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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has greatly affected all aspect of life. Although
several vaccines and pharmaceuticals have been developed against SARS-CoV-2, the emergence of mutated variants has raised
several concerns. The angiotensin-converting enzyme (ACE2) receptor cell entry mechanism of this virus has not changed
despite the vast mutation in emerging variants. Inhibiting the spike protein by which the virus identifies the host ACE2
receptor is a promising therapeutic countermeasure to keep pace with rapidly emerging variants. Here, we synthesized two
ACE2-derived peptides, P1 and P25, to target and potentially inhibit SARS-CoV-2 cell entry. These peptides were evaluated
in vitro using pseudoviruses that contained the SARS-CoV-2 original spike protein, the Delta-mutated spike protein, or the
Omicron spike protein. An in silico investigation was also done for these peptides to evaluate the interaction of the
synthesized peptides and the SARS-CoV-2 variants. The P25 peptide showed a promising inhibition potency against the
tested pseudoviruses and an even higher inhibition against the Omicron variant. The IC50 of the Omicron variant was
60.8 μM, while the IC50s of the SARS-CoV-2 original strain and the Delta variant were 455.2μM and 546.4μM,
respectively. The in silico experiments also showed that the amino acid composition design and structure of P25 boosted
the interaction with the spike protein. These findings suggest that ACE2-derived peptides, such as P25, have the potential
to inhibit SARS-CoV-2 cell entry in vitro. However, further in vivo studies are needed to confirm their therapeutic efficacy
against emerging variants.

1. Introduction

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has significantly impacted the human
health, global economy, and society. Such an impact will
require years for complete recovery. In December 2019,

this virus was recognized as the causative agent responsi-
ble for the COVID-19 pandemic [1]. As of September
2022, there have been over 605 million confirmed cases
and at least 6.4 million global deaths [2]. Due to the major
efforts in vaccine development, the virus fatality decreased
significantly [3]. However, the virus’s rapid mutations and
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the risk of the mutated virus evading immunity are still
immense threats. Due to this potential health hazard, research
regarding this pandemic is of the utmost importance.

The earliest variant of concern (VOC), alpha, was
reported in December 2020 [4]. This variant, which has
potent substitution mutations such as D614G and
N501Y, represents a fitness advantage that enhances viral
entry into the target cell [5–7]. Additional mutations and
deletions were reported later in several VOCs, and these
VOCs were noted to have high viral transmissibility, bind-
ing affinity, and antibody escape [8]. For example, the
Omicron variant, which is one of the most dominant
strains of SARS-CoV-2 worldwide, has over 32 mutations
clustered within the receptor binding domain (RBD) and
the spike protein’s N-terminal domains, which are the pri-
mary targets of neutralizing antibodies [9, 10]. Therefore,
this variant is likely to escape the neutralizing effect of
antibodies, thereby reducing the efficiency of the otherwise
highly effective vaccines.

While vaccines are the most effective prevention
method, antiviral drugs remain necessary to decrease the
severity of the infection in critical cases. Several studies have
tested the therapeutic potential of SARS-CoV-2 nonspecific
treatments, such as HIV protease inhibitors, influenza neur-
aminidase inhibitors, and other nucleoside reverse transcrip-
tase inhibitors [11–13]. Additionally, several protein
therapeutic approaches have been explored as a potential
SARS-CoV-2-specific treatment. These included the use of
full-length recombinant human ACE2 protein [14] and
recombinant SARS-CoV-2 RBD protein [15].

Peptide-based therapeutics is another attractive
approach that can be used as a SARS-CoV-2-specific treat-
ment. Peptide inhibitors for the virus can be designed to
act as binding inhibitors by targeting the host ACE2 receptor
binding site or the receptor binding domain of the virus
spike protein. Alternatively, inhibition can also be achieved
using fusion inhibitor peptides that interfere with the forma-
tion of the fusion core during viral infection [16–18]. The
sequence of such peptides can be driven either from the
ACE2 or the spike protein itself. Xia et al. tested the inhibi-
tory effect of multiple spike-driven peptides that target the
HR1 domain of SARS-CoV-2 [19]. The in silico analysis
and molecular dynamic studies revealed other ACE2-
driven peptides with a high inhibitory potential of SARS-
CoV-2 infection. However, the inhibitory activity and bind-
ing affinities of such inhibitors were never validated on the
original virus or other VOCs.

