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Background. Advances in cancer research have allowed for early diagnosis and improved treatment of cutaneous melanoma (CM).
However, its invasiveness and recurrent metastasis, along with rising resistance to newer therapies, have lent urgency to the search
for novel biomarkers and the underlying molecular mechanisms of CM. Methods. Single nucleotide polymorphism- (SNP-)
related genes were obtained from the sequencing data of 428 CM samples in The Cancer Genome Atlas. Functional
enrichment of these genes was analysed in clusterProfiler. Additionally, a protein-protein interaction (PPI) network was
constructed with the Search Tool for the Retrieval of Interacting Gene (STRING) database. Gene Expression Profiling
Interactive Analysis (GEPIA) was used to identify the expression and prognostic value of mutated genes. Finally, the Tumour
Immune Estimation Resource (TIMER) analysed the relationship between gene expression and immune cell infiltration.
Results. We constructed a PPI network from the top 60 SNP-related genes. Mutated genes were mainly involved in calcium
and oxytocin signalling pathways, as well as circadian entrainment. In addition, three SNP-related genes, BRAF, FLG, and
SORL1, were significantly associated with patient prognosis. BRAF and SORL1 were positively associated with infiltration
abundance of B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells, whereas FLG expression was negatively
associated. Furthermore, higher immune cell infiltration was positively correlated with good prognosis. Conclusions. Our study
provides vital bioinformatic data and a relevant theoretical basis to further explore the molecular pathogenesis of CM and
improve patient prognosis.

1. Introduction

Melanoma affects over 300,000 people worldwide annually
[1], while survival in cutaneous melanoma (CM) has greatly
increased with advancements in treatment, including the
development of targeted therapy and immunotherapy [2].
However, a subset of patients became resistant. Identifying
oncogenic biomarkers can help guide treatment decisions
and elucidate the determinants of responses to immune and
targeted therapies.

Single nucleotide polymorphisms (SNPs) can arise
through transformation, transversion, deletion, or insertion.
Because SNPs frequently occur throughout the genome, they

provide an opportunity to identify mutations associated with
a wide range of diseases, including cancers [3]. Increasing
evidence suggests that susceptibility to malignant CM is
associated with SNPs [4]. GLI-1 polymorphisms in the
hedgehog pathway are risk factors for melanoma suscepti-
bility and can be used as prognostic biomarkers [5]. Fur-
thermore, the IRF4 SNP (rs12203592) and the MTAP
(rs869330) variants are both associated with melanoma-
specific survival [6]. Given their likelihood of influencing
prognosis, an analysis of relevant SNPs could help identify
new prognostic biomarkers for patients with CM.

The tumour microenvironment influences gene expres-
sion in tumour tissues and consequently has a strong effect
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on clinical outcomes [7–10]. Furthermore, immune cells in
the microenvironment can be used for the prognostic assess-
ment of multiple tumours, such as glioblastoma, breast
cancer, and melanoma [11–13]. Notably, CM has a highly

activated tumour microenvironment, with most immune
system components involved in the cancer’s initiation and
progression [14]. The degree of immune cell infiltration sig-
nificantly affects melanoma prognosis [15].
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Figure 1: The landscape of mutation data of TCGA CM dataset. Mutation information of each gene in each sample is displayed in the
waterfall plot, where different colors with specific annotations at the right bottom mean the various mutation types. The barplot above
the legend exhibits the number of mutation burden.
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In this study, we aimed to identify novel immune-related
prognostic biomarkers for CM and explore their underlying
molecular mechanisms. To investigate the biological signifi-
cance of SNPs in CM prognosis, we obtained SNP-related
genes from The Cancer Genome Atlas (TCGA) and per-
formed bioinformatic analysis. The results provide a theoret-
ical basis for researchers to develop personalised treatment
methods for patients with CM.

2. Materials and Methods

2.1. Data Acquisition. As the largest cancer gene database
available, TCGA (https://portal.gdc.cancer.gov/) houses data
on cancer gene expression, miRNA expression, copy number
variants, methylation, and SNPs [16]. However, original
SNP data are not available to the public. Instead, relevant
SNP and raw mRNA expression data of patients with CM
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Figure 2: GO functional enrichment analysis. The dot indicates the gene cluster. The redder the color of the dots, the more significant the
GO term. MF: molecular function; CC: cellular component; BP: biological process.
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Figure 3: KEGG analysis showed that mutated genes were mainly enriched in the calcium and oxytocin signalling pathway and circadian
entrainment. The redder the color of the dots, the more significant the KEGG term.
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were downloaded. Mutation data were analysed with the R
Bioconductor package, “Maftools” [17].

2.2. Functional Analysis. The R package “clusterProfiler” was
used for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses [18]. The cut-off for
significant enrichment was P < 0:05. Mutated genes were
screened for enrichment in molecular functions, biological
processes, cellular components, and biological pathways.

2.3. Protein-Protein Interaction (PPI) Network Construction.
The Search Tool for the Retrieval of Interacting Gene
(STRING) database predicts physical and functional inter-
actions between proteins [19]. Interactions, nodes, and
subnetworks of the top 60 mutated genes were analysed
by Cytoscape [20], a program that imports STRING net-
works but also integrates data from associated databases.

