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Phosphatidylinositol 3,4,5-trisphosphate- (PIP3-) dependent Rac exchanger 1 (P-Rex1) functions as Rho guanine nucleotide exchange
factor and is activated by synergistic activity of Gβγ and PIP3 of the heterotrimeric G protein. P-Rex1 activates Rac GTPases for
regulating cell invasion and migration and promotes metastasis in several human cancers including breast, prostate, and skin
cancer. The protein is a promising therapeutic target because of its multifunction roles in human cancers. Herein, the present study
attempts to identify selective P-Rex1 natural inhibitors by targeting PIP3-binding pocket using large-size multiple natural molecule
libraries. Each library was filtered subsequently in FAF-Drugs4 based on Lipinski’s rule of five (RO5), toxicity, and filter pan assay
interference compounds (PAINS). The output hits were virtually screened at the PIP3-binding pocket through PyRx AutoDock
Vina and cross-checked by GOLD. The best binders at the PIP3-binding pocket were prioritized using a comparative analysis of
the docking scores. Top-ranked two compounds with high GOLD fitness score (>80) and lowest AutoDock binding energy
(< -12.7 kcal/mol) were complexed and deciphered for molecular dynamics along with control-P-Rex1 complex to validate
compound binding conformation and disclosed binding interaction pattern. Both the systems were seen in good equilibrium, and
along the simulation time, the compounds are in strong contact with the P-Rex1 PIP3-binding site. Hydrogen bonding analysis
towards simulation end identified the formation of 16 and 22 short- and long-distance hydrogen bonds with different percent of
occupancy to the PIP3 residues for compound I and compound 2, respectively. Radial distribution function (RDF) analysis of the
key hydrogen bonds between the compound and the PIP3 residues demonstrated a strong affinity of the compounds to the
mentioned PIP3 pocket. Additionally, MMGB/PBSA energies were performed that confirmed the dominance of Van der Waals
energy in complex formation along with favorable contribution from hydrogen bonding. These findings were also cross-validated
by a more robust WaterSwap binding energy predictor, and the results are in good agreement with a strong binding affinity of the
compounds for the protein. Lastly, the key contribution of residues in interaction with the compounds was understood by binding
free energy decomposition and alanine scanning methods. In short, the results of this study suggest that P-Rex1 is a good
druggable target to suppress cancer metastasis; therefore, the screened druglike molecules of this study need in vitro and in vivo
anti-P-Rex1 validation and may serve as potent leads to fight cancer.
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1. Introduction

Metastasis is one of the hallmark features of various cancer
types characterized by the circulating tumors which spread
all across the body affecting the physiology of distant organs
[1]. Cancer is, therefore, a fatal disease due to its metastatic
nature, and barely a few of the anticancer agents to date have
been able to reduce tumor growth [2–5]. Interestingly, with
the discovery of small molecules, a new anticancer therapy
has been introduced that can potentially inhibit different
enzymes with a vital role in cancerous tumor development
and metastasis [6–8].

Among notable markers is PIP3-dependent Rac, an
important regulator in the metastasis of various cancer types
such as prostate cancer, melanoma, and breast cancer [9,
10]. Further reports of experimentally used lab cell lines sug-
gested that the P-Rex enzymes are attributive to invasive and
migration phenotypes [11]. Henceforth, both P-Rex enzyme
isoforms (P-Rex1 and P-Rex2) are significant therapeutic
targets as their overexpression leads to a clinical manifesta-
tion of cancer metastasis. Previous reports suggested that
the mouse model remained viable and healthy and has only
shown mild symptoms of neutrophilia, suggesting very min-
imum adverse drug reaction with the loss of function of P-
Rex1 [12]. Moreover, the dRouble knockdown model has
shown a decline in melanoblast, migration, and, hence,
metastatic resistance [10]. Hence, the molecular insight into
the regulatory pathway involving P-Rex1 activity could be
better understood which could lead to the discovery of anti-
cancer (metastatic drugs) therapeutics in the future. Dbl Rho
guanine nucleotide exchange factors (RhoGefs) are a sub-
family of P-Rex. The major characteristics include the pres-
ence of P-Rex2/2b isoforms [13] and tandem Dbl homology
(Dh)/pleckstrin homology (pH) domains [14]. Moreover,
both P-Rex1 and P-Rex2 share the homology to inositol
polyphosphate-4-phosphatase (IP4P), marked by the pres-
ence of a C-terminal domain, N-terminal DH/pH domains,
two Dep domains, and two Pdz domains. However, both
enzymes lack phosphatase activity [15].

