2 0.042044862 GATA3, PBX1

Antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II

2 0.044614484 HLA-DPB1, HLA-DPA1

Positive regulation of T cell activation 2 0.047177366 HLA-DPB1, HLA-DPA1

Transcription from RNA polymerase II promoter 5 0.047916492
SALL2, LEF1, NFATC2, GATA3,

PBX1

Positive regulation of transcription, DNA templated 5 0.048484768
LEF1, NFATC2, GATA3,

APBB1, SKAP1

Cellular component
An integral component of the lumenal side of the

endoplasmic reticulum membrane
3 0.002970387 HLA-DPB1, HLA-DPA1, TAPBP

Trans-Golgi network membrane 3 0.022619857 HLA-DPB1, LGR6, HLA-DPA1

Molecular function

Peptide antigen binding 3 0.002513237 HLA-DPB1, HLA-DPA1, TAPBP

Transcription factor binding 5 0.006798913
LEF1, NFATC2, GATA3,

APBB1, PBX1

Transcriptional activator activity, RNA polymerase II
core promoter proximal region sequence-specific binding

4 0.024880383 LEF1, NFATC2, GATA3, PBX1

MHC class II receptor activity 2 0.039264179 HLA-DPB1, HLA-DPA1

MHC class I protein binding 2 0.049477439 TUBB, TAPBP

(c) Significant pathway analysis of the integrated upregulated DEGs

Category Term Count p value Genes

KEGG_pathway

T cell receptor signalling pathway 4 0.00207572 GRAP2, AKT3, NFATC2, ICOS

Intestinal immune network for IgA production 3 0.006520509 HLA-DPB1, ICOS, HLA-DPA1

Antigen processing and presentation 0.016438175 HLA-DPB1, HLA-DPA1, TAPBP

HTLV-I infection 4 0.026924735 AKT3, HLA-DPB1, NFATC2, HLA-DPA1

Toxoplasmosis 3 0.032814588 AKT3, HLA-DPB1, HLA-DPA1

Epstein-Barr’s virus infection 3 0.039663289 AKT3, HLA-DPB1, HLA-DPA1
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Figure 3: Continued.
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online database (Figure 4(a)), which was also used to analyze
the integrated DEGs obtained by screening. The interaction
score was set to medium confidence 0.4, which resulted in 91
nodes and 40 edges. By the MCC topological analysis
method, the cytoHubba plugin [39] of Cytoscape [22] was
used to screen out the top 15 hub genes (ALB, GRAP2,
HLA-DPA1, GATA3, HLA-DQB1, HLA-DPB1, SERPINE1,
LEF1, PBX1, PHGDH, ICOS, KCNN4, ALDH1A1, NFATC2,
and CFD) as shown in Figures 4(b) and 4(c). Finally, the
module’s hub genes with strong connections were discov-
ered. These genes play an important role in the features
and progression of the disease.

3.6. Survival Analysis of Hub Genes. Survival analysis is a
vital aspect of medical statistics and is widely used to develop
prognostic indices for mortality, recurrence, and investiga-
tion of therapeutic outcomes. In the GEPIA database, the
Kaplan–Meier survival analysis [40] was performed on indi-
viduals with AML. Based on the gene median expression,
106 AML patients were split into two equal groups: high and
low gene expression. According to the curves shown in
Figures 5(a) and 5(b), we found that the OS was lower in the
high ALDH1A1 expression group than that in the low expres-
sion group (p = 0:012). Besides, the OS was lower in the low
CFD expression group than that in the high expression group
(p = 0:028). The other hub genes were not shown to be signif-
icantly linked to AML prognosis due to p > 0:05 (Figure S. 1).
According to the analysis, two biomarkers related to AML
prognosis, ALDH1A1 and CFD, were identified.

3.7. Validation of Hub Genes. Data validation is a method
that confirms the final data by matching it to a set of stan-
dard characteristics data. GEPIA was used to verify the
essential genes’ dependability. According to the database,
genes were deferentially expressed in normal and AML sam-
ples. The expression level of ALDH1A1 and CFD was signif-
icantly higher in the tumor group compared with the normal
group. In both cases, the expression level was found to be
173 for tumor and 73 for normal condition. These findings
offer fundamental information about the expression pattern

of the major key genes and their impacts on the survival of
AML patients for further research. The outcomes were
shown as boxplots (Figures 5(c) and 5(d)). After evaluating
the primary data, we discovered that the results were compat-
ible with our analysis and found ALDH1A1 and CFD genes.