2.4. Survival Analyses and Identification of Potential
Prognostic Biomarkers. Patient survival was assessed using
the Kaplan-Meier plots of results from gene arrays, RNA

sequencing, and next-generation sequencing. These data
were also used to screen for potential prognostic biomarkers
by assessing the effect of mutant gene expression on patient
prognosis with the Gene Expression Profiling Interactive
Analysis (http://gepia.cancer-pku.cn) [21].

2.5. TIMER and Multivariate Cox Regression. The Tumour
Immune Estimation Resource (TIMER) (http://timer
.cistrome.org/) can use RNA sequencing data to detect
associations between mutated genes and immune cell infil-
tration [22]. In this study, TIMER was used to perform a
multivariate Cox regression on cells involved in immune
cell infiltration, including CD4+ T cells, CD8+ T cells, B
cells, macrophages, and neutrophils. Hazard ratios and
95% confidence intervals were also calculated. CIBER-
SORT in R was then used to identify immune cell sub-
types and determine the relationship between those cells
and risk scores [23]. In this study, we assessed the
relationship between BRAF, filaggrin (FLG), and sortilin-
related receptor 1 (SORL1) expressions and immune cell
infiltration in patients with CM.

Figure 4: Protein-protein interaction network. The spheres represent proteins, and the lines represent protein interactions. The stronger the
interaction between two proteins, the thicker the connection line, and the lines of different colors indicate different interactions.
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3. Results

3.1. Mutation Profiles in CM Samples.We downloaded level-
three transcriptome data for all available CM samples
(n = 428). Analysis in Maftools revealed that the top 10
mutated genes in CM samples were TTN, MUC16, DNAH5,
BRAF, PCLO, LRP1B, ANK3, CSMD1, ADGRV1, and
CSMD2 (Figure 1).

3.2. Functional Enrichment Analysis. The results of GO
analysis on mutated genes revealed enrichment in “multicel-
lular organismal signalling”, “muscle system process”, and
“regulation of ion transmembrane transport” terms under
the biological process category. In the cellular component
category, terms “sarcomere”, “contractile fibre part”, and
“myofibril” were enriched. Lastly, in the molecular function
category, the terms “gated channel activity”, “calmodulin
binding”, and “motor activity” were enriched (Figures 2(a)
and 2(b)). Results from the KEGG analysis showed that
mutated genes were enriched in the calcium and oxytocin
signalling pathways, as well as in circadian entrainment
pathways (Figures 3(a) and 3(b)).

3.3. PPI Network and Correlation Analysis of Mutated Genes.
We explored the correlation between mutated genes using
the STRING database and then constructed a PPI network
(Figure 4). We found correlations between mutations and
expression of the top 60 genes.

3.4. Survival Analysis of Mutated Genes and Screening of
Prognostic Biomarkers. We then explored the relationship
between the mutated genes, their expression, and prognosis.
Using P < 0:05 as the significance level, three mutant genes
that significantly correlated with prognosis were identified:
BRAF, FLG, and SORL1. The expression of BRAF and
SORL1 in the tumour samples was increased, while the
expression of FLG was decreased (Figures 5(a)–5(c)). Based
on the data, patients were divided into high- and low-
expression groups according to the median expression
values. The Kaplan-Meier plot results showed that increased
expression of BRAF and SORL1 was associated with a better
prognosis (P = 3:655e − 02 and P = 4:351e − 04, respec-
tively). In contrast, increased FLG expression resulted in
poor prognosis (P = 9:672e − 03) (Figures 6(a)–6(c)). More-
over, both in vitro and in vivo experiments should be con-
ducted in future studies.
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Figure 5: Box plots show the expression profiles of BRAF (a), FLG (b), and SORL1 (c) in gene mutation patients with CM compared to those
in wild samples. Patients are stratified into mutation and wild groups. P < 0:05 is considered statistically significant.
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Figure 6: Survival curves of three SNP-related genes. BRAF (a) and SORL1 (c) are positively associated with survival rate, while FLG (b) is
negatively associated with survival rate.
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Figure 7: Correlation of three mutant genes with immune infiltration level in CM. The expression of BRAF (a) and SORL1 (c) is positively
associated with the infiltration abundance of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells, while FLG
(b) is negative with the immune cell infiltration.
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Figure 8: Continued.
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3.5. Correlation between Mutated Genes and Immune Cell
Infiltration. In patients with CM, the results showed that
BRAF expression was highly correlated with CD8+ T cell
(r = 0:346, P = 9:51e − 14) and neutrophil (r = 0:462, P =
3:14e − 25) infiltration (Figure 7(a)). FLG expression was
highly correlated with dendritic cells (r = −0:15, P = 1:46e −
03) and neutrophil (r = −0:13, P = 5:71e − 03) infiltration
(Figure 7(b)). SORL1 expression correlated with macro-
phages (r = 0:379, P = 6:69e − 17) and neutrophil (r = 0:44,
P = 8:18e − 23) infiltration (Figure 7(c)). Furthermore, we
found that the infiltration of CD8+ T cells, dendritic cells,
CD4+ T cells, neutrophils, and macrophages depended on
gene mutation types in CM (Figures 8(a)–8(c)). For a flow
chart of all steps in our study, see Figure 9.