Whilst P-Rex1 is highly expressed by the brain and neutro-
phils [14], a second isoform, P-Rex2 I is strongly expressed in
the skeletal muscles, small intestine, and placenta [16]. More-
over, PIP3 has been involved in synergistic and direct activation
of G protein BG subunits and all isoforms [17]. These isoforms
are selective for Cdc42 and Rac-subfamily (Rho GTPases), and
P-Rex can, therefore, participate in the signaling pathway of
both receptors (tyrosine kinases). This, in turn, activates phos-
phoinositide 3-kinase (PI3K) to facilitate the increase in PIP3
expression, together with G protein-coupled receptors
(GPCRs), and GbG subunits are then released. For instance,
changes in the actin cytoskeleton are mediated by the activation
of P-Rex1 which is stimulated by platelet-derived growth factor
receptor [14] and by the formyl peptide receptors (chemotactic)
found in neutrophils [18]. The extent of activation and, hence,
the levels of P-Rex1 are monitored in two ways: via its recruit-
ment to the cell membrane—a site where PIP3 and GbG sub-
units are produced, with its GTPase substrate, and secondly,
by measuring the acceleration of P-Rex1-mediated nucleotide
exchange on Cdc42, Rac1, and Rac2 [19].

Nevertheless, the mechanisms by which P-Rex1 is regu-
lated involving these participating molecules or domains
(outside its catalytic core) are still not fully understood.
Through truncation studies, it was revealed that the higher
activity is demonstrated by the short N-terminal P-Rex1
dh/ph fragment than the full-length counterpart. This
explains the autoinhibition of enzyme-mediated by the C-
terminal domains [12], with the PH domain of the protein
(P-Rex1) being the significant player in the stimulation of
PIP3 [6]. On the contrary, the location of the GbG-binding
site is still questionable as per many reports [20].

Inspired by the reports suggesting the therapeutic poten-
tial of the P-Rex1 enzyme [6], and the need for the develop-
ment of new small molecule inhibitors to control cancer
metastasis, the current study was conducted. The study
was commenced by applying Lipinski’s rule of five (RO5)
[21], toxicity [22], and filter pan assay interference com-
pounds (PAINS) [23] filters on diverse compound libraries
collected from natural as well as synthetic sources. After,
structure-based virtual screening (SBVS) [24] was conducted
to filter the libraries against the P-Rex1 enzyme to disclose
the best binding molecules with a rich pattern of chemical
interactions at an atomic level. The filtered hit potency
was subsequently validated by several state-of-the-art
molecular dynamics (MD) simulation-based [25–27] anal-
yses including prominent molecular mechanics generalized
Born surface area (MM/GBSA) and molecular mechanics
Poisson-Boltzmann surface area (MM/PBSA) methods
[26, 28, 29] as well as by more sophisticated WaterSwap
absolute binding free energy method [30, 31]. The enzyme
hotspot residue involved in major interaction energy con-
tribution then underwent site-directed mutagenesis to
uncover their role in compound binding [32, 33]. Compu-
tational pharmacokinetics was done to ensure selection of
molecules with higher chances to reach the marked
[34–36]. The lead compounds identified in this study
might be subjected to in vivo and in vitro biological vali-
dation assays to determine the molecule’s actual anti-P-
Rex1 enzyme activity. A schematic presentation of steps
followed in this study to identify potential P-Rex1 inhibi-
tors is illustrated in Figure 1.

2. Materials and Methods

2.1. Inhibitor Library and P-Rex1 Enzyme Preparation. Sev-
eral different libraries including comprehensive marine nat-
ural product database (CMNPD) [37], medicinal plant
database for drug designing (MPD3) [38], selleckchem bioac-
tive library I (https://www.selleckchem.com/screening/chemi
cal-library.html), selleckchem bioactive library II (https://
www.selleckchem.com/screening/bioactive-compound-library-
2.html), and Asinex target oncology library (http://www.
asinex.com/oncology-targeted-oncology/) were used in the
screening process. Compounds of the libraries were derived
from natural sources as well as contained synthetic ready-
to-use molecules. Prior to their use in structural-based virtual
screening (SBVS) [39], the libraries were filtered based on
Lipinski’s rule of five (RO5) [21], toxicity, and filter pan assay
interference compounds (PAINS) [23]. The hydrogen bonds
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and charges were added to the ligands in UCSF Chimera
1.15 [40] to prepare them for docking. These steps were
followed by the energy minimization via steepest descent
and conjugate gradient algorithms [41]. The P-Rex1
enzyme was retrieved from Protein Data Bank (PDB)
(ID: 5D27, organism: Homo sapiens) [6], the enzyme
structurally is a monomer with an overall structure resolu-
tion of 1.92Å (https://www.rcsb.org/structure/5d27). The
enzyme was then treated in UCSF Chimera 1.15 to discard
water molecules and extra ligands that are not functionally
relevant. Afterward, an energy minimization run was per-
formed to remove steric clashes if found any. The mini-
mized and unminimized enzymes were compared and
contrasted via the Ramachandran plot [42], and the best
structure based on a high number of residues plotting in
Rama favored and less number of residues in disallowed
regions was selected. The optimal enzyme structure was
used as receptor molecule in the virtual screening of the
libraries discussed above.

