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Background. Non-small-cell lung cancer (NSCLC) is a major health problem that endangers human health. The prognosis of
radiotherapy or chemotherapy is still unsatisfactory. This study is aimed at investigating the predictive value of glycolysis-
related genes (GRGs) on the prognosis of NSCLC patients with radiotherapy or chemotherapy. Methods. Download the clinical
information and RNA data of NSCLC patients receiving radiotherapy or chemotherapy from TCGA and geo databases and
obtain GRGs from MsigDB. The two clusters were identified by consistent cluster analysis, the potential mechanism was
explored by KEGG and GO enrichment analyses, and the immune status was evaluated by estimate, TIMER, and quanTIseq
algorithms. Lasso algorithm is used to build the corresponding prognostic risk model. Results. Two clusters with different GRG
expression were identified. The high-expression subgroup had poor overall survival. The results of KEGG and GO enrichment
analyses suggest that the differential genes of the two clusters are mainly reflected in metabolic and immune-related pathways.
The risk model constructed with GRGs can effectively predict the prognosis. The nomogram combined with the model and
clinical characteristics has good clinical application potential. Conclusion. In this study, we found that GRGs are associated
with tumor immune status and can assess the prognosis of NSCLC patients receiving radiotherapy or chemotherapy.

1. Introduction

Lung cancer is one of the most common malignancies
worldwide and the leading cause of cancer-related deaths.
According to statistics, the number of lung cancer cases
and deaths worldwide in 2021 was about 2.2 million and
1.6 million, which is a major public health problem seriously
endangering human health [1]. Non-small-cell lung cancer
(NSCLC) is the main pathological type of lung cancer, which

accounts for 80%-85% [2]. Although immunotherapy and
targeted therapy have made significant progress in recent
years, chemotherapy and radiotherapy are still the main treat-
ment for patients with advanced NSCLC [3, 4]. At present, the
5-year overall survival rate of NSCLC patients is only 20%. In
the past, the benefits of cancer treatment development are
limited and unsatisfactory [2]. Therefore, more prognostic
biomarkers are needed to assess the prognosis of patients
and establish the corresponding individualized treatment.

Hindawi
BioMed Research International
Volume 2023, Article ID 4019091, 24 pages
https://doi.org/10.1155/2023/4019091

https://orcid.org/0000-0002-8228-0776
https://orcid.org/0000-0003-4656-1500
https://orcid.org/0000-0002-4910-093X
https://orcid.org/0000-0003-1761-2866
https://orcid.org/0000-0002-6073-5522
https://orcid.org/0009-0006-0762-6876
https://orcid.org/0000-0001-8397-9717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4019091


Tumor metabolic reprogramming is one of the main
characteristics in the process of tumorigenesis and progres-
sion, including aerobic glycolysis (Warburg effect), lipid
and protein synthesis, and enhanced glutamine metabolism
[5]. The change of glycolysis is the main feature, which
means tumor cells still have active glycolytic activity in the
environment of sufficient oxygen and produce large
amounts of high lactate metabolites. This change can lead
to tumor proliferation, enhanced ability to invade, and
metastasize [6]. Previous studies have made it clear that aer-
obic glycolysis is closely relevant to the resistance of tumor
radiotherapy or chemotherapy [7, 8]. For example, inhibit-
ing pkm2-mediated aerobic glycolysis can reverse 5-FU
resistance in colon cancer [9]. Long noncoding RNA urothe-
lial carcinoma-associated protein 1 regulates radiation resis-
tance through hexokinase 2/glycolysis pathway in cervical
cancer [10]. These related studies suggest that understanding
the mechanism of glycolysis may help us find potential prog-
nostic markers. Tumor immune microenvironment (time)
also plays an important role in chemotherapy and radiother-
apy resistance and significantly affects the prognosis of
tumor patients [11–13]. In addition, tumor immune micro-
environment is also significantly related to glycolysis. Tumor
cells use enough energy produced by glycolysis to change
their immune microenvironment and inhibit the activation
of immune cells and tumor inhibition, leading to tumor
immune escape [14–16]. Metabolic competition between
tumor cells and immune cells will further promote tumor
immunosuppression [17]. Therefore, the combined analysis
of glycolysis and immune status of patients will help us fur-
ther understand the prognosis of NSCLC patients with
radiotherapy or chemotherapy.

