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Objective. To analyze and identify the core genes related to the expression and prognosis of lung cancer including lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) by bioinformatics technology, with the aim of providing
a reference for clinical treatment. Methods. Five sets of gene chips, GSE7670, GSE151102, GSE33532, GSE43458, and
GSE19804, were obtained from the Gene Expression Omnibus (GEO) database. After using GEO2R to analyze the
differentially expressed genes (DEGs) between lung cancer and normal tissues online, the common DEGs of the five sets of
chips were obtained using a Venn online tool and imported into the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) database for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses. The protein-protein interaction (PPI) network was constructed by STRING online software for further
study, and the core genes were determined by Cytoscape software and KEGG pathway enrichment analysis. The clustering heat
map was drawn by Excel software to verify its accuracy. In addition, we used the University of Alabama at Birmingham
Cancer (UALCAN) website to analyze the expression of core genes in P53 mutation status, confirmed the expression of crucial
core genes in lung cancer tissues with Gene Expression Profiling Interactive Analysis (GEPIA) and GEPIA2 online software,
and evaluated their prognostic value in lung cancer patients with the Kaplan-Meier online plotter tool. Results. CHEKI,
CCNBI1, CCNB2, and CDK1 were selected. The expression levels of these four genes in lung cancer tissues were significantly
higher than those in normal tissues. Their increased expression was negatively correlated with lung cancer patients (including
LUAD and LUSC) prognosis and survival rate. Conclusion. CHEK1, CCNB1, CCNB2, and CDKI1 are the critical core genes of
lung cancer and are highly expressed in lung cancer. They are negatively correlated with the prognosis of lung cancer patients
(including LUAD and LUSC) and closely related to the formation and prediction of lung cancer. They are valuable predictors
and may be predictive biomarkers of lung cancer.

1. Introduction

Cancer statistics in 2018 show that there were 18.1 million
new cases of cancer around the world, of which lung cancer
was the most frequently diagnosed (accounting for approxi-
mately 11.6% of the new cases). By reviewing relevant liter-
ature, it was found that whether smoking, whether there is
a history of lung disease or a family history of cancer,

whether there is a long-term exposure to air pollutants,
and so on have an inevitable relationship with the occur-
rence of lung cancer [1]. Lung cancer has long been ranked
among the top three cancers in terms of incidence rates
and mortality globally, seriously threatening people’s health
and bringing a heavy economic burden to families and
society [2]. The treatment methods for lung cancer mainly
include surgery, chemoradiotherapy, and targeted drug
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therapy. With the development and innovation of precision
medicine and the application of targeted drugs, the progno-
sis of lung cancer patients has been dramatically improved
[3]. However, due to the complexity of lung cancer patho-
genesis and the differences in individual genes, treatment
targets still need further research.

The maturity of gene chip and bioinformatics analysis
technology provides broader research space for cancer diag-
nosis and treatment. Bioinformatics technology has been
widely used in scientific research. As we all know, drug-
target (protein) interaction (DTI) is of great significance
for research and development of new drugs and has great
advantages for the pharmaceutical industry and patients.
However, it is often expensive and time consuming to pre-
dict DTT using wet laboratory experimental methods. It has
been found that the model PreDTI proposed based on
machine learning method is obviously superior to other
existing methods in predicting DTL. This model can be used
to find new drugs for unknown diseases or infections, such
as using existing drug compounds and SARS coronavirus 2
protein sequences to treat coronavirus [4].

At present, many researchers around the world are con-
ducting research on COVID-19. According to literature
reports, in order to find the sharing ways and drug targets
of IPF patients infected with COVID-19, researchers use
several innovative bioinformatics tools to design protein—
protein interaction (PPI) networks, identify the interaction
between TF gene and miRNA and common differentially
expressed genes, and identify the activity of TF. We found
some common associations that may lead to increased mor-
tality in patients with SARS-CoV-2-infected IPF [5]. Other
scholars used Gene Ontology and molecular pathway analy-
sis to carry out functional analysis and found that IPF and
COPD have some common links with the progress of
COVID-19 infection. By applying computer structural biol-
ogy and promoting immune information strategies, they
developed a therapy based on immune epitopes. This
research can recommend therapeutic compounds for IPF
patients affected by SARS-CoV-2 virus [6-8].