The molecular docking simulation and analysis of the
RBD-ACE2 cocrystal structure by Zhang et al. revealed a
potential 23-mer peptide inhibitor driven by the human
ACE2 protein [20]. However, in vitro testing of the
reported sequence repeatedly proved the inability of the
peptide to inhibit viral entry to ACE2-expressing cells
[14]. Therefore, further docking analysis and virtual
screening of the same peptide resulted in a modified
sequence with mutated residues to improve the overall
activity. The reported simulation of the modified peptide
suggested stronger interaction with the spike protein of
the original SARS-CoV-2 virus [21].

Despite its potentials, the sequence has not yet been
experimentally validated against the original virus and
emerging variants.

In this study, we investigated and evaluated the binding
affinities and inhibitory activity of a previously reported
ACE2-derived peptide, P1, and a modified sequence of the
same region, P25, which are predicted by Panda et al. and
referred to as peptide #13 in their study [20, 21]. Based on
their computational study, P25 is claimed to show a stronger
binding affinity than P1, which was found to be ineffective in
previous experimental studies, and can provide a better inhi-
bition against SARS-CoV-2. However, the efficacy of P25
was only supported by simulations. We aimed to provide
experimental data to challenge these claims and elucidate if
these same peptides can bind and inhibit the SARS-CoV-2-
associated variants of concern, such as Omicron and Delta.
Peptide inhibition activities were tested against the pseudo-
virus of the SARS-CoV-2 virus, as well as the Delta and
the Omicron variants, as shown in Figure 1. The computa-
tional analysis of these peptides was also performed to pre-
dict the behavior of interactions against different VOCs.
This study highlights the relevance of peptide-based inhibi-
tors as a potential antiviral alternative to mitigate emerging
variants and provide a rapid response against them.

2. Materials and Methods

For the peptide synthesis, diethyl ether, acetonitrile, formic
acid, N,N-dimethylformamide (DMF), trifluoroacetic acid
(TFA), triisopropylsilane (TIS), diisopropylethylamine
(DIPEA), dichloromethane (DCM), and piperidine were
obtained from Sigma-Aldrich. In addition, 2-(1H-benzotri-
azole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(TBTU), hydroxybenzotriazole (HOBt), MBHA rink amide
resin, and 9-fluorenylmethoxycarbonyl- (Fmoc-) protected
amino acids were acquired fromGL Biochem, China. All com-
pounds were used in their original state without purification
or modification.

For MST, recombinant SARS-CoV-2 spike S1 protein
and human ACE2 protein were purchased from Sino Biolog-
ical (Cat: 40591-V08H, Cat: 10108-H08B). For ELISA,
maleic anhydride-activated plate, REF 15100, ELISA block-
ing buffer, N502, and ACE-2 antibody were obtained from
Thermo Scientific. Carbonate-bicarbonate buffer capsule,
C3041-100CAP, and Tween-20, T2700-500ML, were
acquired from Sigma-Aldrich. Phosphate-buffered saline
was obtained from Fisher Scientific (096292) and S1 protein
from Sino Biological (40591-V08H). Both TMB substrate,
ab171523, and spike antibody, ab273073, were provided by
Abcam. ELISA stop solution was acquired from Invitrogen
(SS04) and Thermo Scientific (PA5-20045), anti-rabbit sec-
ondary antibody from Abcam (ab6721), and anti-human
secondary antibody from Abcam (ab99759).

For cell culture and inhibition assay, ACE2-expressing
cells (293T ACE2 SSC22) and all plasmids were generously
provided from the Laboratory of Retrovirology at Rockefel-
ler University. Human embryonic kidney 293T (HEK
293T) were obtained from ATCC (REF CRL-3216). Dulbec-
co’s Modified Eagle Medium (REF 31966021), Opti-MEM
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(REF 31985054), fetal bovine serum (REF 16140071), and
Pen-Strep (REF 15070063) were obtained from Gibco. The
transfection reagent, branched polyethylenimine 408727-
250ML, was obtained from Sigma-Aldrich. The lysis buffer
and the NanoGlo reagents for the luciferase assay were
purchased from Promega, REF E1531 and REF N1150,
respectively.