2.2. Comparative Docking Studies. To assess binding affinity
of library compounds with the P-Rex1 enzyme, we used
genetic optimization for ligand docking (GOLD) 5.2 [43]
and PyRx AutoDock Vina [44] software. In GOLD, 100 iter-
ations for each library compound were considered while
keeping parameters like island number, population size,
niche size, and number of generic operations as default.
The hydrogen bond and Van der Waals cut-off distance set
of 4.0Å and 2.5Å, respectively, were employed to ensure
the selection of only those complexes having short-distance
intermolecular interactions. In AutoDock Vina, binding
mode iterations were set to 100, and the maximum energy
difference to 3 kcal/mol. Best hit shortlisting was based on

the good binding energy profiles: high GOLD fitness score
and AutoDock lowest binding energy. In both docking soft-
wares, site-directed docking of the compounds was per-
formed where PH domain of the P-Rex1 Enzyme was
targeted. The PH domain is the binding site of PIP3 and
can be considered for rational design of small molecule
inhibitors [6]. The PIP3 was used as a control. The PIP3 is
a natural and high-affinity binder of the P-Rex1 PH domain,
and its competitive blockage can stop the natural function of
P-Rex1 [45].

2.3. Molecular Dynamics (MD) Simulations. MD simulation
studies were performed to study the physical dynamics of
atoms and molecules in protein-ligand docked complex
[25, 46, 47]. The top 2 hits were chosen, and MD simulations
with a run time of 100ns with each compound were con-
ducted. We used AMBER20 [48, 49] for MD simulations
where input ligand and receptor files for LEaP [50] were pre-
pared automatically. Next, the P-Rex1 enzyme-compound
complexes underwent hydrogen bond addition, water mole-
cule removal, and assigning bond order; any missing side-
chains were filled, and pH was adjusted to 7. The enzyme
was treated with FF14SB [51] while compound parameteri-
zation was done through AMBER general force field (GAFF)
[52]. The simulation system was kept solvated in a TIP3P
water box (as an example, top-1 compound complex with
P-Rex1 is shown in S-Figure 1). The boundaries that had
dimensions of the box were 10 Å × 10 Å × 10 Å around the
docked complex. The systems were kept neutralized involv-
ing the addition of CL− or NA+ counter ions. Energy mini-
mization was performed by both steepest descent and
conjugate gradient methods for 1500 rounds [32]. The sys-
tems were heated with a gradual rise of temperature to
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300K, followed by equilibration for 100 ps at a constant
300K temperature [41]. MD simulation production run
was accomplished for 100ns with NPT (constant number
of particles, pressure (1.01 bar), and temperature (300 k))
employing the smooth particle mesh Ewald (PME)
method [53] to treat long-range interactions. SHAKE
[54] and the Langevin thermostat [55] were applied to
constrain atoms involved in covalent interactions with
hydrogen atoms and keep temperature constant, respec-
tively. Subsequently, CPPTRAJ [56] was utilized to ana-

lyze the trajectories for the parameters including root
mean square fluctuation (RMSF) [57], root mean square
deviation (RMSD) [58], radius of gyration (RoG) [59],
beta factor (β-factor) [60], hydrogen bonding [61], and
radial distribution function (RDF) [62]. RDF describes
probability of finding particles with respect to a reference
particle at distance “r” [62]. The RDF plotting is com-
monly applied post MD simulations to highlight key res-
idue atom density distribution with ligand with respect to
distance [63–65].

Table 1: GOLD fitness score and binding energy of the two hits and control.

Hit Compound 3D structure Gold fitness score AutoDock Vina binding energy in kcal/mol

Top-1 82.5 -12.8

Top-2 82.1 -12.6

Control 75.14 -11.7
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2.4. MMGB/PBSA Binding Free Energy Calculations. For the
binding energy estimation, all simulation trajectories were
analyzed via MM/GBSA and MM/PBSA techniques. The
recording interval was adjusted to 1000 ps for entire 100ns
simulation. We gathered 100 frames to calculate MMGB/
PBSA through the MM/PBSA.py module [66] of AMBER20.

The following mathematical equation was used for cal-
culating the binding free energies:

ΔGBINDING = ΔGCOMPLEX − ΔGCompound + ΔGP − Rex1 ,
1

and

ΔGBINDING = ΔGMM + ΔGPB + ΔGSA − TΔS, 2

where ΔTDS is conformation entropic contribution, ΔGMM
is molecular mechanics’ energy including Van der Waals
electrostatic interaction, and ΔGSA considers both polar
solvation energy and nonpolar solvation energy [32]. The
entropy energy was estimated using a bash script by Duan
et al. based on the simulation trajectories [67].

2.5. Binding Free Energy Calculation WaterSwap. Addition-
ally, cross-validation of the binding free energy estimation
was performed using WaterSwap following the protocol
described by Woods et al. [30].