4. Discussion

One of the most aggressive skin cancers, CM accounts for
approximately 90% of global deaths attributed to this
malignancy [24], while new treatments and early diagnosis
have decreased mortality. However, 15%–20% of melanoma
tumours do not respond to targeted therapies [25]. More-
over, treatment with programmed cell death protein 1 or
cytotoxic T lymphocyte-associated antigen 4 antibodies does
not benefit 40%–60% of patients [26]. Therefore, novel
drug targets and their underlying mechanisms should be
discovered to improve the assessment of malignancy and
prognosis.

Our study identified three core mutated genes in patients
with CM: BRAF, FLG, and SORL1. These genes were signif-
icantly associated with the prognosis of patients with CM.
We thus consider mutant SNPs in these genes to be poten-
tially carcinogenic markers that should benefit the early
diagnosis and the design of individualised targeted therapy
for CM.

A member of the RAF kinase family, BRAF mutations
are common in many cancer types, including melanomas
(60% occurrence), thyroid cancers (60%), colorectal cancers
(15%), and non-small-cell lung cancers (5%–8%) [27]. BRAF
inhibitors interfere with the mitogen-activated protein
kinase (MAPK) signalling pathway that regulates melanoma
proliferation and survival [28]. The MAPK pathway is also
involved in T cell receptor signalling. Thus, BRAF inter-
ference exerts anticancer effects on the tumour microen-
vironment. Specifically, it increases intratumoural T cell
infiltration and activity, decreases immunosuppressive
cytokine levels, enhances melanoma-differentiation antigen
expression, and introduces tumour antigens by regulating
HLA-1 levels [29]. Through promoting tumour recognition
by the immune system, these processes enhance antitumour
T cell responses.
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Figure 8: Associations between mutation types with immune cell infiltration of three mutant genes ((a–c) BRAF, FLG, and SORL1):
mutation types (deep deletion, arm-level deletion, arm-level gain, and high amplification) of mutant-associated genes exhibit low level of
immune cell infiltration compared with diploid/normal.
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FLG is a pivotal structural protein of the stratum cor-
neum; it encodes natural moisturising factors that are
important to skin barrier function [30]. Thus, FLG mutation
carriers may develop malignant melanoma [31]. Moreover,
FLG is involved in allograft rejection and tumour necrosis
factor-alpha signalling which is the primary pathway
involved in interferon gamma response [32].

Lastly, SORL1 is involved in DNA repair and oxidative
phosphorylation. SORL1 coprecipitates with endosomal
receptor HER2 in cancer cells and recycles it back to the
plasma membrane, thus regulating its subcellular distribution
[33]. SORL1 is also involved in retromer-related endosomal
trafficking and is a risk gene for Alzheimer’s disease [34].

Functional analyses were performed to further investi-
gate the molecular mechanisms of these mutant genes in
CM progression. The results of GO analysis indicated
enrichment in multicellular organismal signalling, muscle
system processes, ion transmembrane transport, and gated
channel activity. Additionally, KEGG analysis showed
enrichment in the calcium and oxytocin signalling pathways,
as well as in circadian entrainment.

We also found that BRAF and SORL1 expressions were
positively associated with immune cell (B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells)
infiltration in patients with CM. Additionally, their expression
was positively correlated with improved prognosis, whereas
mutated FLG expression was negatively correlated. Thus,
higher levels of immune cell infiltration appear to be associ-
ated with better survival outcomes. To some extent, these pat-
terns are consistent with previous findings suggesting that
highly immune-infiltrated lung cancer evaded immune attacks
by inhibiting new antigen expression [35]. Furthermore, a
strong body of evidence indicates that lymphocyte infiltration
in the tumour microenvironment is correlated with immuno-
therapeutic benefits [36–39]. Taken together, the data imply
that the prognostic value of BRAF, FLG, and SORL1 is associ-
ated with immune cell infiltration. An in-depth analysis of any
unique properties of immune cell infiltration may aid in the
development of cancer immunotherapy targets.

It is reported that an imbalance in the immune cell com-
ponent ratio is highly correlated with poor prognosis and
low survival in patients with cancer [40, 41]. In our study,
we found that the differential expression of immune cell
infiltration levels of three mutant genes depends on gene
mutation types.

Our study had some limitations. We did not perform
in vivo experiments to confirm the potential relationship
between mutant genes, prognosis, and immune cell infiltra-
tion. Future studies that consider gene-gene and gene-
environment interactions are warranted to better clarify
the molecular mechanisms of CM.

5. Conclusions

In summary, we identify novel biomarkers by elucidating the
role of SNP-related genes in tumour immune infiltration
and the prognosis of patients with CM. Our study provides
new perspectives for the identification of prognostic indica-
tors and offers an opportunity to optimise CM treatment.
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