2.1. Peptide Synthesis. The ACE-2 peptide sequences were
synthesized through solid-phase peptide synthesis (SPPS)
by using a CS136X CS biopeptide synthesizer. MBHA rink
amide resin was used for the solid support. In brief, TBTU
(3 eq.), HOBt (3 eq.), DIPEA (6 eq.), and the desired Fmoc-
protected amino acid (3 eq.) were used for each coupling
reaction step. The Fmoc-protecting group was removed
using a mixture of 20% (v/v) piperidine in DMF. After the
completion of all the coupling reactions, the final peptides
were cleaved from the resin by adding a mixture of 95% TFA,
2.5% TIS, and 2.5% water and stirred at room temperature for
2h. The peptides were precipitated in diethyl ether and col-
lected by centrifugation. The solids were dried under a vacuum
overnight. Finally, the peptides were purified by a reverse-phase
HPLC with a C-18 column. The peptides were precipitated in
diethyl ether and collected by centrifugation. The solids were
dried under a vacuum overnight. Finally, the peptides were
purified by a reverse-phase HPLC with a C-18 column.

To calculate the purity of the peptides, we used liquid
chromatography-mass spectrometry (LC-MS); Agilent 1260
Infinity LC; Agilent Zorbax SB-C18, 4 6 × 250mm column;
and Agilent 6130 Quadrupole MS. A 1.5ml/min flow rate
of a mobile phase was used in addition to 0.1% (v/v) formic

acid with water (A) and 0.1% (v/v) formic acid with acetoni-
trile (B). The chromatogram was obtained at a wavelength of
220 nm in Figures S1A and S1B with a purity > 95%.

2.2. MST Binding Studies. The binding affinities of each ACE-
2 peptide with the spike protein were examined through ther-
mophoretic measurements taken with the red detection chan-
nel of the Monolith NT.115 instrument. The fluorescent dye
NT647 was used to label the SARS-CoV-2 spike S1 to record
MST following the protocol recommended by NanoTemper
[22]. Here, 100μl NT647-N-hydroxysuccinimide fluorophore
(NanoTemper Technologies) was incubated for 30min in the
dark at room temperature with 100μl of spike S1 protein in
the labeling buffer (130mM NaHCO3, 50mM NaCl, and
pH8.2). After that, 10μl of 4.4μM NT647-Spike in MST
buffer and 10μl of each peptide serial dilution in Tris buffer
were mixed. This buffer can mimic the physiological pH con-
ditions found in biological systems; this buffer can mimic the
physiological pH conditions found in biological systems. In
all the samples, the peptide’s initial concentration was
500μM, and NT647-Spike’s concentration was 5nM. Follow-
ing the loading of the samples into 16 premium-coated capil-
laries from NanoTemper Technologies, fluorescence was
measured for 40 seconds while using 20% laser power and
medium MST power. All measurements were conducted with
the instrument’s temperature set at 21°C. The data were exam-
ined following the recording of MST time traces. Using the
ligand concentration-dependent variations in the normalized
fluorescence, the KD value was estimated. The provided values
were produced using the MO Affinity Analysis software
(NanoTemper Technologies).
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Figure 1: Schematic of pseudovirus entry inhibition using rationally designed peptide inhibitors.
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2.3. ELISA Detection Studies. The ELISA experiments were
conducted using a sandwich ELISA methodology. P1 and
P25 peptides were dissolved in a carbonate-bicarbonate
coating buffer to a final concentration of 10μM. Maleic
anhydride-activated plates (Thermo Fisher, 15110) were
coated with P1 and P25 peptides and incubated at 4°C over-
night. ACE2 was used as a control, coated at a concentration
of 1μg/ml. The plate wells were then washed with 1× PBS
with 0.05% Tween-20 washing buffer, followed by the addi-
tion of a blocking buffer to each well (Thermo Fisher, N502),
and then incubated overnight at 4°C. After repeating the
washing step, 1μg/ml of the spike protein (Sino Biological,
40591-V08H) was added to the wells and incubated at room
temperature for 1 h. This was followed by a washing cycle
and then the addition of anti-spike antibodies (Invitrogen,
PA5-81795) with a concentration of 1μg/ml. Following a
1 h incubation at room temperature and the washing cycles,
a concentration of 1μg/ml of the secondary antibodies
(Abcam, ab6721) was added and incubated for 1 h at room
temperature. Then, the plates were washed and incubated
with the TMB substrate (Abcam, ab171523) for 30min at
room temperature before adding the stopping solution (Invi-
trogen, SS04). The optical density (OD) signal was measured
at 450 nm using a PHERAstar FS microplate reader.

2.4. Circular Dichroism Studies. The CD spectra were mea-
sured using an AVIV-430 spectrophotometer at scanning
wavelengths between 190 and 300nm, with 1.0 nm incre-
ments. The samples were placed in a 0.1mm optical path
length cuvette. Both the P1 and P25 peptides were dissolved
at a concentration of 1mg/ml in 1× PBS. The signals were
normalized to the molar ellipticity value.

