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Background. Pancreatic cancer (PAAD) is a malignant tumor with a poor prognosis and lacks sensitive biomarkers for diagnosis
and targeted therapy. Cuproptosis, a recently proposed form of cell death based on cellular copper ion concentration, plays a key
role in cancer biology. This study is aimed at constructing a risk model for predicting the prognosis of PAAD patients based on
cuproptosis-related genes. Methods. Pancreatic-related data from UCSC-TCGA and UCSC-GTEx databases were extracted for
analysis, and TCGA-PAAD samples were randomly divided into the training and validation groups. Pearson correlation
analysis was used to obtain cuproptosis-related genes coexpressed with 19 copper death genes. Univariate Cox and Lasso
regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to
construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to
evaluate the predictive ability of the Cox risk model. Finally, the functional annotation of the risk model was obtained through
enrichment analysis. Results. The Cox risk model has an eight prognostic cuproptosis-related gene signature. Kaplan-Meier
survival curves demonstrated that the high-risk group had a shorter survival time. The ROC curve of the risk score was well
created to predict one-, three-, and five-year survival rates, and AUC of the risk score was higher than other clinical
characteristics. Cox regression analysis revealed that the risk score has an independent prognostic value for PAAD. GSEA
reveals specific tumor pathways associated with the risk model (Myc targets v1, mTORC1 signaling, and E2F targets).
Conclusions. We constructed a prognostic model containing eight cuproptosis-related genes (AKR1B10, KLHL29, PROM2,
PIP5K1C, KIF18B, AMIGO2, MRPL3, and PI4KB) that can accurately predict the prognosis of PAAD patients. The results will
provide new perspectives for individualized outcome prediction and new therapy development for PAAD patients.

1. Introduction

Pancreatic adenocarcinoma (PAAD) exhibits a poor prog-
nosis in digestive system tumors because of its insidious
onset, rapid development, and tendency to metastasize [1].
Due to the lack of effective diagnostic methods and nontyp-
ical symptoms, patients are usually diagnosed in a locally
advanced or metastatic stage. Over 80% of patients miss
the chance of surgical treatment when diagnosed [2, 3]. At
present, early diagnosis, prognosis prediction, and potential
immunotherapy targets for PAAD patients are key issues
in clinical practice.

Copper is a basic element that is critical to the health of
organisms [4]. Normally, the concentration of intracellular
copper ions is kept at a low level, and when copper ions
gradually accumulate beyond the threshold, reactive oxygen
species will be generated, and cell death will be induced.
Copper is closely related to cancer occurrence. In 1975,
Schwartz proposed that various trace elements, including
copper, could be used to diagnose or predict cancer [5].
Copper is involved in the growth of cancer cells and can pro-
mote neovascularization and metastasis, leading to cancer
occurrence and development [6]. In 2022, researchers pro-
posed a different mechanism for regulating cell death from
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known mechanisms, including apoptosis, ferroptosis, and
necrosis [7]. This independent copper-related cell death
mechanism is called cuproptosis. Cuproptosis occurs
through the direct binding of copper to the ribosylated por-
tions of the tricarboxylic acid cycle (TAC), leading to aggre-
gation of ribosylated proteins and instability of Fe-S cluster
proteins resulting in proteotoxic stress and cell death. The
association between PAAD and copper was strong. The
serum copper level is significantly higher in PAAD patients
than in normal patients, and higher levels of copper are asso-
ciated with a greater risk of being diagnosed with PAAD [8].
However, the relationship between copper metabolism-
related genes and the prognosis of patients with PAAD
remains unclear. This study used bioinformatics methods
to identify eight cuproptosis-related genes, and a prognostic
model was established in PAAD patients. Based on the risk
score, we aimed to better determine the prognosis of PAAD
patients and better understand the intrinsic relationship
between PAAD and cuproptosis.