Tumor has always been one of the difficult problems that
scientists have overcome. In order to provide therapeutic
targets for drug research and development of esophageal
cancer, the author used gene expression analysis to identify
molecular biomarkers. Using four different microarray data-
sets related to EsC from the comprehensive gene expression
database, 1083 differentially expressed genes (DEGs) were
identified, and 10 central genes were found from the PPI
network. It was further found that the identified clusters
were involved in biogenesis, ubiquitination and proteasome
degradation, interleukin signal transduction, and Notch
HLH transcription pathway [9]. Non-small-cell lung cancer
(NSCLC) is a kind of high incidence malignant tumor. The
author used microarray gene expression dataset GSE10245
to screen that stratifin may be a key biomarker of NSCLC
and play a crucial role in the development of NSCLC [10].
In addition, in order to supplement the genetic research on
the internal mechanism of polycystic ovary syndrome, the
author identified the core genes involved in the pathogenesis
of PCOS through bioinformatics analysis, identified four
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central genes (RARA, KPNB1, REL, and MAPI1B) from the
PPI network, and revealed important drug characteristics
and potential therapeutic targets of PCOS [11].

The significance of this study is that we have been able
to conduct the largest controlled and genetic study of lung
cancer patients and normal people [12]. This study used
bioinformatics to screen essential DEGs in lung cancer
obtained from original microarray datasets from the
GEO database. The key DEGs were analyzed and identi-
fied using the bioinformatics analysis method. Then, these
DEGs were analyzed by DAVID software. After that, we
use STRING database to analyze the PPI network of the
obtained DEGs. And PPI networks were constructed and
analyzed by Cytoscape software. The molecular complex
detection (MCODE) technology has been very effective in
performing the module analysis from the constructed PPI
network. We use it to calculate the key core genes. After
using multiple databases and online tools, the essential
core genes expressing significant correlations with targeted
therapy and prognosis of lung cancer (including LUAD
and LUSC) were identified and verified. Through system-
atic analysis, genomic differences between normal people
and lung cancer patients can be seen. According to the
collection of GSE7670, GSE151102, GSE3353, GSE43458,
and GSE1984 five datasets, DEGs were identified, and sim-
ilar differentially expressed genes were screened from the
total differentially expressed genes of the two groups of
data. GO terms, cellular information pathways, and PPI
network Cytoscape 3.6.1 were analyzed for the two data-
sets. According to the corresponding similar DEGs, the
prognosis of lung cancer patients was predicted [12].

2. Materials and Methods

2.1. Data Sources. Using the GEO database in the National
Center for Biotechnology Information (NCBI) (https://www
.ncbinlm.nih.gov/), five chips, corresponding to GSE7670,
GSE151102, GSE33532, GSE43458, and GSE19804, were
screened by searching “lung cancer.” The GSE7670 dataset
contained 35 lung cancer tissues (including LUAD and LUSC)
and 31 normal tissues, the GSE151102 dataset contained 64
lung cancer tissues and 59 normal tissues, the GSE33532 data-
set collected 80 lung cancer tissues and 20 normal tissues, the
GSE43458 dataset contained 80 lung cancer tissues and 30
normal tissues, and the GSE19804 dataset included 60 lung
cancer tissues and 60 normal tissues. These 5 GEO datasets
contain lung cancer tissues and normal lung tissues with a
large number of cases, respectively. By comparing the differen-
tial genes of cancer and adjacent tissues of these 5 GEO data-
sets and then taking their intersection, the data obtained are
more representative and reliable.