In this study, we specifically analyzed the glycolysis-
related genes (GRGs) and studied the effect of glycolysis on
the survival and immune status of NSCLC patients undergo-
ing radiotherapy or chemotherapy. In addition, we also build
a risk scoring model based on GRGs. The model showed
good prognostic ability in NSCLC patients and different
clusters. This study can help us better explore the potential
mechanism of poor prognosis of NSCLC patients with
radiotherapy or chemotherapy and provide new ideas for
better personalized treatment.

2. Materials and Methods

2.1. Data Collection. Download the data set of LUAD and
LUSC from TCGA (https://portal.gdc.cancer.gov/) and
GEO (https://www.ncbi.nlm.nih.gov/geo/) databases as
patient data of non-small-cell lung cancer, including gene
expression profile of mRNA sequencing samples and clinical
prognosis information. Inclusion criteria are as follows: (1)
have complete clinical information and gene expression
matrix; 2) are not repeated tumor samples; 3) received radio-
therapy or chemotherapy: 116 samples are in TCGA data-
base as training cohort. 49 samples are in GSE42127
dataset in GEO database as validation cohort. 289 GRGs
were identified from the “HALLMARK GLYCOLYSIS”
“REACTOME GLYCOLYSIS” “KEGG GLYCOLYSIS GLU-
CONEOGENESIS” gene sets in the MsigDB database.

2.2. Cluster Analysis. First, we use the R package “Survival”
to integrate gene expression data, survival time, and status
and use the univariate Cox regression method to obtain 11
prognosis-related GRGs. Then, use the R package “Consen-
sus Cluster Plus” to perform cluster analysis based on these
11 genes. Determine the optimal number of clusters K = 2
through the cumulative distribution curve graph.

2.3. Differential Genes and Functional Analyses. The differ-
ential genes in the two clusters were evaluated using the R
package “t.test” function, and the differential genes with
adjust p value <0.05 and jlogFCj > 1:5 were selected. Next,
we used the gene annotation of the KEGG pathway obtained
by the KEGG rest API and the GO annotation of the genes
in the R package “http://Org.Hs.eg.db” and performed the
enrichment analysis on the differential genes obtained by
the R package “Cluster Profiler”, to analyze functional differ-
ences between clusters.

2.4. Immune Analyses. Using the R package IOBR, the ESTI-
MATE method was selected to calculate the stroma,
immune, and estimate scores of each group of samples.
The TIMER and quanTIseq methods were selected to calcu-
late the immune infiltrating cell score of each group of
samples.

2.5. Risk Score Model. Using the R package “Glmnet”, the
survival time, survival status, and expression data of 11 GRGs
were integrated, and the Lasso-Cox method was used for
regression analysis. We chose the minimum lambda value
of 0.0824 to obtain the optimal model. Based on this, we
obtained 7 genes (ACSS1, ERO1A, GPC4, MERTK, PKP2,
TXN, and ZNF292) and established a risk scoring model
using their expression: risk score =−0.0308 × ACSS1 +
0.1205 × ERO1A-0.2470 × GPC4-0.0063 × MERTK +
0.0497 × PKP2 + 0.0584 × TXN-0.0491 × ZNF29. The sam-
ples were divided into high- and low-risk groups according
to the obtained risk scores. Kaplan-Meier survival analysis
was used to analyze the difference in overall survival between
the two groups. Time-dependent ROC curve analysis was
used to evaluate the prognostic predictive value of this risk
model. Finally, a multivariate survival regression nomogram
was constructed to evaluate the prognostic significance of
risk model, tumor stage, and other characteristics in these
samples.