2. Methods

2.1. Data Download. The Cancer Genome Atlas (TCGA)
database contains RNA-seq data from 178 pancreatic and
four normal pancreatic tissue samples [9]. The GTEx data-
base contains RNA-seq data from 167 normal pancreas tis-
sue samples [9]. The University of California Santa Cruz
(UCSC) database collates and standardizes data from TCGA
and GTEx databases [10]. All transcripts per kilobase mil-
lion (TPM) data were obtained in the UCSC database on 1
April 2022. The Wilcox test, suitable for large sample size
and TPM data, was used to analyze differences in gene
expression between the pancreatic cancer tumor group and
the normal group. Differentially expressed genes (DEGs)
were defined as the absolute value of Log Fold Change ð
LogFCÞ > 1 and p value < 0.05. Meanwhile, clinical informa-
tion for all samples was downloaded, including age, sex,
TNM stage, AJCC stage, overall survival (OS) time,
progression-free survival (PFS) time, and disease-specific
survival (DSS) time. Excluding samples with incomplete
data, 178 patients were included.

2.2. Identification of Cuproptosis-Related Genes. Tsvetkov
et al., Deng et al., and Emami et al. proposed key genes
involved in the tumor copper death mechanism, including
ATP7A, ATP7B, CDKN2A, DBT, DLAT, DLD, DLST,
FDX1, GCSH, GLS, LIAS, LIPT1, LIPT2, MTF1, NFE2L2,
NLRP3, PDHA1, PDHB, and SLC31A1 [7, 11, 12]. The
cuproptosis-related genes coexpressed with cuproptosis
genes were obtained based on TCGA-PAAD samples. Pear-
son’s correlation analysis was performed between 19 genes
and DEGs in samples to identify cuproptosis-related genes
according to the correlation coefficient > 0:5 and p value <
0.05.

2.3. Construction of the Cox Risk Model. With R package
“caret,” 178 cases were randomly assigned to the training
(n = 88) and validation (n = 90) groups. The chi-squared test
compared the clinical characteristics of patients in the train-

ing group and the validation group, aiming to evaluate the
heterogeneity of the two sets of data. The data of the training
group were used to construct the Cox risk model of
cuproptosis-related genes. The cuproptosis-related genes
were subjected to univariate Cox regression analysis based
on OS, and the genes with prognostic significance were
screened out (p < 0:01). To avoid overfitting the model, Least
Absolute Shrinkage and Selection Operator (Lasso) regres-
sion analysis was performed on potential prognostic genes.
When the cross-validation error of Lasso regression is the
smallest, the list of prognostic genes corresponding to the
best penalty parameter is obtained. Lasso prognostic genes
were subjected to multivariate Cox regression analysis to
determine the final risk model. The risk score of each patient
was calculated by the following formula: risk score = β
mRNA1 × ExpressionmRNA1 + βmRNA2 ×
ExpressionmRNA2 +⋯ + βmRNAn × ExpressionmRNAn.

2.4. Prediction Capacity of the Cox Risk Model. Using the
median risk score value of the training group, patients in
the training and validation groups were divided into the
high- and low-risk groups. A risk score curve was drawn to
visually display each patient’s risk score and disease out-
come. Kaplan-Meier survival curves were utilized to assess
differences in OS, PFS, and DSS between patients in the
high- and low-risk groups. The receiver operating character-
istic (ROC) curve and the area under ROC curve (AUC)

Table 1: Primers for risk genes.

Gene Direction Sequence

AKR1B10
Forward
primer

GGCAACCATACTCAGCTTCA

Reverse primer TGGGACATGAGTGGAGGTAG

KLHL29
Forward
primer

CATCTCCAAGGACGACTTCATC

Reverse primer GTCAACCACATTGAGCAGGTA

PROM2
Forward
primer

GGGCCACAGACTGCAAGTT

Reverse primer AGCTCATTCAGTAGGGCCTTTA

PIP5K1C

Forward
primer

AGACCGTCATGCACAAGGAG

Reverse primer
CAGTACAGCCCATAGAACT

TGG

KIF18B
Forward
primer

TGCTCAAAGACTCCCTCGG

Reverse primer GTTGTACGTGTCCTCGTAGGT

AMIGO2
Forward
primer

AGCATTTCCACGGGCAGTTT

Reverse primer CCGTCTTCAGCTTATTGGACGA

MRPL3

Forward
primer

CAAGGATGGTCAAAAGCAT
GTG

Reverse primer
GCAATCCAAGTTCCCGGTA

AAA

PI4KB
Forward
primer

CCTGCTCAACCATAAGCTCCC

Reverse primer AGTTTTCTACGGACCTCGTACT
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were employed to assess the predictive power of the risk
score and each clinical characteristic. Finally, principal com-
ponent analysis (PCA) was utilized to reduce the dimensions
of four sets of genes (DEGs, cuproptosis genes, cuproptosis-
related genes, and risk model genes) in the high- and low-
risk groups, aiming to visualize the distinguishing ability of
risk scores.