2.2. Screening of Differentially Expressed Genes. GEO2R
online analysis was carried out on the five groups of chip
data obtained above. The screening conditions included P
<0.05 and |logFC| > 1. Those with logFC > 0 were regarded
as the upregulated genes of the corresponding chip, and
those with logFC <0 were regarded as the downregulated
genes of the corresponding chip. Then, the five groups of
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FIGURE 1: Venn intersection diagrams of the DEGs of the five datasets: (a) represents the upregulated gene expression, and (b) represents the

downregulated genes.

DEGs were obtained through a Venn online web tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/). A Wayne dia-
gram was drawn to obtain the intersection of upregulated
and downregulated DEGs in the five groups of chips.

2.3. GO Enrichment and KEGG Pathway Enrichment
Analyses. We used the DAVID database (http://dabid
.anciferf.gov/) for GO enrichment analysis. KEGG pathway
enrichment analysis was performed on the intersection of
DEGs obtained by Venn tool analysis to understand the bio-
logical processes and tumor-related pathways involved. P <
0.05 was taken as the inclusion standard.

2.4. PPI Network Construction and Screening of Essential
Core Genes. Input the results including up- and downregu-
lated genes obtained by DAVID into the online STRING
database (http://string-db.org/) to get the relevant PPI net-
work. Then, download the obtained network, and the
obtained protein action network was imported into Cytos-
cape 3.6.1 (http://www.cytoscape.org/). Visualization used
the MCODE plug-in in Cytoscape software to screen the
PPI network modules and core genes between DEGs and
then to select the most connected and closely related core
genes through the built-in software. The screened core
genes were entered into DAVID online software again
and verified through KEGG pathway enrichment analysis.
The critical genes in the core genes were selected, and
the essential core genes were verified with Excel 2016 soft-
ware to confirm the expression accuracy and scientific pre-
cision of the screening process.

2.5. Survival Analysis and Core Gene Expression. In UAL-
CAN (http://ualcan.path.uab.edu/home/), the term essential
core genes in the P53 mutation state was analyzed, and then,
the GEPIA website was used (http://gepia.cancer-pku.cn/).
The screened essential core genes of lung cancer were ana-
lyzed to verify the expression level of core genes in lung can-
cer tissues. In addition, use the GEPIA2 (http://gepia2
.cancer-pku.cn/#correlation) to analyze the correlation of
the four genes expressed in lung squamous cell carcinoma

and lung adenocarcinoma. Finally, the Kaplan-Meier online
plotter tool (http://kmplot.com/analysis/) was used to evalu-
ate the core genes’ predictive value in patients with lung can-
cer (including LUAD and LUSC).

3. Results

3.1. Screening of DEGs in Lung Cancer. Using the GEO2R
online tool, we collected 2390, 1423, 3775, 955, and 1902
DEGs from GSE7670, GSE151102, GSE33532, GSE43458,
and GSE19804. Then, an online Venn mapping tool was
used to determine the intersection between lung cancer
tissue and normal lung tissue. There were 352 DEGs (Sup-
plementary documents Table S1), of which 88 genes
(logFC>1) were upregulated (Figure 1(a)), and 264
genes (logFC < —1) were downregulated (Figure 1(b)).