2.6. Correlation Pathway Analysis. The enrichment score of
each sample in the gene set was calculated from the Gene
Set Variation Analysis (GSVA) using the R package, and
the hallmark gene sets were downloaded from the Molecular
Signatures Database to evaluate the relevant pathways and
molecular mechanisms.

2.7. Statistical Analysis. Statistical analysis was performed
using R software (version 4.0.5) and GraphPad Prism (version
8. 0. 1). Survival analysis was done using the Kaplan-Meier
method. Differences between the two groups were determined
by Student’s two-tailed t-test. p < 0:05was considered a signif-
icant difference.
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Figure 1: Continued.
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3. Results

3.1. Two Clusters Identified Based on GRGs. In this study, we
selected the NSCLC dataset of TCGA and filtered out a total
of 116 patients with radiotherapy or chemotherapy. Based
on this dataset, univariate Cox regression was performed.
The analysis yielded 4709 genes closely associated with prog-
nosis. The top 10 prognosis-associated genes are presented
in Figure 1(a) (ranked by p value). The Venn diagram indi-
cated that 11 prognostic glycolysis genes were identified
among these prognosis genes (ACCSS1, ERO1A, GPC4,
PKP2, TXN, MERTK, ZNF292, ALDH3B2, PAM, and
RRAGD) (Figure 1(b)). The patients in the dataset were
divided into two groups using consistent cluster analysis.
59 patients were clustered into cluster 1, and 57 patients
were clustered into cluster 2 (Figure 1(c)). C1 represents
the low-expression cluster of GRGs, while C2 represents
the opposite. Patients of cluster 2 had significantly worse
overall survival than cluster 1 (p < 0:001; Figure 1(d)). These
results suggest that glycolytic genes segregate NSCLC
patients who have received chemotherapy or radiation into
two clusters with different overall survival.

3.2. Differential Gene and Functional Analyses of Two
Clusters. To further probe the underlying mechanism of
the difference in survival of these two clusters, we identified

their differential genes and performed functional analysis.
There were 3669 significantly differential genes, of which
1766 genes were upregulated in cluster 2 compared to cluster
1, and 1903 genes were downregulated (Figures 2(a) and
2(b)). KEGG enrichment analysis showed that the differential
genes were enriched in biological functions such as glucose
metabolism, immunity, and nicotine addiction (Figures 2(c)
and 2(d)). GO enrichment analysis also showed that differential
genes were enriched in biological processes such as immunity
and glucose metabolism (Figures 2(e) and 2(f)). These results
indicate that the expression of glycolytic genes is closely related
to the immune biological function. The abnormal immune
function caused by these genes may be a contributing factor
to the poor prognosis of patients with non-small-cell lung
cancer after radiotherapy and chemotherapy.

3.3. Immune Analyses. Next, we performed an immune
analysis of patients in both molecular clusters to explore
immune differences between them. The ESTIMATE algo-
rithm showed that patients in cluster 1 had significantly
higher stromal score compared to cluster 2 (p < 0:001),
immune score (p < 0:001), and ESTIMATE score (p < 0:001;
Figure 3(a)). The TIMER algorithm indicated that B cells
(p < 0:001), CD4 T cells (p < 0:001), and macrophages
(p < 0:001) in cluster 1 and DC cells (p < 0:001) were signifi-
cantly higher than in cluster 2 (Figure 3(b)). In addition, the
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the best clustering value. (d) Survival curves of the two clusters.
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Figure 5: Association of risk scores and clinical characteristics. (a–j) Independence analysis of risk models. Survival curves of patients
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quanTIseq algorithm also showed that B cells (p < 0:001),
macrophages M1 (p < 0:001), B cells (p < 0:001), macro-
phages M1 (p < 0:001), macrophages M2 (p < 0:001), neutro-
phils (p < 0:001), NK cells (p < 0:001), CD8 T cells (p = 0:05)
(p < 0:001), Tregs (p < 0:001) and DC cells (p < 0:001) was
more abundant (Figure 3(c)). These results suggest that there
are significant immune differences between the two subtypes.