2.5. Functional Enrichment Analysis of Risk Scores. Differen-
tial analysis was performed on the high-risk group (n = 89)
and the low-risk group (n = 89) of the entire cohort, and
genes with absolute values of LogFC > 1 and p < 0:05 were
defined as risk differential genes. Gene ontology (GO) can
analyze biological processes (BP), cellular components
(CC), and molecular functions (MF) of gene sets. The Kyoto
encyclopedia of genes and genomes (KEGG) analysis is a
systematic analysis of cellular pathways involved in
genomes. GO and KEGG enrichment analyses were per-
formed using “ClusterProfiler” and “ggplot2” packages in R
(Version 3.6.3). Significant enrichment was considered eligi-
ble if p < 0:05. Gene set enrichment analysis (GSEA) can
evaluate the regulation of pathways in the high- and low-
risk groups. For GSEA in the entire cohort, GSEA software

(GSEA 4.1.0) and h.all.v7.5.symbols were employed. A
GMT dataset in MsigDB was used as the control group.
The number of permutations was set to 1000. The screening
criteria for significant enrichment pathways were false
discovery rates ðFDRÞ < 0:25 and absolute values of
normalized enrichment score ðNESÞ > 1. The nominal p
value (NOM p value) was <0.05.

2.6. External Dataset Validation of the Cox Risk Model. GEO
microarray expression data with survival information were
screened for external validation of the Cox risk model [13].
The GSE62452 dataset (69 PAAD samples) and the
GSE28735 dataset (45 PAAD samples) were included for
analysis. The probe file GPL6244 was downloaded for the
conversion of gene IDs [14, 15]. The SVA package was used
to remove batch effects after merging the GSE62452 and
GSE28735 datasets [16]. In total, the survival time and sur-
vival status of 107 PAAD cases were used to assess the prog-
nostic value of the Cox risk model. The Survminer package
was used to identify the optimal cutoff value, and the sam-
ples were divided into the high- and low-risk groups based
on the cutoff value.

Establishment of
the cox risk model Cuproptosis-related genes Validation of

the cox risk model

Training groups
(n = 88)

Validation groups
(n = 90)

183 DEGs based
on risk score

Kaplan-meier
survival curves

ROC curve and PCA

GSEA analyses
Univariate and

multivariate cox
regression analyses

GO and KEGG
analyses

Te distribution
patterns of risk scores

19 Cuproptosis genes

5252 Cuproptosis-
related genes

Cuproptosis-
associated

cox risk model

7978 DEGs from
TCGA-GTEx database

Lasso regression
analysis (22

prognostic genes)

Multivariate cox
regression analysis
 (8 gene signature)

Univariate cox
regression analysis

(202 prognostic genes)

Figure 1: Flow chart of the study. DEG: differentially expressed gene; Lasso: Least Absolute Shrinkage and Selection Operator; ROC:
receiver operating characteristic; PCA: principal component analysis; GO: gene ontology; KEGG: Kyoto encyclopedia of genes and
genomes; GSEA: gene set enrichment analysis.
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Figure 2: Continued.
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2.7. Differential Expression Analysis of Risk Genes. We fur-
ther confirmed the differential expression of 8 risk genes at
the cellular level by qRT-PCR. PAAD cell lines (ASPC-1,
SW1990, BXPC3, and PANC-1) and human pancreatic cell
lines were obtained from the Shanghai Institute of Nutrition
and Health (Shanghai, China). RNA was isolated from sam-
ples using TRIzol, after which the PrimeScript RT Reagent
Kit was employed to prepare cDNA. A StepOne Real-Time
PCR Instrument (Applied Biosystems, NY, USA) was used
for all qRT-PCR analyses. Relative gene expression was ana-
lyzed using the 2-ΔΔCt method, with GAPDH being
employed for normalization purposes. The primers used in
this study are shown in Table 1, and the analyses were
repeated three times.