2.5. Cytotoxicity Assay. The cytotoxicity of the peptides was
assessed using a viability assay. Modified HEK 293T cells
expressing the ACE2 receptor (293T ACE-2 SSC22) were
mixed with 100μl DMEM-supplemented media and incu-
bated in 96-well plates with a seeding density of 2500 cells/
well. After overnight incubation, the P1 and P25 peptides
were added to the designated wells at an initial concentra-
tion of 4mM, followed by subsequent 2-fold dilution until
0.125mM was reached. Cells with peptides were cultured
for 3 days, after which cell viability was measured using an
ATP assay (Promega, G9681).

2.6. Molecular Docking Simulations. Two inhibition peptides
were used as potential targets for the reported SARS-CoV-2
VOCs [23–27]. The analyzed variants were Alpha B.1.1.7,
Beta B.1.351, Gamma P.1, Delta B.1.617.2, Epsilon B.1.429,
and Omicron B.1.1.529 (PDB codes: 7LWV, 7LYN, 7SBO,
7M8K, 7N8H, and 7T9J). In addition, the spike mutation
D614G, which is associated with increased infectivity, was
evaluated (PDB: 7BNN) [28]. To obtain an accurate initial
three-dimensional conformation of these peptides, the pro-
tein folding prediction approach (AlphaFold) was used to
determine their configuration [29, 30]. The AlphaFold pre-
diction was run in single-sequence mode.

Then, docking simulations between the peptides and
SARS-CoV-2 variants were conducted using the ClusPro

protein-protein docking methodology [31–35]. The receptor
to ligand method was ran using ClusPro to compute the
molecular docking simulations. The top simulations were
generated through ClusPro according to their cluster, mem-
bers, center, and lowest energy-weighted scores. A positive
control was developed by verifying the docking between
the previously reported inhibition peptides and the original
SARS-CoV-2 (PDB code: 6M0J) receptor [21, 36]. Next, the
top ten simulations of each docking were analyzed considering
their rank and through their energy scores after Z-score
normalization. The Z-score normalization was performed
according to Equation (3). The polar contact interactions were
visualized and analyzed using PyMOL (v4.6.0). The main inter-
actions between the peptides and the SARS-CoV-2 variants
considered to evaluate the effectiveness of the peptides were
those pertaining to the reported RBD domain from the spike
protein [36, 37]. Subsequently, to compare P1 and P25 binding
against the SARS-CoV-2 strains, a comparative fold between
these peptides was calculated considering only the RBD interac-
tions using Equation (1). On the other hand, Equation (2) was
used to separately evaluate each peptide amino acid sequence
interaction with the SARS-CoV-2 variants.

Comparative interaction fold = α

β
1

Equation (1) is the comparison between P25 and P1 inter-
action’s fold, where α represents the total interactions from
P25 against the SARS-CoV-2 and variants, while β represent
the total interactions from peptide inhibitor P1 against the
SARS-CoV-2 and variants, respectively.

Relative interactions frompeptide composition = χ ∗ 100
ξ

2

Equation (2) is the relative interactions from peptide com-
position, where χ represents the total interactions for a given
amino acid within the peptide composition and ξ represents
the total amino acid interactions from the entire peptide. The
result is expressed in terms of percentage.

Z = x − μ

σ
3

Equation (3) is the Z-score normalization, where Z is the
calculated Z-score value, x is the value to be normalized, μ rep-
resents the mean, and σ is the standard deviation.

2.7. Plasmids, Cell Culture, and Pseudovirus Production. The
study used HEK 293T cells to produce a replication-
defective HIV-1-based SARS-CoV-2-pseudotyped virus.
The pseudovirus was produced similarly to the commonly
used approach of lentivirus vector production, which usually
consists of a three-plasmid system. The first plasmid con-
tained a packageable reporter gene encoding GFP and a
NanoLuc reporter gene, which was used for the titration
assay. The packaging plasmid, which is composed of an
HIV-1 backbone, contained structural and regulatory genes,
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including gag and pol. The third plasmid contained a trun-
cated and codon-optimized SARS-CoV-2 spike gene. The
Omicron and Delta spike gene sequences were obtained by
modifying the original SARS-CoV-2 spike protein sequence.
The plasmid containing the original sequence was modified
to include all reported mutations of each variant [38]. After
codon optimization, the targeted sequence was then sub-
cloned into the desired plasmid by restriction digestion
using PCiI (Cat: R0655S) and SacI-HF (Cat: R3156S) and
confirmed by the Sanger sequencer using the primers high-
lighted in Table S1.