3.8. Molecular Docking. The molecular docking analysis is
used to simulate the interaction of atomic level between a
small molecule and a protein, allowing us to characterize
how small molecules behave at the binding site of target pro-
teins and enabling a better understanding of biological pro-
cesses. Docking is a method for finding a suitable ligand that
fits into the sites of a protein, energetically and geometri-
cally. In other words, it is the study of how two or more mol-
ecules, such as ligands and proteins, interact with each other.
The ligands can drive the functional changes of the target
molecules, which are determined by their binding in the
active sites of the targets [20, 21]. Based on all the analyses
mentioned earlier, ALDH1A1 and CFD have been identified
as novel therapeutic targets for AML. The crystal structures
of the two biomarkers were retrieved from the Protein Data
Bank (PDB), which are PDB ID: 7JWW [25] for ALDH1A1
and PDB ID: 5NAT [26] for CFD. The FDA-approved drugs
for AML treatment were targeted and analyzed to achieve a
docking score for determining the most effective drug for
each of the biomarkers.

Docking studies were carried out to investigate the
molecular binding pattern of the compounds within the
active pocket of protein surfaces. Tables 4 and 5 show the
results of the interaction between the two proteins and the
compounds. By analyzing the docking interactions for
ALDH1A1 protein, we found that enasidenib exhibited the
lowest binding affinity (best binding score) of −10.8 kcal/
mol, followed by −10.7, −10.5, and −10.1 kcal/mol with
prednisone, daunorubicin, and doxorubicin, respectively.
In the case of CFD protein, the gilteritinib exhibited the low-
est binding affinity (best binding score) of −8.3 kcal/mol,
followed by −7.7, −7.3, and −7.2 kcal/mol with glasdegib,
enasidenib, and cerubidine, respectively.

KEGG pathway

0 0.01 0.02

P-value

0.03 0.04 0.05

T cell receptor signaling pathway

Intestinal immune network for IgA production

Antigen processing and presentation

HTLV-I infection

Toxoplasmosis

Epstein-Barr virus infection

(c)

Figure 3: GO enrichment and pathway enrichment of DEGs. (a) Significant GO enrichment of the upregulated DEGs: (i) biological process
and (ii) cellular component. (b) Significant GO enrichment of the downregulated DEGs: (i) biological process, (ii) cellular component, and
(iii) molecular functions. (c) Significant pathway enrichment of downregulated DEGs.
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Figure 4: PPI network analysis of DEGs. (a) PPI network of the integrated DEGs. NB: circles indicate genes, and lines represent the PPI.
Each protein structure is shown in the corresponding circle. (b) PPI analysis of integrated DEGs based on Cytoscape. (c) Interconnection
of identified hub genes.
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Figure 5: Survival analysis and validation of the hub genes in AML. Survival analysis of ALDH1A1 (a) and CFD (b). Here, the blue dotted
lines indicate the ranges of expression levels of low ALDH1A1 TPM and low CFD TPM, and the red dotted lines indicate the ranges of
expression levels of high ALDH1A1 TPM and high CFD TPM. The verification of mRNA expression of ALDH1A1 (c) and CFD (d) in
terms of the boxplots.
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Table 4: Docking score of top four compounds with ALDH1A1.

Ligand Binding affinity (kcal/Mol) Amino acid residues of the active site

Enasidenib -10.8
GLY125, VAL174, THR129, SER121, VAL460, TYR297, TRP178, PHE171, PHE466,

MET175ILE304, HIS293, CYS302, CYS303, GLY294, TYR497, GLY498

Prednisone -10.7
TYR297, SER121, ASP122, ASN170, LEU428, LEU270, ILE304, CYS302, CYS303, VAL460,

VAL174, PHE171, PHE466, MET175, TRP178, THR245, GLU269

Daunorubicin -10.5
TYR297, SER121, ILE304, CYS302, VAL460, VAL174, PHE171, MET175, TRP178, THR129,

ALA462, GLY458, HIS293, SER461, LYS128

Doxorubicin -10.1
PHE171, CYS302, ILE304, TYR297, GLY458, HIS293, SER121, VAL460, LYS128, GLY125,

ALA462, TRP178, SER461, THR129, VAL174, MET175, THR245

Table 5: Docking score of the top four compounds with CFD.