2.8. Statistical Analysis. Statistical analysis was performed
using R (Version 3.6.3). Cox regression was used to evaluate
each gene for the prognosis of PAAD patients by calculating
the hazard ratio (HR) and its 95% confidence interval (CI).
Log-rank tests were used to evaluate OS, DSS, and PFS of
the three groups (entire, training, and validation). The Pear-
son correlation test was used to analyze correlations. The
ggplot2 R package was used to visualize all data. Statistical
significance was set at p < 0:05.

3. Results

3.1. Data Acquisition and Grouping. The present study’s flow
diagram is displayed in Figure 1. Based on 349 samples from
TCGA-GTEx database (178 tumor tissues and 171 normal
tissues), we obtained 7978 DEGs (303 downregulated genes
and 7675 upregulated genes, Supplementary Table 1). The
results of all difference analyses are displayed in the
volcano plot (Figure 2(a)), and the expression levels of risk
score genes are displayed in the heatmap (Figure 2(b)).

According to R package “caret,” 178 samples were
randomly assigned to the training (n = 88) and validation
(n = 90) groups. The clinical characteristics of 178 PAAD
patients are detailed in Table 2, without statistical
differences in the clinical characteristics between the
training and validation groups.

3.2. Establishment of the Cox Risk Model. A correlation anal-
ysis between 19 cuproptosis genes and 7978 DEGs was con-
ducted. A total of 5252 genes with a correlation
coefficient > 0:5 and p < 0:05 were identified as
cuproptosis-related genes (Figure 2(c), Supplementary
Table 2). All cuproptosis-related genes were selected for
univariate Cox regression analysis, and 202 genes with
prognostic values were obtained (Supplementary Table 3).
The following Lasso regression analysis revealed that the
best penalty parameter corresponds to 22 prognostic genes
(Figures 2(d) and 2(e), Table 3). Finally, a multivariate Cox
regression analysis revealed an eight prognostic
cuproptosis-related gene signature for PAAD patients
(Figure 2(f)). The correlation between the eight gene
signatures and 19 cuproptosis genes is presented in
Figure 2(g). Based on the eight-gene signature, we
calculated the following risk scores: 0:205 ∗
ExpressionAKR1B10 − 0:994 ∗ ExpressionKLHL29 + 0:272
∗ ExpressionPROM2 − 1:192 ∗ ExpressionPIP5K1C + 1:169
∗ ExpressionKIF18B + 0:498 ∗ ExpressionAMIGO2 + 1:439
∗ ExpressionMRPL3 − 2:012 ∗ ExpressionPI4KB:

3.3. Validation of the Cox Risk Model. All patients were clas-
sified into either the high-score group or the low-score
group according to the training group median risk score
(riskScore = 1:121), and risk scores and risk groups for all
patients are listed in Supplementary Table 4. The
distribution patterns of risk scores and outcome status
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Figure 2: Construction process of Cox risk model: (a) differential analysis results of 178 tumor tissues and 171 normal tissues in TCGA-
GTEx database; (b) the expression levels of Cox risk model genes in tumor tissues and normal tissues; (c) the upset plot shows the
number and cross-linking of coexpressed genes of the 19 cuproptosis genes; (d) distribution of Lasso coefficients of the 202 potential
prognostic cuproptosis-related genes in the training group; (e) the cross-validation curve of Lasso regression shows the best penalty
parameter value in the training group; (f) the 8 prognostic cuproptosis-related gene signature constructs the Cox risk model in the
training group; (g) the correlation between 8-gene signature and 19 cuproptosis genes. FC: fold change. ∗p < 0:05 ; ∗∗p < 0:01 ; ∗∗∗p <
0:001.
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across the training and validation groups and the entire
cohort indicated that outcome events tended to occur more
frequently as patient risk scores increased (Figures 3(a)–
3(c)). The eight-gene signature expression profiles
exhibited that AKR1B10, PROM2, KIF18B, AMIGO2, and
MRP had higher expression levels in the high-risk group,
and KLHL29, PI4KB, and PIP5K1C had higher expression
levels in the low-risk group (Figures 3(d)–3(f)). Among
three datasets, Kaplan-Meier survival curves demonstrated
that the high-risk group had a shorter OS time
(Figures 4(a)–4(c)), a shorter PFS time (Figures 4(d)–4(f)),
and a shorter DSS time (Figures 4(g)–4(i)). The ROC curve