2.6. Alanine Scanning. Alanine scanning experiment per-
formed net to mutate key residues of the enzyme involved
in close distance interactions with the compounds and is
important for stable binding of the compounds at the
docked site [68]. Mutants are created manually by replac-
ing the enzyme residues (Lys39 and Arg75) with ALA and
then loading the enzyme structure into AMBER LEaP. The
simulation was again performed with mutated enzyme
structure, and MMGB/PBSA energy was reestimated. The
difference in the binding free energy between the native
and mutant P-Rex1 enzyme was estimated using the below
equation.

ΔΔGbinding = ΔGbinding of wild type − ΔGbinding of mutant
3

A higher value of ΔGbinding of mutant specifies that the

Van der waals
Conventional hyrogen bond
Halogen (Cl, Br, I)

Pi-donor hyrogen bond
Alkyl
Pi-alkyl

Interactions

Figure 2: Docked top-1 compound at the PIP3 active pocket, close view of its interacting residues, and presentation of different types of
chemical bonding.
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mutant is less stable compared to the wild type. Accord-
ingly, positive ΔΔGbind value demonstrates favorable con-
tribution and vice versa [32].

2.7. ADMET Analysis. The shortlisted top-2 compounds
were selected to study their ADMET properties using SWIS-
SADME [35], pkCSM [34], and PreADMET [69]. These
softwares assessed in vivo absorption parameters such as
water solubility, gastrointestinal absorption, in vivo caco2
cell permeability, and p-glycoprotein inhibition. Addition-
ally, different cytochrome p450-type inhibitions were also
evaluated for the compounds. For assessing the distribution
property such as central nervous system (CNS) permeability,
Lipinski’s rule (rule of five) [21], and blood-brain barrier
(BBB) [70] penetration, the toxicity assessment was con-
ducted using a range of endpoints such as AMES test [71],
carcinogenicity test in mouse, and rat acute algae toxicity.
Measuring the level of excretion is also one of the major
drug clearance tests, as many over-the-counter drugs are
removed from the market shelf due to their poor renal clear-
ance profile [72]. In our present study, parameters like total
renal clearance as well as renal oct2 substrate to predict the
extent of excretion efficiency of the proposed compounds
were included.

3. Results and Discussion

3.1. Identification of Potential P-Rex1 Enzyme Inhibitors.
Virtual screening of the libraries discussed in the methodol-
ogy was performed against P-Rex1 enzyme PIP3-binding
pocket through GOLD docking software, and compound
ranking was done as per GOLD fitness score. The higher
the score, the better is docking affinity of the compound
for the enzyme [41]. The top 50 best hits were shortlisted
and redocked to the enzyme using AutoDock Vina in PyRx
to reaffirm its binding potential. Comparative scoring func-
tion analysis was then performed, and Top-2 hits were iden-
tified. The 3D structure of these two compounds along with
scoring functions is tabulated in Table 1.

For comparative analysis, a control PIP3 was run to assess
the inhibitory potential of the compounds. The GOLD fitness
score of top-1 compound (O=C(OC(C)(C)C)CC1N=C(c2ccc
(cc2)Cl)c2c(n3c1nnc3C)sc(c2C)C) is 82.5, and its binding
energy value is -12.8 kcal/mol. For top-2 (OC(=O)C1=CC=C
(NC2=NC3=C(CN=C(C4=C3C=CC(=C4)Cl)C5=C(F)C=CC
=C5F)C=N2)C=C1), the GOLD fitness score and binding
energy are 82.1 and -12.6 kcal/mol, respectively. Both the com-
pounds produced a rich pattern of chemical interactions with
residues of the active pocket. For example, top-1 compound

Van der waals
Conventional hydrogen bond
Corbon hydrogen bond

Pi-cation
Pi-lone pair
Pi-alkyl

Interactions

Figure 3: Docked top-2 compound at PIP3 active pocket, close view of its interacting residues, and presentation of different types of
chemical bonding.
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formed hydrogen bonds with Lys39, Arg48, Tyr59, and Arg75
and Van der Waals interactions with Glu20, Ser41, Asn44,
Gln46, and Gly76. The compound is also engaged via alkyl
interaction by Phe74 and Lys115 (Figure 2).

On the other hand, the top-2 compound generates a
hydrogen bond network with Lys39, Arg75, and Asn98.
Van der Waals interactions involve residues Ile40, Tyr59,
Gly76, Asn114, Lys115, Trp116, Asn117, and Val118. Only
one residue Ala42 was reported in Pi-alkyl interaction
(Figure 3). In general, the binding conformation of both
compounds was as such to access the floor of the PIP3 active
pocket and accommodate themselves along the length. This
is why the majority of the enzyme residues involved in inter-
actions were found the same in compound docking. It was
observed that small chemical moieties of the compounds

adjusted well inside the pocket while larger chemical struc-
tures protrude outside. This further hints that the com-
pounds following Lipinski’s rule of five could be better led
in the future for structure as well as biological activity
optimization.