Ligand Binding affinity (kcal/Mol) Amino acid residues of the active site

Gilteritinib -8.3
CYS58, LEU41, CYS42, GLY193, SER195, CYS191, GLY216, ARG218, CYS220, ILE143, VAL219,

SER217, SER215, LYS192, HIS57, GLU60

Glasdegib -7.7
SER94, GLU60, ALA61, ASP61, ALA61B, VAL85, VAL64, LYS63, ASP84, GLY62, ALA88,

LEU59, PRO90, ALA56

Enasidenib -7.3
PRO90, LEU59, ALA61A, ALA61B, VAL89, ALA88, LEU86, ARG87, VAL85, GLY62, LYS63,

GLN65, VAL64, ASP84, LEU104

Cerubidine -7.2
LEU86, ARG87, ALA88, LEU59, PRO90, ASP61C, ASP61, ALA61, ALA61B, ALA61A, GLY62,

VAL64, LYS63, VAL85

Table 6: Interaction profile of the selected complexes with hydrogen bond distance.

Name of the targets Name of the ligands Interacting amino acids Bond distance in Å Type of interaction

ALDH1A1

Enasidenib
GLY294 3.47

Carbon hydrogen bond
GLY458 3.8

Prednisone

GLU269 3.38
Conventional hydrogen bonds

TYR297 6.28

SER121 3.39 Carbon hydrogen bond

Daunorubicin VAL460 4.88 Carbon hydrogen bond

Doxorubicin
GLY125 3.22

Carbon hydrogen bond
VAL460 4.87

CFD

Gilteritinib

LEU41 5

Conventional hydrogen bondsGLY193 3.27

SER215 4.28

GLY216 5.52
Carbon hydrogen bond

VAL219 4.6

Glasdegib

LYS63 4.1 Conventional hydrogen bonds

ALA61B 5.02
Carbon hydrogen bond

VAL64 4.13

Enasidenib

LYS63 3.32

Conventional hydrogen bonds
VAL64 3.85

VAL85 4.29

LEU86 4.72

PRO90 4.79 Carbon hydrogen bond

Cerubidine
ALA61B 4.13

Conventional hydrogen bonds
ALA88 3.33
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Figure 6: Continued.
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In the interaction of ALDH1A1, the enasidenib formed
carbon-hydrogen bonds with GLY458 and GLY294 residues
(bond distances in Table 6); the van der Waals bonds with
ASP122, GLY125, THR129, SER121, TYR457, CYS303, and
MET175; a halogen bond with HIS293; alkyl bonds with
TRP178, PHE466, VAL174, VAL460, CYS302, and ILE304;
and pi-pi stacked bonds with PHE171 and TYR297
(Figure 6). In the case of CFD, gilteritinib formed conven-
tional hydrogen bonds with SER215, GLY193, and LEU41
residues; carbon-hydrogen bonds with VAL219, GLY216,
and SER217, (bond distances in Table 6); the van der Waals
bonds with CYS58, GLU60, HIS57, ILE143, CYS191, and
CYS42; a pi-cation bond with LYS192; and alkyl bonds with
ARG218, CYS220, VAL219, and LEU41 (Figure 7).

Followed by the top interaction of ALDH1A1, predni-
sone formed the van der Waals bonds with ASP122,
VAL174, ASN170, LEU428, LEU270, THR245, MET175,
and CYS303; conventional hydrogen bonds with TYR297
and GLU269; a carbon-hydrogen bond with SER121 (bond
distances in Table 6); pi-sigma bonds with PHE171 and
PHE466; and alkyl bonds with VAL460, TRP178, CYS302,
and ILE304.