was used to evaluate the predictive power of the Cox
prognostic model. The risk score AUC of the entire cohort
(0.756) was higher than other clinical characteristics
(Figure 5(a)), the training group (AUC = 0:869,
Figure 5(b)), and the validation group (AUC = 0:656,
Figure 5(c)) to obtain consistent results. In addition, a
time-dependent survival ROC curve of the risk score was
well created to predict one-, three-, and five-year OS rates
(Figures 5(d)–5(f)).

3.4. PCA and Independent Prognostic Factors. PCA disclosed
that compared with DEGs (Figure 5(g)), cuproptosis genes
(Figure 5(h)), and cuproptosis-related genes (Figure 5(i)),
the eight-gene signatures could more clearly divide all
patients into two risk groups (Figure 5(j)). Univariate and
multivariate Cox regression analyses were performed to
evaluate the prognostic model in combination with various
clinicopathological parameters. Univariate Cox regression
analysis displayed that histologic grade and risk score were
influencing factors for patient prognosis (Figure 6(a)). Mul-
tivariate Cox regression analysis revealed that risk score was
an independent risk factor for patient prognosis (HR = 4:037
, 95% CI: 2.502-6.514, p < 0:001) (Figure 6(b)). The same
results were observed in the training group (HR = 7:404,
95% CI: 3.525-15.551, p < 0:001) (Figures 6(c) and 6(d))
and the validation group (HR = 2:620, 95% CI: 1.334-5.146,
p < 0:01) (Figures 6(e) and 6(f)).

Table 2: Characteristics of pancreatic cancer patients.

Characteristics

No. (%)
p

value
Entire
cohort

(n = 178)

Training
group
(n = 88)

Validation
group
(n = 90)

Age (years) 0.4868

≤60 58 (32.58%) 26 (29.55%) 32 (35.56%)

>60 120
(67.42%)

62 (70.45%) 58 (64.44%)

Gender 0.2222

Female 80 (44.94%) 35 (39.77%) 45 (50%)

Male 98 (55.06%) 53 (60.23%) 45 (50%)

Histologic grade 0.3903

G1 31 (17.42%) 14 (15.91%) 17 (18.89%)

G2 95 (53.37%) 51 (57.95%) 44 (48.89%)

G3 48 (26.97%) 20 (22.73%) 28 (31.11%)

G4 2 (1.12%) 1 (1.14%) 1 (1.11%)

Unknown 2 (1.12%) 2 (2.27%) 0 (0%)

Pathologic stage 0.2498

Stage I 21 (11.8%) 15 (17.05%) 6 (6.67%)

Stage II
146

(82.02%)
68 (77.27%) 78 (86.67%)

Stage III 3 (1.69%) 1 (1.14%) 2 (2.22%)

Stage IV 5 (2.81%) 2 (2.27%) 3 (3.33%)

Unknown 3 (1.69%) 2 (2.27%) 1 (1.11%)

T stage 0.6067

T1 7 (3.93%) 5 (5.68%) 2 (2.22%)

T2 24 (13.48%) 14 (15.91%) 10 (11.11%)

T3
142

(79.78%)
67 (76.14%) 75 (83.33%)

T4 3 (1.69%) 1 (1.14%) 2 (2.22%)

Unknown 2 (1.12%) 1 (1.14%) 1 (1.11%)

M stage 0.3219

M0 79 (44.38%) 44 (50%) 35 (38.89%)

M1 5 (2.81%) 2 (2.27%) 3 (3.33%)

Unknown 94 (52.81%) 42 (47.73%) 52 (57.78%)

N stage 0.8822

N0 50 (28.09%) 25 (28.41%) 25 (27.78%)

N1 123 (69.1%) 60 (68.18%) 63 (70%)

Unknown 5 (2.81%) 3 (3.41%) 2 (2.22%)

Table 3: Cuproptosis-related prognostic genes obtained from
Lasso and univariate Cox regression model.