3.2. GO Enrichment and KEGG Pathway Enrichment
Analyses of Lung Cancer DEGs. A total of 352 DEGs were
subjected to GO analysis in DAVID online software
(P < 0.05, Supplementary documents Table S2). The results
showed that (1) in the biological process -category
(GOTERM_BP_DIRECT), the upregulated DEGs were
particularly enriched in cell division, extracellular matrix
tissue, cyclin-dependent protein serine/threonine kinase
activity, G2/M transition of the mitotic cell cycle, collagen
catabolism, and collagen fibril tissue; downregulated DEGs
were particularly enriched in cell response to hormone
stimulation, cell surface receptor signaling pathway,
angiogenesis, cell adhesion, angiogenesis, and response to
glucocorticoids. (2) In the process of cell composition
(GOTERM_CC_DIRECT), the upregulated DEGs were
particularly enriched in intermediates, spindles, cytoplasm,
extracellular matrix, and centrosomes; downregulated
DEGs were increased in the components of the plasma
membrane, cell surface, receptor complex, membrane raft,
and extracellular region. (3) In terms of molecular
function (GOTERM_MF_DIRECT), the upregulated DEGs
were particularly enriched in metal endopeptidase activity,
microtubule binding, serine endopeptidase activity,
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F1GURE 2: The common differentially expressed gene (DEG) protein-protein interaction network was constructed through a retrieval tool to
retrieve the interacting genes and the core genes identified by the molecular complex detection (MCODE) application in Cytoscape. The
orange circle indicates DEG upregulation, and the green circle indicates DEG downregulation: (a) shows 81 upregulated and 221
downregulated genes in the protein-protein interaction network, and (b) shows the core genes analyzed by MCODE analysis using
Cytoscape software.
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TaBLE 1: Thirty-three core genes verified by MCODE plug-in analysis in Cytoscape software.

Gene name

CDKN3, KIF4A, BUBI, CEP55, CHEKI, STIL, RRM2, CDC6, DEPDC1, CDK1, ASPM, TTK, TYMS, TPX2, TOP2A, KIF11, CDC20,
DLGAPS5, CCNB2, CENPF, KIF14, HMMR, GINS1, MELK, MKI67, KIAA0101, CCNBI1, PBK, ECT2, EZH2, CCNA2, FOXM1, and PRC1

TaBLE 2: Results of KEGG pathway enrichment analysis of 33 core genes by DAVID (P < 0.05).

Pathway ID Name Count % P value Genes

hsa04110 Cell cycle 8 29.63 0 CDC20, CCNB2, CCNBI1, CHEK1, CDK1, TTK, CDC6, and BUB1
hsa04115 P53 signaling pathway 5 18.52 0 CCNB2, CCNB1, RRM2, CHEK]1, and CDK1

Hsa04218 Cellular senescence 4 14.81 0.001 CCNB2, CCNBI1, CHEK1, and CDK1

microtubule motility, ATP binding, and collagen binding;
downregulated DEGs in 8 matrix-binding protein and
extracellular matrix-binding protein f were significantly
enriched in binding, protein binding, and carbohydrate
binding.

After KEGG pathway enrichment analysis, the results
showed that (P < 0.05, Supplementary documents Table S3)
the upregulated DEGs were mainly concentrated in the cell
cycle, P53 signaling pathway, cell cycle yeast, cell aging,
progesterone-mediated oocyte maturation, and yeast meiosis
pathways; downregulated DEGs were mainly concentrated in
the AGE-RAGE signaling pathway, PPAR signaling pathway,
fluid shear stress and atherosclerosis, complement and
coagulation pathways in malaria, vascular smooth muscle
contraction, and diabetes complications.

3.3. PPI Analysis and Core Gene Screening. Using the online
STRING database and Cytoscape 3.6.1, 352 DEGs were visu-
alized after PPI network analysis (Figure 2(a)). A total of 352
DEGs displayed 302 nodes and 1454 edges in the PPI net-
work, and 50 genes were not in the network. The MCODE
plug-in in Cytoscape software was used to further analyze
and verify the PPI network module and core genes of the
DEGs. A total of 33 central nodes were most closely related
during the period (Figure 2(b)), which contained 518 edges
(see Table 1 for the details of the 33 genes).

We analyzed and screened the DAVID database to fur-
ther narrow the scope and identify essential genes. We
selected the cell cycle, P53 signaling pathway, and cellular
senescence pathway (Table 2, Supplementary documents
Figures S1-S3). Four genes were found to act on these
three pathways simultaneously: CHEK1, CCNB1, CCNB2,
and CDKI. Therefore, we hypothesized that these four
genes are the critical core genes.