The daunorubicin formed the van der Waals bonds with
HIS293, GLY458, ILE304, CYS302, MET175, VAL174,
THR129, ALA462, SER461, GLY125, LYS128, and SER121;
a carbon-hydrogen bond with VAL460 (bond distances in
Table 6); pi-pi stacked with TYR297 and PHE171; and an
alkyl bond with TRP178. The doxorubicin formed the van
der Waals bonds with LYS128, ALA462, SER461, THR129,
VAL174, MET175, THR245, CYS302, ILE304, GLY458,
HIS293, and SER121; carbon-hydrogen bonds with
VAL460 and GLY125(bond distances in Table 6); pi-pi
stacked bonds with PHE171 and TYR297; and an alkyl bond
with TRP178 (Figure 6).

In case of CFD, glasdegib formed the van der Waals
bonds with SER94, GLU60, ALA61, ASP61, ASP84,
GLY62, ALA88, and LEU59; a conventional hydrogen bond

with LYS63; carbon-hydrogen bonds with ALA61B and
VAL64 (bond distances in Table 6); and pi-alkyl bonds with
ALA56, PRO90, and VAL85. The enasidenib formed the van
der Waals bonds with LEU104, ASP84, GLN65, GLY62,
ALA61B, and ARG87; conventional hydrogen bonds with
VAL64, LYS63, VAL85, and LEU86; a carbon-hydrogen
bond with PRO90 (bond distances in Table 6); a halogen
(fluorine) bond with ALA88; and alkyl bonds with LEU59,
ALA61A, and VAL89. Cerubidine formed the van der Waals
bonds with LEU86, ARG87, PRO90, ASP61C, ASP61,
ALA61, ALA61A, GLY62, VAL64, LYS63, and VAL85; con-
ventional hydrogen bonds with ALA88 and ALA61B (bond
distances in Table 6); and a pi-alkyl bond with LEU59
(Figure 7). Our docking studies determined that among the
FDA-approved compounds, enasidenib and gilteritinib
exhibited the best binding interaction with ALDH1A1 and
CFD, respectively; thus, they are the best therapeutic com-
pounds for AML treatment.

3.9. Molecular Dynamic Simulation. Molecular dynamics
(MD) is used for analyzing the physical movements of atoms
and molecules. Among the drug candidates, enasidenib and
gilteritinib were chosen for dynamic simulation analysis
after a virtual screening. To understand the dynamic activity
of the protein-ligand complex in a solvent environment over
time, MD simulations were carried out on the YASARA
structure tool v. 20.12.24.W.64 (using the AMBER14 force
field) with 100ns.

Figure 8 indicates that the systems were remarkably sta-
ble between the moving variation and the initial state of the
protein-ligand complexes. Figure 8(a) represents the RMSD
of the ALDH1A1-enasidenib complex and CFD-gilteritinib
complex. ALDH1A1_enasidenib complex and CFD_gilteri-
tinib complex show the RMSD around 1.7Å to 3.4Å and
1.8Å to 5.8Å, respectively. The average RMSD for the
ALDH1A1-enasidenib complex and CFD-gilteritinib com-
plex were 1.7Å, and 4Å. CFD-gilteritinib complex showed
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Figure 6: Ligand binding with ALDH1A1 protein for the top four compounds: (a) enasidenib, (b) prednisone, (c) daunorubicin, and
(d) doxorubicin. Here, the left panel represents the 3D view of the binding site of the complex, and the right panel represents the 2D view of
the protein-ligand interaction. The H-bonds are shown by dashed green lines (darker color), while the other dashed lines represent
hydrophobic interactions and other types of intermolecular interaction.
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Figure 7: Continued.
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slight fluctuation in 27 ns, 39 ns, and 63ns and stabilized
in the remaining simulation. As can be seen from the plot,
the ALDH1A1-enasidenib complex showed a more rigid
conformation and achieved stability after 12ns and
remained stable in the rest of the simulation. The number
of hydrogen bonds was also used to assess protein stability
and folding success. For both simulations, the hydrogen
bond analysis revealed an increasing number of bonds
with respect to time over the course of the 100ns
((Figure 8(b)).

Figure 8(c) depicts the radius of gyration for both simu-
lated protein complexes. The radius of gyration is calculated
using the center of mass of the protein, which indicates how
compact the protein structure is. It will stay constant if the
protein is stable; however, it will change over time due to
instability. Importantly, both ALDH1A1_enasidenib and
CFD_gilteritinib complexes showed no fluctuation in our
study, indicating their stability over time.