Gene symbol
Lasso

coefficient
HR HR.95L HR.95H p value

AKR1B10 0.044 1.201 1.051 1.373 0.007

AMIGO2 0.040 1.445 1.128 1.851 0.004

ARRB2 -0.045 0.594 0.418 0.844 0.004

DSG2 0.085 1.638 1.180 2.274 0.003

ENPP2 -0.018 0.754 0.623 0.913 0.004

FGF2 0.222 1.508 1.135 2.003 0.005

FIG4 -0.199 0.525 0.330 0.837 0.007

FRMD5 0.080 2.099 1.353 3.257 0.001

GRAMD4 -0.034 0.627 0.446 0.880 0.007

ITGA3 0.033 1.405 1.099 1.796 0.007

KIF18B 0.081 1.846 1.188 2.868 0.006

KIF2C 0.068 1.720 1.199 2.467 0.003

KLHL29 -0.646 0.429 0.270 0.682 <0.001
KNL1 0.159 2.403 1.394 4.141 0.002

MRPL3 0.316 2.505 1.251 5.016 0.010

NUP37 0.320 2.344 1.294 4.246 0.005

PBX3 -0.007 0.567 0.393 0.818 0.002

PI4KB -0.528 0.505 0.323 0.790 0.003

PIP5K1C -0.255 0.574 0.381 0.867 0.008

PROM2 0.089 1.402 1.147 1.715 0.001

RAD51C -0.140 0.453 0.285 0.722 0.001

SEMA4D -0.002 0.575 0.405 0.815 0.002
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3.5. GO and KEGG Analyses. DEGs between the high- and
low-risk groups were used for functional enrichment analysis.
We obtained 94 downregulated and 89 upregulated genes
(Figure 7(a), Supplementary Table 5). GO and KEGG
enrichment analyses disclosed that DEGs are involved in
biological effects and signaling pathways. The top 21

significant terms of GO analysis are shown in Figure 7(b),
and the top 20 significant pathways of KEGG analysis are
shown in Figure 7(c). For instance, molecular function
includes the establishment of protein localization to
extracellular regions, protein secretion, hormone transport,
and hormone secretion. The cellular component contains a
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transport vesicle, endoplasmic reticulum lumen, anchored
membrane component, and neuron projection terminus. In
addition, the biological process includes signaling receptor

activator activity, receptor-ligand activity, G protein-coupled
receptor binding, and serine-type endopeptidase activity.
KEGG analysis indicated eight cuproptosis-related genes in
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Figure 4: The differences in survival time of PAAD patients between high- and low-risk groups. The OS time KM curve in the training
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cancer-associated pathways, such as insulin secretion, ECM-
receptor interaction, and PI3K-Akt signaling pathway.

3.6. GSEA. GSEA enrichment analysis was performed based
on the high- and low-risk groups of the entire cohort sam-
ples, and eight signaling pathways that met the screening cri-
teria were obtained (Figures 7(d)–7(k)). Among them, seven
signaling pathways were activated in the high-risk group,
including Myc targets v1, mTORC1 signaling, glycolysis,

E2F targets, G2M checkpoint, Myc targets v2, and estrogen
response late, while one signaling pathway was activated in
the low-risk group: Kras signaling. We predicted that the dif-
ference between the high- and low-risk groups is related to
pancreatic cancer pathogenesis.