3.2. MD Simulations of Complexes. Molecular docking is a
powerful approach in predicting ligand molecule binding
mode and interactions with respect to a receptor macromol-
ecule, yet the docked intermolecular conformation of mole-
cules is static, and hence, a full description of the dynamic
stability of the selected complexes must be evaluated in a
biological environment [73, 74]. MD simulation in this
regard is a useful technique to mimic complex physical
motion in actual environment and interpret intermolecular
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affinity and overall stability of compound interactions with
the P-Rex1 enzyme active site residues [25, 65]. RMSD,
which is a significant parameter in determining complex
dynamic stability and overall equilibrium, was calculated
first as shown in Figure 4(a) [57, 58, 75]. The mean carbon
alpha RMSD of the systems are in the following order: top-1
(2 66 Å ± 0 58), top-2 (3 09 Å ± 0 56), and control

(2 19 Å ± 0 33). These RMSD values are demonstrating highly
acceptable range of system equilibrium. Because of the small
size of the enzyme, the N- and C-terminals suffer from fluctu-
ations, thus pushing the overall structure more dynamics;
however, because of the greater strength of the docked com-
pounds to the enzyme, the compound conformation at the
docked pocket is not altered and remained in stable pose
throughout the length of simulation time. A bit higher fluctu-
ation in top-2 compound RMSD was noticed around 30ns to
50ns, which, upon inspection, is due to flexible dynamics of
the enzyme loops, but it does not alter the compound binding
at all. To further validate complex stability, residue level
RMSD, more technically called RMSF, was measured
(Figure 4(b)) [76, 77]. The mean carbon alpha RMSD for the
systems is top-1 (1 29 Å ± 0 83), top-2 (1 55 Å ± 1 27), and
control (1 17 Å ± 0 87). As stated earlier, the C- and N-
terminal residues of the enzyme are highly unstable in
dynamic environment which contributes to its high RMSF,
but it does not alter compound binding and interactions.
Next, RoG analysis [59] was performed to understand the
3D compactness of the P-Rex1 enzyme in the presence of
the compounds and control (Figure 4(c)). The mean carbon
alpha RoG for top-1, top-2, and control are 44 56 Å ± 39 88,
33 96 Å ± 2 97, and 50 95 Å ± 0 96, respectively. The RoG
analysis agrees on good compactness of the enzyme, and
no significant structural deviations in the enzyme structure
were detected in the presence of the compounds. Thus, it
can be inferred that the enzyme is enjoying the company
of compounds and has well accommodated the compounds
in its pocket. The RoG findings are in line with the RMSD
analysis of the complexes. Lastly, the β-factor [57] parame-
ter for the complexes was investigated that calculated themean

β-factor as follows: top-1 (56 31 Å2 ± 106 0), top-2

(106 68 Å2 ± 272 71), and control (56 25 Å2 ± 110 81). The β-
factor plots are depicting the same behavior of the complexes
like that of RMSF and are analogous (Figures 4(b) and 4(d)).

3.3. Hydrogen Bond Occupancy Analysis. Hydrogen bonds
are central to determine ligand binding specificity and valu-
able chemical interactions to enhance the strength of
receptor-ligand binding [61]. Hydrogen bond occupancy
was determined to shed light on the role of residues involved
in compound bindings via hydrogen bonds. For top-1 and
top-2 compounds, 16 and 22 hydrogen bonds were detected
with the P-Rex1 enzyme through different percentages of
occupancy as can be seen in Table 2. This increased number
of hydrogen bonds between the enzyme and the compounds
strongly suggests their vital role in the stability of complexes.

3.4. High-Density Intermolecular Interaction RDF Plotting.
For the top-1 compound, three key residues that are also
reported by docking studies were used in RDF plotting
throughout the length of MD simulations. These interac-
tions include that residues Lys39, Gln46, and Arg77 have
engaged compound N5 and N7 atoms for holding the ligand
at the docked pocket. Among the interactions, Gln46 residue
interaction via its HE21 atom to engage top-1 compound N5
atom in hydrogen bonding has the high interatomic density
distribution. The maximum g(r) value noticed for this

Table 2: Hydrogen occupancy analysis for top-1 and top-2
compounds based on MD simulation trajectories.