3.4. Accuracy and Reliability of Microarray Analysis of the
Core Genes. The microarray datasets GSE7670, GSE151102,
GSE33532, GSE43458, and GSE19804 were further analyzed
to determine the accuracy and reliability of the related
expression of the four essential core genes (CHEK1, CCNBI,
CCNB2, and CDK1) in lung cancer. By analyzing the clus-
tering heat maps of these four genes in the five chips pro-
duced by Excel 2016 software, significant differences in the
expression of four essential core genes in normal tissues
and cancer were noted (taking GSE151102 and GSE33532

as examples, as shown in Figure 3). The terms of these four
critical core genes in lung cancer tissues were higher than
those in normal tissues.

3.5. Relationship between the Expression of Core Genes in
Lung Cancer-Related Information and the Prognosis and
Survival of Lung Cancer Patients. UALCAN was used to ana-
lyze the expression of CHEK1, CCNB1, CCNB2, and CDK1
in the mutation state of the P53 pathway. The figure shows
that the expression levels of the above core genes in normal
tissues were significantly lower than those in tumor tissues
without P53 mutation, and the expression levels of the above
core genes in tumor tissues with P53 mutation were signifi-
cantly higher than those in tumor tissues without P53 muta-
tion (Figure 4, P < 0.05).

GEPIA online software was used to analyze the expres-
sion of CHEK1, CCNBI1, CCNB2, and CDK1 in 969 lung
cancer tissues (including lung adenocarcinoma and lung
squamous cell carcinoma) and 685 normal lung tissues.
The expression levels of the four essential core genes in lung
cancer tissues were significantly higher than those in normal
tissues (Figure 5, P < 0.01).

GEPIA2 online software was used to analyze the correla-
tion of CHEK1, CCNB1, CCNB2 and CDKI1 genes expressed
in LUAD and LUSC patients. It can be found that the
expression of CCNB1 and CCNB2 is highly correlated in
lung cancer patients. The expressions of CCNB1 and
CHEKI1, CCNBI and CDK1, CCNB2 and CHEK1, CCNB2
and CDK1, and CHEK1 and CDKI are strongly correlated
in LUAD and LUSC patients (Figure 6, P < 0.01).

Kaplan-Meier plotter was used to analyze the prognosis of
the core genes CHEKI, CCNBI, CCNB2, and CDKI in
patients with lung cancer. The expression of CHEK1, CCNBI1,
CCNB2, and CDC2 was negatively correlated with the prog-
nosis of patients with lung cancer (P < 0.01) (Figure 7).

4. Discussion

In this study, 352 DEGs were screened from the database,
of which 88 genes were upregulated, and 264 genes were
downregulated. After analyzing these DEGs, their enrich-
ment pathways were divided into three groups: biological
process, cell composition process, and molecular function.
Further KEGG analysis revealed the main enrichment
pathways of the DEGs. Then, using PPI network and
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F1GURE 3: Validation and visualization of four essential core genes (CHEK1, CCNB1, CCNB2, and CDK1) in datasets GSE33532 and GSE151102.
The heatmap was established based on the gene expression profiles in the information sets GSE151102 (a) and GSE33532 (b). The expression levels
of DEGs are represented by different colors: red, high expression; green, low expression; blue, normal tissue; orange, lung cancer tissue.

Cytoscape software analyses, we obtained 33 core DEGs  found that four genes (CHEK1, CCNBI1, CCNB2, and
closely related to the central node. After enrichment anal- ~ CDKI1) were enriched in the cell cycle P53 signaling path-
ysis of the KEGG pathway for these 33 core DEGs, we  way and cellular senescence pathway at the same time
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FIGURE 4: Expression of CHEKI1 (a), CCNB1 (b), CCNBb2 (c), and CDKI1 (d) in the P53 pathway mutation state on UALCAN.
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F1GURE 5: Expression of CHEK1 (a), CCNBI1 (b), CCNB2 (c), and CDKI1 (d) in lung cancer tissues compared to normal lung tissues.