The pseudovirus production protocol was adapted from
Schmidt et al. with some modifications [39]. In brief, HEK
293T cells with 10% FBS and 1% Pen-Strep were cultured in
DMEM until they reached 80% confluency. On the first day
of the production, 5 million HEK 293T cells were incubated
in a 100mm dish overnight. Then, 24 hours following the cell
seeding, the media was replaced with Opti-MEM combined
with 10% FBS and 1% Pen-Strep. The three plasmids
(reporter, packaging, and spike) were mixed with the opti-
mum ratios (14μg : 14μg : 5μg) in serum-free Opti-MEM
media. Then, 132μl of the transfection reagent, branched
PEI, was diluted separately in serum-free Opti-MEM to a
working concentration of 1mg/ml. The two suspensions were
then mixed and incubated for 20 minutes at room tempera-
ture. After incubation, the mixture was added to the seeded
cells. After 48 hours, supernatants were collected, filtered, con-
centrated, and titered to obtain the TCID50, which was calcu-
lated according to the Reed-Muench method by using the
“TCID50_SARS-CoV-2” macro provided by Nie et al. [40].

2.8. TEM Characterization. The assembly of the pseudovirus
was evaluated using a field emission gun Tecnai Twin
300 kV transmission electron microscope (TEM). The sam-
ple was prepared by adding one drop onto a TEM copper
grid and incubating at room temperature for 3 minutes.
The excess solution was removed, and then, the grid was
stained with a drop of 2% uranyl acetate for 30 seconds.
The grid was then dried at room temperature overnight.

2.9. Pseudovirus Titration. The pseudovirus was titered to
standardize viral infection. Briefly, HEK 293T cells express-
ing the ACE2 receptor (293T ACE-2 SSC22) were seeded
into a 96-well plate with 10,000 cells/well in 100μl of
DMEM-supplemented media. After reaching confluency, a
twofold dilution of the pseudovirus was added to each desig-
nated well and incubated for 48 hours. After the incubation,
the cells were lysed and the luminescence of luciferase was
measured using a PHERAstar FS, BMG LABTECH lumin-
ometer reader.

2.10. Neutralization Assay. The efficiency of peptide inhibi-
tion was tested using a neutralization assay. Here, 293T
ACE-2 SSC22 cells were seeded into a 96-well plate with
10,000 cells/well in 100μl DMEM-supplemented media.
The lyophilized peptides were dissolved in a carbonate-
bicarbonate buffer to an initial concentration of 4.0mM.
Using a twofold dilution factor, different concentrations of
the peptides were tested for their inhibitory effect with a
constant viral titer of 13,000 TCID50/ml of the original or
VOCs of pseudovirus. As for the controls, each pseudovirus
was directly used to infect the target cells without peptide
pretreatment. As for the experimental group, 50μl of the
dissolved peptides was incubated with equal volumes of
pseudovirus suspension for 1 hour at 37°C. After incubation,
the mixed samples were used to infect previously seeded
cells. After 48 hours of incubation, the samples were washed
once with 1× PBS and then treated with 50μl of 1× lysis
buffer for 15 minutes at room temperature. The luciferase
assay was carried out in a black-walled 96-well plate by mix-
ing equal volumes of the cell lysate and the NanoGlo
reagents. The luciferase luminescence was performed using
a PHERAstar FS, BMG LABTECH luminometer reader.
The results of the assay were analyzed by comparing the
luminescence or fluorescence signal from the cells that were
incubated with inhibitory peptides to the signal from the
cells that were not incubated with inhibitory peptides. The
lower the luminescence or fluorescence signal, the more
effectively the inhibitory peptides have neutralized the virus.

3. Results and Discussion

3.1. Peptide Synthesis. The two selected peptides were syn-
thesized using solid-phase peptide synthesis (SPPS). The
resultant peptides were P1 and, a mutated sequence from
the same region, P25, as shown in Table 1. The peptides’
molecular weight and purity were calculated using mass
spectroscopy and high-performance liquid chromatography.
All peptides were >95% pure. Each run showed a peak of rel-
ative abundance on the y-axis and mass over the peptide
charge on the x-axis for P1 and P25, as shown in the supple-
mentary Figures S1A and S1B.