Additionally, the SASA or solvent-accessible surface
areas of the four complexes was evaluated to see if the pro-
tein surface or volume had changed. In this study, the total
SASA was computed which denotes the biomolecular sur-
face area is accessible to solvent molecules. A higher SASA
profile is associated with a longer protein volume, whereas
a lower SASA profile is associated with a shorter protein
volume. The SASA profile for both complexes had a higher
profile and exhibited a stable profile during simulation
Figure 8(d).

The root mean square fluctuation (RMSF) plot (Figure 9)
revealed residual-wise fluctuations, where RMSF/solute
residue was calculated using the RMSF of each atom included
in the residue. The RMSF for the ALDH1A1_ enasidenib
(Figure 9(a)) and CFD_ gilteritinib complexes (Figure 9(b))
were found to be 6Å and 2.1Å, respectively.

Besides, as mentioned previously, the calculation of
MM-PBSA binding energy for two complexes was done.
Figure 10 illustrates binding energy with the top-ranked

two potential biomarkers, ALDH1A1 and CFD. On average
ALDH1A1_enasidenib complex and CFD_gilteritinib com-
plex produced binding energy of 40.588 KJ/mol and
-178.766 KJ/mol, respectively. Here, the negative value indi-
cates better binding energy. The 2D interaction has also been
analyzed followed by the completion of the 100ns MD
simulation (Figure S. 2).

4. Discussion

AML is the most common in adults, which is a grievous, life-
threatening, and often remediable hematological malignancy
that influences the progenies of myeloid cells and individuals
of all ages. Even though the availability of numerous treat-
ments, such as chemotherapy, allogeneic hematopoietic stem
cell transplantation (alloHSCT), and receptor-antagonist
medications, the 5-year survival of the patient is less than
30% [41]. As a result, research into the biomarkers and pre-
cise targets linked to the development of AML could
increase diagnostic validity and reduce the financial burden.
Integrated bioinformatics analysis has recently become pop-
ular for identifying prognostic biomarkers in malignant
tumors [42]. Research demonstrated that gene expression
differences between normal and malignant tissues might
have prognostic significance [43]. Therefore, bioinformatics
methods were used to analyze the GSE68925 and
GSE183817 datasets from GEO and find biomarkers for
the early diagnosis and prognosis of AML. GO and KEGG
studies were conducted with the integrated DEGs and
revealed the enriched pathway. The PPI network of the inte-
grated DEGs was built using STRING [21]. The PPIs are
crucial in establishing and executing intracellular communi-
cation and programmed cell death [44]. The method of cyto-
Hubba plugin’s MCC topology was used to identify 15 hub
genes. Finally, two biomarkers related to AML prognosis
were identified by analyzing the survival rate for further
analysis. Between these two genes, CFD is upregulated, and

LYS
A: 63 GLY

A: 62VAL
A: 64

VAL
A: 85

PRO
A: 90

LEU
A: 86

ARG
A: 87 ALA

A: 88

ALA
A: 61BALA

A: 61A

LEU
A: 59

ASP
A: 61CALA

A: 61

ASP
A: 61

Interactions
Van der Waals Pi-sigma

Pi-alkylConventional hydrogen bond

(d)

Figure 7: Ligand binding with CFD protein for the top four compounds: (a) gilteritinib, (b) glasdegib, (c) enasidenib, and (d) cerubidine.
Here, the left panel represents the 3D view of the binding site of the complex, and the right panel represents the 2D view of the protein-
ligand interaction. The H-bonds are shown by dashed green lines (darker color), while the other dashed lines represent hydrophobic
interactions and other types of intermolecular interaction.
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ALDH1A1 is downregulated. The GEPIA tool was also used
to validate the expression of the two genes. Such data valida-
tion confirmed the relation between the selected biomarkers
and AML prognosis.