3.7. External Validation of the Cox Risk Model and Risk
Genes. Survival information and risk gene expression data
of 107 PAAD samples were obtained by combining the
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Figure 5: Validating the prognostic predictive power of the Cox risk models. ROC curve of the Cox risk model and clinical characteristics in
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GSE62452 and GSE28735 datasets. The risk scores of all
patients were calculated based on the Cox risk model, and
patients were divided into the high-risk and low-risk groups
according to the best cutoff values. The risk scores for all
samples used for external validation are shown in Supple-
mentary Table 6. The results of the univariate Cox
regression analysis showed that AKR1B10, KIF18B, and
risk score were influential factors for survival in PAAD
patients in the GEO dataset (Figure 8(a)). Further results
of survival analysis were consistent with previous results,
with patients in the low-risk group having better survival
times than the high-risk group (Figure 8(b)). Finally, we
assessed the expression of 8 risk genes at the cellular level,
and the results showed that AKR1B10 and PROM2 were
highly expressed in PAAD cell lines, but KLHL29 was
highly expressed in human pancreatic cell lines. These
results suggest that risk genes have the potential as
biomarkers for PAAD (Figure 8(c)).

4. Discussion

Copper-dependent controlled cell death in human cells is a
novel cell death mechanism different from the known cell
death mechanism. It occurs through the direct binding of
copper ions with lipacylated components of TAC in mito-
chondrial respiration. Cuproptosis leads to the aggregation
of ribosylated proteins and subsequent downregulation of
Fe-S cluster proteins, resulting in toxic protein stress and cell
death [6]. The five-year survival rate of PAAD is only 5%.
Due to difficult diagnosis and poor prognosis, research in
PAAD in recent years has focused on finding new biomark-

ers to improve prognosis [17]. Cell death-related genes are
potential biomarkers for the diagnosis and prognosis of
PAAD. ADP ribosylation factor 6 (a ferroptosis-related
gene) functions downstream of the Kras/ERK signaling
pathway and can promote proliferation and the Warburg
effect in PAAD cells [18, 19]. The expression of circular
RNA ATG7 (an autophagy-related circular RNA) was posi-
tively correlated with tumor diameter and lymph node infil-
tration. Overexpression of ATG7 promoted the
proliferation, migration, and autophagy of PAAD cells, indi-
cating that ATG7 may be a potential therapeutic target for
PAAD [20]. In addition, with the development of multio-
mics data, a large number of genetic features and risk models
provide new insights for tumor diagnosis and prognosis pre-
diction. Among them, a number of cell death-based disease
models have shown considerable clinical value, such as
autophagy, ferroptosis, and pyroptosis [21, 22]. Considering
the complexity of tumor biology, predictive models con-
structed from multiple genetic signatures are more accurate
and reliable than single pathological features or single
biomarkers.

The current study constructed an eight-cuproptosis-
related gene signature to predict OS, DSS, and PFS in PAAD
patients. First, PAAD patients were randomly assigned to
the training and validation groups. Based on the training
group, prognostic cuproptosis-related genes were confirmed
using Lasso regression and Cox regression models. Accord-
ing to the risk score, patients were categorized into the high-
and low-risk groups. The prognoses between the high- and
low-risk groups were statistically significant, and AUC sug-
gests the prediction ability of our risk score signature. More
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Figure 7: Continued.
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importantly, by comparing ROC curves of patient survival,
we found that the risk score based on cuproptosis-related
genes had more accurate predictive power than clinicopath-
ological indicators as follow-up years increased. The model
was validated in the validation and entire groups. In addi-
tion, the model was externally validated using the GEO data-
base, and the results showed similar predictive power. We
refer to other cell death-based risk models for comparison
with the cuproptosis risk model. The AUC values of the risk
model in our study led to the predictive performance of
overall survival at 1, 3, and 5 years, reaching 0.75, 0.84,
and 0.86, respectively. In other cell death-related studies,
the AUC values for overall survival at 1, 3, and 5 years were
0.537, 0.731, and 0.852 for autophagy [21]; 0.665, 0.738, and
0.871 for ferroptosis [23]; and 0.643, 0.705, and 0.807 for
pyroptosis [22], respectively. Our risk model exhibits more
robust and accurate predictive performance than models of
other forms of cell death.