(Figure 3). Therefore, we selected these four genes
(CHEKI1, CCNB1, CCNB2, and CDK1) as the critical core
genes of this study.

Using the cluster heat map, UALAN website, GEPIA,
and GEPIA2 online software and the Kaplan-Meier plotter
online tool to analyze and verify the correlations of
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FIGURE 6: Correlation expression analysis of CHEK, CCNB1, CCNB2, and CDKI1 in lung cancer tissues.

expression and survival rate of the four selected key core
genes, it was found that the expression levels of these four
genes in tumor tissues with P53 mutation were significantly
higher than those in tumor tissues without P53 mutation
and normal tissues. It is suggested that P53 mutation is
highly correlated with these four genes and may play a coor-
dinating role in the occurrence and development of tumors.
At the same time, according to the analysis results of the

above four pathways, the expression levels of CHEKI,
CCNBI1, CCNB2, and CDK1 in lung cancer tissues were sig-
nificantly higher than those in normal tissues, and the
expression of these four genes is negatively correlated with
the prognosis and survival rate of lung cancer patients, and
are valuable prognostic predictors.

The CHEKI protein is a member of the Ser/Thr protein
kinase family, which mediates cell cycle arrest by examining
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FiGure 7: Kaplan-Meier correlation analysis on the prognosis of CHEK1, CCNB1, CCNB2, and CDKI genes in patients with lung cancer.

DNA replication and damage. Compared with healthy con-
trols, the expression of the chekl gene in lung cancer
patients is relatively high [13, 14]. The term chekl kinase
is significantly correlated with TP53 mutation, which is
highly expressed in cancer tissues and negatively associ-
ated with the patient’s life cycle [15]. According to the
above analysis results, when DNA damage occurs in the
G2 phase of the cell cycle, chekl will be phosphorylated
and activated in an ATM-dependent manner and then ini-
tiate the TP53 pathway to arrest the cell cycle or perform
further apoptosis, which is consistent with the literature

report. In a study of TP53 mutant non-small-cell lung
cancer tumor cells, it was found that inhibiting the expres-
sion of chekl can significantly enhance the sensitivity of
tumor cells to chemotherapy [16, 17]. In addition, pro-
moter methylation, amplification, and miRNA regulation
in patients with lung cancer may lead to the upregulation
of the chekl gene [18], which may be a marker for pre-
dicting the survival rate of patients with lung cancer
[19]. It has also been reported that CHEKI is associated
with breast and gastric cancers and thus has important
clinical and prognostic significance [20, 21].
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Cyclin B1 (CCNB) is a kind of regulatory protein that can
promote cell division, metastasis, and cell differentiation.
When DNA is damaged, the TP53 pathway activates and
inhibits the binding of CDK1 and CCNBI and induces apo-
ptosis. In contrast, TP53 mutation can promote the formation
of the CDK1-CCNBI1 complex, accelerate the transformation
of the cell cycle from G2 to the M phase, and induce lung can-
cer [22, 23]. Studies have shown that ccnbl is generally highly
expressed in tumor tissues. As a regulator of the cell cycle pro-
cess, the expression of this protein in tumor cells is one of the
indicators used to judge the degree of tumor malignancy
[24-26]. This study shows that lung cancer patients with high
expression of CCNBI mRNA may have a poor prognosis,
which can be used as an independent risk factor for poor prog-
nosis in patients with lung squamous cell carcinoma.