A similar study identified that the scavenger receptor
stabilin-1 (STAB1) is a prognostic factor of AML that were
validated with three other independent CN-AML datasets
[45]. In another research, the prognostic indicator, CALCRL,
was used for determining the chemotherapy schedule and
risk of HSCT in patients with AML/ETO+AML [46]. Fur-
thermore, ERCC3 was considered as a biomarker as its over-
expressed elevated ERCC3 expression in AML patients [47].
Similarly, HSPA8 high expression was seen in another study
in AML, and it was recognized as a possible independent

prognostic factor in CN-AML patients [48]. STAT1, BATF,
and EML4 were identified as independent indicators of pedi-
atric AML [49]. AML patients with aberrant MMP7 or
MMP15 expression have a substantially poor prognosis,
and this finding raises the possibility that MMP7 and
MMP15 are potential prognostic markers and therapeutic
targets for AML [50]. Furthermore, another study identified
POBEC3G gene as a potential prognostic marker of
AML [51].

4.1. CFD. The CFD gene encodes a serine peptidase protein,
a member of the S1, or chymotrypsin family [52]. This pro-
tease catalyzes the cleavage of factor B, the rate-limiting step
of the alternative pathway of complement activation. This
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protein also functions as an adipokine, a cell signalling pro-
tein secreted by adipocytes, which regulates insulin secretion
in mice. Mutations in this gene underlie CFD deficiency,
which is associated with recurrent bacterial meningitis infec-
tion in human patients. Alternative splicing of this gene
results in multiple transcript variants, of which at least one
variant encodes a preproprotein that is proteolytically proc-
essed to generate the mature protease. CFD is a human pro-
tein, which is also known as adipsin highly expressed in
adipose tissue [53]. Its expression has been associated with
AML prognosis, and this imperiled marker may help in bet-
ter estimation of patient risks [46]. Pediatric AML was
caused due to the significant overexpression of CFD [54].
It regulates the alternative complement pathway and the
production of the complement component C3a, which helps
beta cells secrete more insulin [55] that regulates the sugar

level in the human body. Increased adipokine production
in obesity affects various functions, including appetite and
energy balance, insulin sensitivity, blood pressure, immu-
nity, angiogenesis, hemostasis, and lipid metabolism, all of
which are also linked to cardiovascular diseases [56]. More-
over, adipsin increases the proliferation of cancer stem-like
cells (CSCs), the properties of xenograft (PDX) cells devel-
oped in patients with breast cancer [57]. Furthermore, adip-
sin is a rate-limiting enzyme involved in activating the
innate immune system in various malignancies [35–38]. In
this study, the hub gene CFD showed the highest association
with AML and was found to be highly expressed in tumor
tissues compared to surrounding normal tissues. Further
confirmation of the link between CFD and the development
of AML may lead to the identification of new targets for
AML treatment.
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4.2. ALDH1A1. Another gene, ALDH1A1, responsible for
AML belongs to the ALDH superfamily of nineteen different
ALDH functional genes [38–40, 58]. Through the NAD(P)+-
dependent oxidation, the ALDH gene family appears as a
varied set of proteins that detoxifies exogenous and endoge-
nous aldehydes [59]. It is likely to play a role in tumor inva-
sion, metastasis, and prognosis and could be a suitable target
for predicting gastric cancer prognostic [60]. It also contrib-
utes to the detoxification of various regularly used anticancer
medications and has a strong activity for the oxidation of
aldophosphamide [61].

ALDH1A1 has recently been linked to the prognosis of
several human cancers, including breast cancer, lung cancer,
ovarian cancer, and esophageal cancer. [41–44] and has an
adverse prognostic effect on colorectal cancer [52, 62]. This
biomarker regulates the activation of the AKT signal path-
way and interacts with the beta-catenin which could be
one of the mechanisms, by which it maintains the character-
istics of esophageal squamous cell carcinoma (ESCC) and
cancer stem-like cells (CSCs) [63]. ALDH1A1 functions
as an isozyme that catalyzes the oxidation of retinalde-
hyde into retinoic acid followed by the formation of reti-
nol/vitamin A in downstream of retinol dehydrogenases.
This is a vital pathway for regulating the amounts of
two key chemicals, retinol, and retinoic acid, which can
be teratogenic and cytotoxic in case of its excessive pro-
duction. It has an amino butyraldehyde dehydrogenase
activity and is thought to be a part of an alternate path-
way for the production of GABA/4-aminobutanoate in
the midbrain, possibly contributing to GABAergic synap-
tic transmission. ALDH1A1 regulates either RA-driven
target genes connected to aggressiveness/stem cell activi-
ties or genes with RA response elements (RAREs) in
CSCs from human melanoma, making this isozyme a

potential therapeutic target in melanoma [64]. According
to the GeneCards, no evidence is found in support of
the relationship between the ALDH1A1 and AML. Thus,
further investigation is needed to verify the association
between ALDH1A1 and AML and evaluate the gene as a
target for AML treatment. Although the precise biological
functions of the CFD have only been studied by molecular
biology approaches [30, 31], this research has conducted a
bioinformatics investigation to verify that both the
ALDH1A1 and CFD are related to AML. Since this result
has been found by the computational analysis of two data sets
only, it needs to be validated by techniques of molecular
biology, such as RT-PCR and western blot, using clinical
samples.