3.4. Establishment of the Risk Score Model Based on GRGs.
To build a more accurate prognosis model, we used Lasso
regression analysis to screen glycolysis prognosis genes and
selected 7 genes (ACSS1, ERO1A, GPC4, PKP2, TXN,
MERTK, and ZNF292) with λ = 0:09 as candidate genes
(Figures 4(a) and 4(b)). Based on the results, these 7 genes
were identified to construct a risk model. The patients were
divided into high- and low-risk groups by this risk model,
and it was observed that with the increase of the risk score,
the survival rate of the patients decreased significantly
(Figure 4(c)). The results of Kaplan-Meier survival analysis
showed that the overall survival of the patients in the low-
risk group was significantly better than that of the patients
in the high-risk group. Figure 4(d); p < 0:001). ROC curve
analysis showed that the AUC values for 1-year, 3-year,
and 5-year survival rates were 0.82, 0.75, and 0.72, respec-
tively. (Figure 4(e)), indicating that the constructed risk
model exhibited accurate predictive power over a 5-year
period.

3.5. Prognostic Value of Risk Score Models in Different
Clinical Clusters. To further evaluate the role of the risk
model in clinical application, we analyzed the prognostic
value of the model for patients with different clinical charac-
teristics (age, smoking, T stage, N stage, and clinical stage).
The prognosis of the high-risk score group was always worse
than that of the low-risk score group (Figures 5(a)–5(j)). In
conclusion, the prognostic value of this risk model for
NSCLC patients with chemotherapy or radiotherapy was
not perturbed by other clinical characteristics.

We next used univariate and multivariate Cox regression
to analyze the association between risk scores, other clinical
characteristics, and prognosis in NSCLC patients with che-
motherapy or radiotherapy. Both N stage (HR = 2:294, p =
0:001) and tumor stage (HR = 2:232, p = 0:004) were signif-
icantly associated with prognosis. Multivariate Cox analysis
showed that the risk score (HR = 4:191, p < 0:001) was the
highest risk factor for patients receiving overexposure inde-
pendent prognostic factors in chemotherapy-treated NSCLC
patients (Table 1). Taken together, these results suggest that
this risk model has good prognostic value in NSCLC patients
with chemotherapy or radiotherapy.

3.6. Risk Score Correlates with Activity of Chemotherapy and
Radiotherapy Resistance-Related Pathways. Thereafter, the
relationship between the risk score and chemotherapy and
radiotherapy resistance-related pathways was assessed.
Using the ssGSEA algorithm, we found that the higher the
risk score, the greater the risk of DNA repair (p < 0:001, R
= 0:32), and G2M checkpoint (p < 0:001, R = 0:42), mitotic
spindle (p = 0:03, R = 0:20), and glycolytic (p < 0:001, R =
0:25) pathways were more active (Figures 6(a)–6(d)). These
results showed that with increasing risk score, pathway
activity associated with chemotherapy and radiotherapy
resistance also increased, suggesting a poor prognosis.

3.7. Construction of a Nomogram. Thereafter, we con-
structed nomograms integrating risk models and clinical
characteristics to provide a quantitative method for predict-
ing 3- and 5-year OS probabilities in NSCLC patients with
chemotherapy or radiotherapy, which can then be used in
clinical practice. Based on multivariate Cox regression, as a
result of the analysis, the nomogram integrated clinicopath-
ological features and risk scores (Figure 7(a)). The c-index
value of the nomogram was 0.721, and the 3- and 5-year
calibration curves were in good agreement with the standard
curve, indicating that the model provided. The predictive
performance at an effective level was obtained (Figure 7(b)).

Table 1: Univariate and multivariate analyses of risk scores and characteristics.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Risk score 116 5.023 (2.856-8.835) <0.001 4.191 (2.346-7.485) <0.001
Age 116 0.998 (0.972-1.023) 0.848

Smoking 116

No 73 Reference

Yes 43 1.035 (0.624-1.717) 0.893

T stage 115

T1 +T2 94 Reference

T3 +T4 21 1.636 (0.851-3.145) 0.140

N stage 114

N0 65 Reference

N1 +N2 49 2.294 (1.384-3.803) 0.001 1.751 (0.987-3.105) 0.055

Stage 114

I + II 83 Reference

III + IV 31 2.232 (1.288-3.868) 0.004 1.482 (0.822-2.670) 0.191
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Therefore, this risk score-based nomogram can be used in
clinical practice to predict the prognosis of NSCLC patients
with chemotherapy or radiotherapy.