Our risk score included eight cuproptosis-related genes:
AKR1B10, KLHL29, PROM2, PIP5K1C, KIF18B, AMIGO2,
MRPL, and PI4KB. As a carcinogenic protein, AKR1B10
promotes tumor occurrence and development by enhancing
fat production and is involved in pancreatic carcinogenesis
via modulating the Kras-E-cadherin pathway [24, 25].
PROM2, a transmembrane glycoprotein, is upregulated in
PAAD cells, and higher PROM2 expression is associated
with a poor prognosis in PAAD patients [26]. PIP5K1C is
a lipid kinase that regulates adhesion dynamics and cell
attachment through the site-specific formation of phos-
phatidylinositol-4,5-diphosphate. A study disclosed that

PIP5K1C is a negative regulator of cell migration and inva-
sion and that the phosphorylation status of PIP5K1C may
serve as an indicator of adenocarcinoma invasion [27].
KIF18B is highly expressed in human PAAD tissues and is
associated with poor prognosis and clinical characteristics
of PAAD patients, such as tumor size and TNM stage. In
PAAD cells, KIF18B could bind to the cell division cycle-
related promoter region 8, thereby activating its transcrip-
tion [28]. The interaction of extracellular matrix receptors
causes cancer metastasis, and AMIGO2 promotes the adhe-
sion of tumor cells to endothelial cells, accelerating this pro-
cess [29].

We performed an enrichment analysis based on the risk
scores of pancreatic cancer patients. GSEA revealed that var-
ious signaling pathways involved in cancer occurrence and
development are enhanced in the high-risk group. The
Myc oncoprotein family is involved in regulating metabolic
reprogramming and providing sufficient energy for cancer
cell proliferation [30]. Aerobic glycolysis is a metabolic
modality exhibited in various tumors, and there is evidence
that mTORC1 signaling regulates aerobic glycolysis by
upregulating hypoxia-inducible factor- (HIF-) 1α [31].
mTORC1 signaling is also involved in promoting lipid
metabolism and nucleotide synthesis in tumor cells [32].
The E2F signaling pathway is involved in the transcriptional
machinery driving cell cycle progression, and E2F activity is
abnormally increased in various tumors, leading to uncon-
trolled proliferation [33]. Similarly, the enrichment analysis
of DEGs between the high- and low-risk groups involves
tumor-related mechanisms. Studies have demonstrated that
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Figure 7: Risk score-related enrichment analysis in PAAD patients. (a) The volcano plot presents the difference analysis results between the
high- and low-risk groups. GO analysis (b) and KEGG analysis (c) results of risk score-related differentially expressed genes. (d) GSEA
according to the high-risk and low-risk groups of PAAD patients. PAAD: pancreatic cancer; FC: fold change; GO: gene ontology; KEGG:
Kyoto encyclopedia of genes and genomes; GSEA: gene set enrichment analysis; FDR: false discovery rates; ES: enrichment score.
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PI3K/AKT pathway inactivation in PAAD cells can inhibit
mutant p53, thus inducing S-phase arrest and apoptosis of
PAAD cells [34]. In addition, there is a close relationship
between extracellular matrix (ECM) accumulation and cancer
progression, and pancreatic stellate cells play a role in this pro-
cess. Interactions between extracellular matrix receptors alter
the tumor microenvironment in PAAD, accelerating its pro-
gression, including angiogenesis, invasion, andmetastasis [35].

This study has limitations. First, some incomplete infor-
mation was deleted, which led to a certain degree of informa-
tion deviation. Next, the concept of cuproptosis was only
recently proposed, and sufficient literature cannot be obtained

to clarify the possible mechanism of an eight-gene signature
involved in cuproptosis. Multicenter, large-scale clinical trials
of prediction models require further validation.

5. Conclusion

In conclusion, we constructed a prognostic model contain-
ing eight cuproptosis-related genes and analyzed their MF
in PAAD. Our study highlights that the risk score we con-
structed can be used as a marker of outcome in PAAD
patients. Our findings provide new insights into the role of
cuproptosis-related genes in PAAD pathogenesis and as
potential biomarkers for PAAD diagnosis and treatment.
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Figure 8: Validation of the Cox risk model and risk genes: (a) univariate Cox analysis based on the GEO dataset was used to assess the
impact of the risk score and risk genes on the prognosis of PAAD patients; (b) the differences in survival time of PAAD patients
between the high- and low-risk groups in the GEO dataset; (c) in vitro validation of risk gene expression by qRT-PCR in normal
pancreatic cells and PAAD cells. PAAD: pancreatic cancer; CG: control group.
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