4.3. Molecular Docking. Molecular docking has been per-
formed to find out the most effective drugs for AML from
the list approved by the FDA. The first prediction of molec-
ular recognition between ligand and target is heavily influ-
enced by molecular docking. Molecular docking reveals the
interacting amino acid residues, docking energy analysis,
hydrogen bonding, and analysis of amino acid residues of
the active sites and potential binding sites, which were used
to decipher drug-target interactions [65]. Various types of
atomic/molecular attractions, such as van der Waals forces,
hydrophobic bonds, and hydrogen bonds, contribute to the
accumulated binding strength of the interacting complexes
[57, 66]. At the prominent and active binding sites, hydro-
gen bonding is influenced by the composition and 3D align-
ment of interacting amino acid residues [67]. Based on the
binding pattern, the top-scored protein-ligand interactions
for each of the biomarkers were predicted and selected as
the best-matched agonist.
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4.4. Molecular Dynamic Simulation. The best compound was
selected by MD simulation and free energy calculation on
the top-scoring compounds (Tables 4 and 5). Due to the sig-
nificant energy dissipation for each conformation, this tech-
nique takes a longer time to determine the best-docked
conformer. This approach has the advantage of being more
compatible with accepting ligand flexibility. Furthermore,
it has fidelity in evaluating the inhibition of the target
proteins. According to the plot of RMSD, hydrogen bond,
Rg, SASA, RMSF, and MM-PBSA simulation, the two
complexes indicated insignificant fluctuation in 100ns
resulting in good binding stability. According to a previous
in silico research [68], the ellipticine reactive metabolites
13-hydroxyellipticine and 12-hydroxyellipticine are likely to
be effective drugs for treating breast cancers with strong
ALDH1A1 activity. The research showed that the protein
backbone RMSD (1.55Å) revealed that the structure was sta-
bilized after 3,000 ps of simulation. Another study [69]
screened selective ALDH1A1 inhibitors and identified the
top four hits (ALDH-D1, ALDH-D3, ALDH-D4, and
ALDH-D5) for dynamic simulation. The RMSD plots of all
docked complexes were plotted for 30 ns, and it was observed
that each complex is in a steady state and showed minimum
RMSD fluctuations during the entire simulation period. A
similar study [70] investigated 14 missense SNPs by dynamic
simulation and revealed the impact of missense SNPs on
the metabolic resistance to cyclophosphamide caused by
ALDH1A1-mediated mutations. In this case, the RMSD
plot of the wild type demonstrates its stability with little
fluctuations, i.e., 1Å (1.9–2.9Å). According to our study, the
ALDH1A1-enasidenib complex and the CFD-gilteritinib
complex had average RMSDs of 1.7 and 4, respectively.

5. Conclusion

In summary, our investigation found 238 DEGs by integrat-
ing the two GEO datasets of AML. The PPI networks and
survival analysis identified two important genes, ALDH1A1
and CFD, that are strongly associated with the progression
of tumors and cancer. This suggests that the two biomarkers
are likely to serve as prognostic indicators and therapeutic
targets for AML. They had great docking energy with the
FDA-approved AML drugs, gilteritinib and enasidenib,
respectively. Moreover, the MD simulation validated the sta-
bility of their binding between active pockets of the proteins
and compounds. This study also ensured the stages and clin-
ical diagnosis of AML and, finally, provided the specific
medication for a specific patient. The in silico results pre-
sented in this article need to be validated by laboratory
research, which would be our future target. That is why,
the authors are interested to confirm the function of these
screened genes and pathways in the development of AML
through future study by laboratory research (in vitro and
in vivo).
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