Donor Acceptor Occupancy (%)

Top-1

ARG75-Side-NH2 LIG155-Side-N9 0.07

ARG77-Main-N LIG155-Side-N5 0.23

ARG77-Main-N LIG155-Side-N1 1.14

TYR59-Side-OH LIG155-Side-O27 0.05

LYS113-Side-NZ LIG155-Side-O27 0.02

TYR59-Side-OH LIG155-Side-O26 0.01

ASN110-Side-ND2 LIG155-Side-O27 0.49

SER41-Side-OG LIG155-Side-N5 0.50

LYS39-Side-NZ LIG155-Side-O27 0.01

LYS39-Side-NZ LIG155-Side-O26 0.01

GLN46-Side-NE2 LIG155-Side-N5 0.45

GLN46-Side-NE2 LIG155-Side-N1 0.09

LYS39-Side-NZ LIG155-Side-N9 0.01

SER41-Side-OG LIG155-Side-N1 0.08

LYS39-Side-NZ LIG155-Side-N5 0.04

GLN46-Side-NE2 LIG155-Side-O27 0.02

Top-2

ASN98-Side-ND2 LIG155-Side-N22 0.28

LIG155-Side-N25 ASN98-Side-OD1 0.24

SER41-Side-OG LIG155-Side-O33 0.04

LYS39-Side-NZ LIG155-Side-O33 0.06

LIG155-Side-O34 TRP116-Main-O 0.04

LIG155-Side-O34 ILE40-Main-O 0.02

HIE96-Side-NE2 LIG155-Side-F19 0.07

LIG155-Side-N25 ASP94-Side-OD1 0.01

LIG155-Side-N25 ASP94-Side-OD2 0.01

TYR95-Side-OH LIG155-Side-N22 0.02

HIE96-Side-NE2 LIG155-Side-N22 0.68

LIG155-Side-N25 ASN114-Side-OD1 0.13

TYR95-Side-OH LIG155-Side-O33 0.01

HIE96-Side-NE2 LIG155-Side-O33 0.01

LIG155-Side-O34 GLU86-Side-OE2 0.32

LIG155-Side-O34 GLU86-Side-OE1 0.05

HIE109-Side-NE2 LIG155-Side-F19 0.04

ASN114-Side-ND2 LIG155-Side-N25 0.01

ASN114-Side-ND2 LIG155-Side-N24 0.01

ASN114-Side-ND2 LIG155-Side-O33 0.06

LYS107-Side-NZ LIG155-Side-N22 0.05

LIG155-Side-N25 GLU86-Side-OE1 0.03
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interaction is at 2.1Å with g(r) value of 0.37. The other two
interactions presented in the figure are more dispersed and
have varied intermolecular density distribution at different
distance points. For the top-2 compound, only one, i.e.,
Lys39 HZ1, atom that contacted the compound through
the N9 atom is more refined and played a significant contri-
bution in ligand stability. The maximum g(r) value of this
interaction is 0.8 at a distance of 2.12Å. RDF plots of top-
1 and top-2 compounds are shown in Figure 5.

3.5. Estimation of MM/GBSA and MM/PBSA Binding Free
Energies. The MM/GBSA and MM/PBSA methods are sig-
nificantly better choices than conventional docking scoring
functions in order to evaluate the binding affinity of com-
pounds to the target biological macromolecule as well as in
terms of examining conformation ordering performance

[28, 78]. Both these methods used simulation trajectories
to generate atomic-level different chemical interaction ener-
gies in gas and solvation phase. Overall, the binding free
energies estimated for the systems are presented in Table 3.
The complexes depicted good intermolecular stability with
the net binding energy of -30.06 kcal/mol, -14.35 kcal/mol,
and -20.51 kca/mol for top-1, top-2, and control, respec-
tively, in MM/GBSA. Hence, in MM/GBSA, the top-1 com-
pound complex with P-Rex1 enzyme is more stable
compared to top-2 and control; though both the complexes
have high stability. In the case of MM/PBSA, the systems
scored less net binding energy value because of the high sol-
vation energy where polar energy contributed unfavorably to
the complex stability. The control system has deciphered
more energy stable than the compound complex. Both
MM/GBSA and MM/PBSA methods concluded the

0.4
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ARG77-H-LIG155-N5
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0.4g 
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)
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0
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LYS39-HZI-LIGI55-N9

Figure 5: RDF plots for some key interactions keeping the compounds intact at the docked site.

Table 3: MM/GBSA and MM/PBSA binding energies for P-Rex1/compound complexes obtained through MD simulation trajectories. The
values are shown in kcal/mol.

Energy component
MM/GBSA MM/PBSA MM/GBSA MM/PBSA MM/GBSA MM/PBSA

Top-1 Top-1 Top-2 Top-2 Top-3 Top-3

ΔG binding -30.06 -1.53 -14.35 -1.13 -20.51 -2.87

ΔG electrostatic 3.28 3.28 -0.84 -0.84 -1.74 -1.74

ΔG bind Van der Waals -41.3 -41.3 -21.16 -21.16 -22.54 -22.54

ΔG bind gas phase -38.02 -38.02 -22.01 -22.01 -24.28 -24.28

ΔG polar solvation 12.87 17.04 9.94 8.33 8.94 28.22

ΔG nonpolar solvation -4.91 -30.2 -2.29 -13.83 -5.17 -6.81

EDISPER energy - 49.65 - 26.36 - 7.03

ΔG solvation 7.96 19.63 7.65 20.87 3.77 21.41

9BioMed Research International



favorable nature of Van der Waals energy in compounds/
control interaction with the targeted enzyme while negative
contribution was reported from electrostatic and polar sol-
vation energies. A discrepancy was noted between the dock-
ing scores and MMGB/PBSA methods, as the former is less
accurate than the latter. The difference between MM/GBSA
and MM/PBSA net value is that the former uses a general-
ized approximation of the Poisson-Boltzmann equation
and is faster treatment than that of MM/PBSA. The differ-
ence is also due to the polar solvation effect [32]. Addition-

ally, entropy analysis was performed and revealed that the
entropy energy of top-1 is 4 kcal/mol and top-2 is 1 kcal/mol.