CCNB2 is also a member of the cyclin family and may
affect the proliferation, migration, and invasion of lung can-
cer cells by regulating the PI3K/Akt signaling pathway [27].
Roughly consistent with ccnbl, CCNB2 binds to CDK1 to
form a complex and promotes G2/M transition by phos-
phorylating CDK1 kinase. During the G2/M transition, cells
are inhibited and induce cell cycle arrest. The study found
that CCNB2 was negatively correlated with the poor progno-
sis of lung cancer and was an independent predictor of poor
prognosis in patients with lung adenocarcinoma; there was no
significant difference in 5-year overall survival between
patients with squamous cell carcinoma expressing lower and
higher levels of CCNB2 mRNA [28, 29]. In addition, more
research results show that the overexpression level of CCNB2
protein is significantly related to the degrees of tumor differen-
tiation, tumor size, lymphatic metastasis, distant metastasis,
and clinical stage [30, 31]. Therefore, CCNB2 is of great value
in determining the prognosis of lung cancer and may become
a potential target for lung cancer treatment.

Cyclin-dependent protein kinase (CDK) plays an impor-
tant role in the G1/S and G2/M phases of eukaryotic cell
cycle. Among them, the effect of CDK1 and cyclin A is in
G2/M phase, while the combination of CDK1 and cyclin B
plays a role in mitosis. According to the literature, as one
of the core genes related to lung cancer, the activation of
CDK can cause the phosphorylation of its target protein at
the common site of CDK, thus promoting cell mitosis [32].
In the literature, the author used the cross analysis and
follow-up study of tumor and normal tissues and used three
datasets of differentially expressed genes. In contrast, our
study used five datasets, based on gene expression in more
cases. In the research result section, the differential expres-
sion of CDK1, CCNBI, and CCNB2 genes reported in the
literature is consistent with this article, but we found four
core genes in 969 lung tumor tissues and 685 normal lung
tissues through in-depth analysis and verification, elaborated
the expression of these four genes in lung squamous cell car-
cinoma and lung adenocarcinoma and their relationship
with the prognosis of 1925 lung cancer patients, and ana-
lyzed their correlation with P53 mutation in lung cancer.
Therefore, our conclusion is more scientific and reliable.
This study shows that CDK1 is an important factor in cell
cycle regulation. It plays a key role by stably binding with
mitotic cyclin. Overexpression of CDKI1 in lung cancer

11

reduces chemosensitivity and is related to the lower survival
rate of patients [33-35]. According to the literature, direct
inhibition of CDK kinase activity is the basic strategy for
developing effective cell cycle inhibitors [36]. Based on the
results of this study, we speculate that CDK1 has excellent
value in the survival and prognosis of lung cancer patients
and may provide some possibilities for targeted drug deliv-
ery of lung cancer chemotherapy. Many studies have con-
firmed that CHEK1, CCNB1, CCNB2, and CDK1 may
participate in lung cancer progression by affecting the cell
cycle, DNA replication, homologous recombination, and
the P53 signaling pathway [37]. Combined with the results
of this study, it can be inferred that CHEK1, CCNBI,
CCNB2, and CDKI1 are critical genes involved in cell cycle
arrest and DNA damage repair in lung cancer. Their abnor-
mal regulation leads to chromosome abnormalities, uncon-
trolled cell proliferation, and apoptosis, forming malignant
tumors. Therefore, CHEK1, CCNB1, CCNB2, and CDK1
may be helpful prognostic biomarkers for lung cancer. In
the future, core genes may be used for the treatment and
prognostic monitoring of lung cancer. The high expression
of these four core genes in lung cancer patients can be used
to indicate the prognosis of lung cancer patients and provide
support for the diagnosis, treatment, and prognosis of lung
cancer. In particular, for the targeted therapy of lung cancer,
these four core genes may provide new directions for study-
ing drugs for targeted therapies.

5. Conclusions

In this study, CHEK1, CCNB1, CCNB2, and CDK1 were
screened and analyzed by comprehensive bioinformatics
methods. The results show that these four genes play essen-
tial roles in the occurrence and development of lung cancer
and are closely related to its prognosis and may become
helpful prognostic biomarkers of lung cancer. However, fur-
ther research and verification are needed.
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