3.2. Binding Studies. The binding affinity of each peptide
with the SARS-CoV-2 spike protein was evaluated by Micro-
Scale Thermophoresis (MST) and ELISA assays. MST is a
technique that analyzes the interaction between biomole-
cules by detecting the temperature-induced change in the
fluorescence of a target. The constants of dissociation (KD)
for P25 and P1 were found to be 42.2 nM and 12.5μM,
respectively (Figure 2(a)). A lower KD value signifies better
affinity and stronger interaction. The binding affinity was

Table 1: Sequences of ACE2-derived peptides.

Peptide Position Region Sequence

P1 24-45 ACE2 receptor QAKTFLDKFNHEAEDLFYQSSL-amide

P25 21-44 ACE2 mutated IDWQFWFHYDKWDHEWEDEWYQSS-amide
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also tested for ACE2 with the spike S protein and found to
be 62.5 nM, as indicated in Figure 2(b). The KD of P25 was
comparable to the observed affinity between the S protein
and ACE2. Similarly, in ELISA, the reported results in
Figure 2(c) showed a higher optical density (OD) signal for
P25 in comparison to P1 and negative control (p value <
0.001. The results were similar between P25 peptide and
ACE2 control. These results were consistent with the previ-
ous study [41].

3.3. Circular Dichroism Spectrophotometer Analysis. The sec-
ondary structure of the synthesized peptide was assessed
using circular dichroism (CD). Figure 2(d) illustrates the
CD spectra of P1 and P25. The P1 peptide exhibited a ran-
dom coil conformation. A transitional change in the confir-
mation from random coil to alpha-helix was observed for
P25. P1 had spectra with a minimum negative peak at
200nm, which is a characteristic of a random coil structure.
In contrast, P25 had a negative minimum peak at 205, which
indicates a shift toward a more alpha-helical structure. We
believe that this conformational change contributes to the
increased binding affinity of P25, as observed in the MST.

3.4. Cytotoxicity. A cytotoxicity test was performed on HEK
293T cells expressing ACE2 receptor (293T ACE-2 SSC22),
as shown in Figure 2(e) and Supplemental Figure S2. The
tested peptides did not show cytotoxic effects at the tested
concentration, with cell viability ranging between 91 and
100% after 72 hours of treatment. The low toxicity
exhibited by P25 and P1 indicates that these peptides are
biocompatible, even at high concentrations (e.g., at 4mM).
Cytotoxicity data for the ACE2 protein is provided in the
supplemental Figure S3.

3.5. In Silico Evaluation: Molecular Docking. The peptides
exhibited several interactions with the RBD region of the
SARS-CoV-2 virus and its variants. An overview of the
approach followed for the molecular docking simulations is
shown in Figure 3(a). As an initial control, the binding
results from the de novo folded peptide with AlphaFold were
compared against the reported binding study from Panda
et al. [21], eight interactions were observed in comparison
to the original SARS-CoV-2 strain, and seven interactions
were observed for P25 (Table S2). These results support
the interaction of P1 and P25 with the spike protein while
also remaining congruent with the molecular docking
study of the original SARS-CoV-2 strain from Panda et al.
[21]. In silico, the peptides’ structure prediction by
AlphaFold showed that both P1 and P25 fold mainly into
helix structures (Figure 3(b)). However, P1 exhibit a
random coil folding in the CD experiment which indicate
an influence of external factors. To compare against our
experimental results, simulations were carried for P1 and
P25 against the VOCs: Delta and Omicron. Additionally,
the molecular docking between the peptides and variants
of concern (Alpha, Beta, Gamma, and Epsilon) and the
presence of the mutation D614G were evaluated and
reported at the supporting information (Table S2 and
Figures S4 to S9); we utilized these data to later introduce

in this paper an optimization strategy for the future design
of inhibitory peptides against emerging SARS-CoV-2
variants.

Next, the top 10 simulation results from ClusPro were
evaluated according to their lowest energy scores as shown
in Figure 3(c) and Supplementary Figure S10. We observed
that these peptides could interact with several emerging
SARS-CoV-2 VOCs (Figure 3(d)). In these simulations,
P25 exhibited 1.82 times more interactions than P1. This
fold was calculated according to Equation (1).
Furthermore, P25 exhibited interactions within the RBD of
all variants, while P1 did not show any interaction within
the RBD against the Delta variant. P1 exhibited several
interactions outside of the RBD region (Table S2), which
suggest that this peptide is less specific in targeting this
region against the variants. This could be due to the
presence of mutations within the SARS-CoV-2 variants
[42, 43]. Table 2 shows the main interactions between both
peptides and the original SARS-CoV-2 strain. It also shows
the interactions between the two peptides and the Delta
and Omicron variants.