3.6. WaterSwap Energy Calculation. The MM/GBSA and
MM/PBSA binding free energy calculation suffers from sev-
eral drawbacks and therefore requires additional validation
by another more sophisticated approach that calculates
absolute binding free energies like WaterSwap [30]. The
method applies the construction of a reaction coordinate
which allows swapping of bounded ligand to the protein
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Figure 6: WaterSwap binding free energies calculated for the complexes by three different methods.
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Figure 7: Net MM/GBSA binding free energy decomposition into residues that dominated interactions with the compounds.
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with an equivalent size of water molecules. The MM/GBSA
and MM/PBSA use implicit water models that skip details
about ligand water and protein-water interactions which is
of high importance as some water molecules may form
bridging interactions between the ligand and its receptor
macromolecule. Also, these methods do not include entropy
energy which must be taken into account while calculating
binding free energies. The WaterSwap calculates absolute

binding free energy via three principles, i.e., Bennetts, free
energy perturbation (FEP), and thermodynamic integration
(TI) [30]. As presented in Figure 6, all the three complexes
are highly stable by scoring very less in the WaterSwap cal-
culation. The system WaterSwap calculations are well con-
verged as the differences among the energy values are
<1 kcal/mol, suggesting good overall stability and intermo-
lecular affinity of the complexes [64].

Table 4: Computational druglikeness and pharmacokinetics of compounds.

Property
Compound

Top-1 Top-2

Physicochemical properties

Formula C23H25ClN4O2S C25H15ClF2N4O2

Molecular weight 456.99 g/mol 476.86 g/mol

Num. heavy atoms 31 34

Num. arom. heavy atoms 16 24

Fraction Csp3 0.39 0.04

Num. rotatable bonds 5 4

Num. H-bond acceptors 5 7

Num. H-bond donors 0 2

Molar refractivity 128.62 128.21

TPSA 97.61Å2 87.47Å2

Lipophilicity Consensus Log Po/w 4.72 4.78

Water solubility Water solubility Moderately soluble Poorly soluble

Pharmacokinetics

GI absorption High High

BBB permeant No No

P-gp substrate No No

CYP1A2 inhibitor No No

CYP2C19 inhibitor Yes No

CYP2C9 inhibitor Yes Yes

CYP2D6 inhibitor No No

CYP3A4 inhibitor Yes No

Log Kp (skin permeation) -5.64 cm/s -5.53 cm/s

Druglikeness

Lipinski Yes Yes; 0 violation

Ghose Yes No

Veber Yes Yes

Egan Yes No

Muegge Yes No

Bioavailability score 0.55 0.56

Medicinal chemistry

PAINS 0 alert 0 alert

Brenk 0 alert 0 alert

Synthetic accessibility 4.64 3.80

Toxicity

Hepatotoxicity N0 Yes

Skin sensitisation No No

T. pyriformis toxicity No No

AMES toxicity No No

Minnow toxicity No No

Carcino mouse Negative Negative

Excretion
Total clearance -0.082 0.075

Renal OCT2 substrate No No
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3.7. Decomposition of MM/GBSA Binding Free Energy.
Atomic-level understanding of P-Rex1-compound interac-
tions was achieved by decomposing the net MM/GBSA
binding energy into residues that are present within or
around the enzyme active pocket. Residues that contributed
majorly to the interaction by securing <−1 kcal/mol are
termed as hotspot residues and plotted in Figure 7. These
residues include Gly18, Glu20, Lys39, Ile40, Ser41, Ala42,
Asn44, Arg48, Tyr59, Ile73, Phe74, Arg75, Gly76, Asn98,
Asn114, Lys115, Phe117, and Val118. All these residues are
seen to form close distance hydrophobic and hydrophilic
interactions and are part of the active pocket. As observed
in the net binding energy of the systems, Van der Waals
energy dominates the overall interaction of these residues
with the compounds whereas nonfavorable contribution
from electrostatic and polar solvation energy was also
revealed.

3.8. Alanine Scanning Analysis. The key contribution of
selected hotspot residues to compound binding was under-
stood by mutating the residues to alanine. Considering the
major contribution of Lys39, and Arg75 in both compound
binding and stable docking, site-directed mutagenesis was
performed. Following mutating residues, molecular dynam-
ics simulation was performed of the same length initially
performed, and residue-wise MM/GBSA binding free energy
was recalculated. It was reported the mutated residues
steered a decline in binding energy, thus owing to the impor-
tance of both residues towards enzyme functionality and
compound binding. The binding energy of Lys39 and
Arg75 was seen reduced to 0.45 kcal/mol and -1.0 kcal/mol
from the original -2.01 kcal/mol and -1.75 kcal/mol,
respectively.