According to our results, P25 exhibited 1.25 times more
interactions against the Omicron variant in comparison to
P1 (Table 2) and 1.4 times more interactions than P1 against
the D614G mutation (Table S2). Further, P25 shared key
binding sites against the RBD (TYR 449, ASN 487, TYR
489, and GLN 493) that have been reported from highly
potential inhibitors against the S-RBD of the SARS-CoV-2
[44].

In particular, for Omicron, it was found that P25 inter-
acts with several of the reported mutations occurring within
the S-RBD of the Omicron variant (Figure 4) [45]. For Omi-
cron, these interactions included ASN 417, ARG 493, SER
496, and ARG 498. In contrast, P1 did not exhibit interac-
tions with any of the reported S-RBD mutations (Table 2).
The mutations at residues 493, 496, and 498 have been
reported to contribute significantly to the binding affinity
from Omicron to the ACE2 receptor [46]. In particular, res-
idues such as the mutation 493 increase binding affinity and
result in a potential challenge for predicting transmissibility
and immune evasion risk [43]. Therefore, by interacting
with these amino acids, P25 might exhibit better properties
to act as an inhibitor for Omicron than P1. Furthermore,
P25 interacted with the residue LYS 417 from the original
SARS-CoV-2 strain while also interacting with the same res-
idue that is conserved in Delta and its mutation K417N that
is present in Omicron, which suggests that P25 might be
more effective at targeting the RBD than P1. These findings
highlight the relevance of P25’s amino acid composition in
relation to P25’s ability to interact with the original virus
strain and the Omicron variant, paving the way for further-
ing optimization of these peptide sequences. However, fur-
ther experiments could be done to verify experimentally
these interactions.

3.6. Production of the Pseudovirus and the Variants. Due to
the high pathogenicity of the virus, we used a pseudotyped
virus, which offers significant advantages over using a live
virus, such as the pseudovirus’s versatility and safe handling.
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The size and shape of the produced pseudovirus were evalu-
ated by transmission electron microscope (TEM) images in
Figure 5(a). Over 500 particles of the assembled pseudo-
viruses were analyzed using ImageJ and GraphPad to deter-
mine their frequency size distribution. The assembled
pseudoviruses exhibited variations in size, with approxi-
mately 70% of them ranging between 85 and 145 nm in
diameter (see Figure 5(b)). The functionality of the produced
pseudovirus was tested against HEK 293T cells expressing
ACE2 receptor by the detection of the green fluorescence
protein signal (GFP) (Figure S11 A-C) and the
measurement of luciferase luminescence from infected
cells. These results confirmed that the produced
pseudovirus is functional. Furthermore, the specificity of
the SARS-CoV-2 pseudovirus for the ACE2 receptor was
confirmed by testing it against HEK293T wild-type cells
(Figure S11D).

3.7. Neutralization of SARS-CoV-2 and Variant
Pseudoviruses. We evaluated the inhibitory activity of two
potential binding inhibitor peptides, P1 and P25, against
the original SARS-CoV-2 pseudovirus strain and the Delta
and Omicron variants. In addition, we tested the peptides
against vesicular stomatitis virus (VSV) pseudovirus to ana-
lyze their specificity (Figure S12). The inhibitory activity of
each peptide as well as ACE2 protein against pseudovirus
was evaluated by the reduction in the luminescence signal
measurement (Figure 6(d)) and the overall number of
GFP-positive cells as observed under a fluorescent
microscope (Figures 6(a)–6(c)). P25 exhibited a strong
inhibition of pseudovirus entry in a dose-dependent
manner. The number of infected cells gradually increased
with the reduction of peptide concentration from 4mM to
125μM, as demonstrated by the increase in GFP signal,
which indicated that the P25 peptide was the cause of the
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Figure 4: Molecular docking between peptide inhibitors P1 (a) and P25 (b) with the Omicron spike protein.
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prevention of viral entry (Figures 6(a)–6(c)). Although the
inhibition potency of P25 was weaker with the Delta
variant in comparison to the original virus (Figure 6(b)),
P25 showed inhibition potency against the Omicron
variant even at a low peptide concentration (Figure 6(e)).
The calculated IC50 for P25 against the original SARS-
CoV-2 strain, the Delta variant, and the Omicron variant
was 455.2μM, 546.4μM, and 60.8μM, respectively. The
significantly low IC50 for P25 against the Omicron variant
makes this peptide a promising potential candidate against
Omicron subvariants.

The increased inhibitory activity of P25 against the Omi-
cron variant might be attributed to both P25’s high negative
charge and Omicron’s high positive charge in comparison to
the original strain and the other variants [47]. Moreover, the
CD spectrum analysis indicated a shift to alpha-helical con-
tent in the P25 peptide, potentially contributing to the stron-
ger inhibition observed in our neutralization assay.
However, when compared to the previously reported pep-
tides, P25 remained less potent than some fusion inhibitors
that had only been tested against the original strain [18].
Nevertheless, we believe that the potency of P25 can be
improved through functionalization and further optimiza-
tion of the peptide sequence.

P1 showed limited inhibition at the highest concentra-
tion: 4.0mM. We believe that the lower inhibitory effect of
P1 is attributed to the random coil secondary structure
observed in Figure 2(e) of the CD analysis. Moreover, our
simulation suggested a lower specificity for P1, which is rep-
resented by the number of interactions between P1 and the
spike residues located outside the RBD. Hence, another fac-
tor contributed to the decreased P1 inhibition. Generally, the
experimental results were aligned with our simulation,
which demonstrated that P25 was a better inhibitor against
the SARS-CoV-2 VOCs as supported by the overall second-
ary conformation and number of interactions with the RBD
region.

3.8. In Silico Evaluation: Peptide Design and Potential
Optimization. We further analyzed the peptide inhibitors
and determined the main amino acids from their composition
that interacted against the SARS-CoV-2 and the Alpha, Beta,
Delta, Gamma, Epsilon, and Omicron variants (Figures S4-
S9 and Table S2) shown in Figure 7. The contribution of
each amino acid was calculated using Equation (2).
Considering the overall amino acid composition of P25, it
was found that 87.5% of its amino acids interact with the
RBD; this was calculated considering if the amino acid from
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Figure 5: (a) TEM image of assembled pseudovirus. (b) Size distribution of pseudovirus in percentage.
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peptide exhibited at least one binding against the original
SARS-CoV-2 and variants (see Equation (2)). On the other
hand, for P1, only 68.2% of its sequence composition was
interacting with the RBD. We concluded from the number
of amino acids interacting with the SARS-CoV-2 variants
that P25 displayed a better amino acid composition for
interacting with the RBD domain than P1. In addition, since
P25 exhibited the most interactions, it could potentially be
modified to generate a stronger interacting peptide against
emerging variants. This could be done by reserving the most
interacting amino acids from the inhibitor peptide sequence
and then removing or substituting the noninteracting amino
acids from the peptide. According to our computational
simulations, the main interacting amino acids from P25
against the variants were ASP 10, ASP 13, GLU 17, GLU 19,
and GLN 22 (Figure 7). Hence, this peptide could be
potentially trimmed and redesigned while maintaining these
main interacting amino acids in its sequence. This approach
could be used as a mitigation strategy for the quick design of
peptide-based inhibitors against emerging viruses.

4. Conclusion

We reported on the experimental synthesis and evaluation of
two potential binding inhibitor peptides, P1 and P25, against
the SARS-CoV-2 VOCs. Our molecular docking simulations
demonstrate that both peptides interact with different SARS-
CoV-2 variants. However, the amino acid composition
design and structure of P25 enable more specific targeting
of the RBD than P1. In agreement with the in silico analysis,
our binding study suggested a high affinity of P25 to the
spike protein and can inhibit the entry of the virus into cells,
which was also comparable to the binding affinity of the full-
length ACE2 protein to the spike protein. This inhibition
was observed in vitro against the pseudovirus of the original
SARS-CoV-2 strain, the Delta variant, and the Omicron var-
iant. Nevertheless, further studies are needed to assess the
efficacy and potency of P25 in vivo. These studies should
include animal models and clinical trials.

We believe that further modification and optimization of
the peptide could be exploited to improve P25’s efficacy and
potency against emerging variants. However, it is important
to note that the therapeutic benefits of these peptides have
not yet been established. More research is needed to deter-
mine whether P25 can be used as an effective antiviral drug
to treat COVID-19.

5. Statistical Analysis

GraphPad Prism software program (GraphPad Software, La
Jolla, CA) was used to calculate the IC50 of the peptides and
the TCID50 of each pseudovirus type.
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