3.9. Computational Druglikeness and Pharmacokinetics. In-
depth details of druglikeness and pharmacokinetics of the
compounds are tabulated in Table 4. From druglikeness per-
spectives, both the compounds fulfill prominent Lipinski’s
rule of five. However, in addition to Lipinski, top-1 also
completely covers Ghose et al. [79], Veber et al. [80], Egan
et al. [81], and Muegge et al. [82] druglike rules. The top-2
compound also accepts the Veber rule but not others. The
druglike analysis of the compounds suggests that the com-
pounds could be good candidates for further optimization
and have a good chance to reach the market. The lipophilic-
ity LogP value of the compounds is within the acceptable
range, thus indicating its positive impact on drug metabo-
lism and uptake [80]. The good LogP also makes sure that
the compounds do not bind to off-target and unwanted cel-
lular targets. The topological surface area (TPSA) score of
the compounds is also within the limit of good druglike mol-
ecules, therefore, increasing the chances of the compounds
to penetrate the cells and increasing compound absorption
[80]. High gastrointestinal (GI) absorption is key in novel
drug design as this guarantees that a high concentration of
drug reaches the target site and performs the required ther-
apeutic action [83]. Both the selected compounds have high
GI absorption and could be potential oral candidates. The
compounds can not cross the blood-brain barrier (BBB)

and are nonsubstrates of P-glycoprotein (P-gp) [84] v. The
nonsubstrate nature of the compounds will allow the com-
pounds to keep a good concentration of the drugs in blood
plasma and will not affect their final therapeutic effects.
From a medicinal chemistry point of view, both compounds
are easy to synthesize and do not contain any pan assay
interference compounds (PAINS) alerts [23]. The zero alert
for PAINS means that the compounds interact only with
P-Rex1 and are thus selective in nature. The top-1 com-
pound is negative for all toxicity tests whereas top-2 is only
positive for hepatotoxicity. Lastly, both compounds were
predicted not to serve as substrates for organic cation trans-
porter 1 (OCT2); therefore, the compounds may deposit and
do not undergo renal clearence [34].

4. Conclusions and Future Prospects

The present study explored several druglike, nontoxic, and
PAINS alert-free libraries against the P-Rex1 enzyme to block
cancer metastasis. The findings provided a detailed
information about two shortlisted inhibitory molecules:
((O=C(OC(C)(C)C)CC1N=C(c2ccc(cc2)Cl)c2c(n3c1nnc3C)-
sc(c2C)C and OC(=O)C1=CC=C(NC2=NC3=C(CN=C(C4
=C3C=CC(=C4)Cl)C5=C(F)C=CC=C5F)C=N2)C=C1)) that
showed descent affinity for the enzyme as validated by range
of computational analysis. The compounds docked efficiently
at the PIP3-binding pocket and were dominated by a mixture
of Van der Waals and hydrogen bonding. The static docked
complexes of the compounds were subjected to MD simula-
tion dynamics, and structural stability was affirmed by several
different statistical parameters such as RMSD, RMSF, RoG,
β-factor, hydrogen bond occupancy, and RDF. Moreover,
MM/GBSA, MM/PBSA, and WaterSwap methods were
employed to examine the predictions made by docking
and MD simulation studies that agree to the findings and
categorized the complexes as stable. Alanine scanning was
also performed to induce site-directed mutagenesis of
Lys39 and Arg75 to alanine and evaluate its contribution
in compound binding. The analysis confirmed the said res-
idues to play a significant role in the overall stability of the
compounds at the docked site. In-depth ADMET studies of
the compounds showed the molecules to have excellent
druglikeness, pharmacokinetics, medicinal chemistry, and
nontoxic profiles. Previously, six small molecules were iden-
tified, which interact with the same P-Rex1 PH domain
reported herein. Out of six, three of the compounds inhibit
N-formylmethionyl-leucyl-phenylalanine of the enzyme and
block neutrophils spreading along with GTPase Rac2, thus
affecting downward P-Rex1 activity [45]. The scope of the
study was to computationally identify inhibitory molecules
of the P-Rex1 enzyme to stop the regulation of cell invasion
and migration and promote metastasis in several human
cancers including breast, prostate, and skin cancer. Such
studies have been regularly applied in the last decades,
and many molecules have been unveiled computationally
and validated experimentally to show biological potency.
The study is open for experimentalists to use the com-
pounds in biological in vivo and in vitro assays to disclose
their real biological potential. The outcomes of the study
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will not only speed the discovery of the P-Rex1 enzyme but
also deliver ready-to-use data for specific experimental
testing.
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