3.8. Clinical Prognostic Value of Risk Scoring Models in a
Validation Cohort. Finally, we independently used the
patients receiving chemotherapy in the GSE42127 dataset
as the validation set of the risk model. The expression of
seven genes was shown by a heat map (Figure 8(a)).
Kaplan-Meier survival analysis results also showed that
patients with higher risk scores had a worse prognosis.

(Figure 8(b); p = 0:05). ROC curve analysis showed that the
risk score had the best prediction effect at 5 years
(Figure 8(c)). The constructed nomogram also proved that
the risk score model has considerable value in clinical prog-
nostic work (Figures 8(d) and 8(e)).

4. Discussion

Non-small-cell lung cancer is one of the most emerging and
deadly cancers worldwide, with a markedly poor prognosis
[2]. Radiotherapy and chemotherapy are the main
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treatments for patients with advanced NSCLC, but these
treatments often fail to achieve satisfactory results [3, 4].
Therefore, there is an urgent need to find potential prognos-
tic markers for NSCLC patients with radiotherapy or che-
motherapy. Although there have been many studies on
NSCLC prognostic markers, most of them are not focused
on radiotherapy or chemotherapy patients and have not
penetrated into radiotherapy resistance and chemotherapy
resistance. High activity of glycolysis and abnormal immune
microenvironment are two important hallmarks of cancer
[18] and are closely related to radioresistance and chemore-
sistance [7, 8]. In this study, we screened out the prognostic
GRGs and divided the patients into two clusters according to
their expression levels. They have different clinical prognos-
tic values and immune scores. These immune scores include
T cell, B cell, neutrophil, and macrophage activity scores,
which represent the immune microenvironment state of
tumor. They can also be used as a reference for immuno-
therapy and can also evaluate the disease progress and com-
prehensive treatment prognosis of tumor patients [19]. In
addition, we also constructed a risk score model based on
GRGs, which can accurately predict the prognosis of NSCLC
patients undergoing radiotherapy or chemotherapy. Our
findings may provide new ideas for the development of
treatment regimens for NSCLC patients.

First, we selected NSCLC patients who had received
radiotherapy or chemotherapy in the TCGA and GEO data-
bases as research subjects and screened out 10 GRGs
(ACSS1, ERO1A, GPC4, PKP2, TXN, MERTK, ZNF292,

ALDH3B2, PAM, RRAGD), and two clusters were identified
based on their expression levels, which were significantly dif-
ferent in overall survival. We then performed differential
gene and functional enrichment analysis on these two clus-
ters to explore the underlying mechanisms of this survival
difference. KEGG and GO enrichment analyses showed that
the difference in immune and metabolic functions may
mediate the effect of GRGs on the prognosis of patients with
NSCLC after radiotherapy or chemotherapy. Therefore, we
used ESTIMATE, TIMER, and quanTIseq scores to evaluate
the immune infiltration of the two clusters. It has been
shown to be closely related to the efficacy of radiotherapy
or chemotherapy in NSCLC. The results showed that the
subgroup with higher expression of GRGs had lower
immune scores, which may be closely related to poor
prognosis.

Based on the above results, we used 7 genes (ACSS1,
ERO1A, GPC4, PKP2, TXN, MERTK, and ZNF292) to con-
struct a risk model to predict the prognosis of NSCLC
patients with radiotherapy or chemotherapy. ACSS1 and
ERO1A are highly expressed in tumors and can promote
tumor progression metabolic changes associated with cancer
cell survival [20–23]. PKP2, TXN, and ZNF292 are also
abnormally expressed in tumors and induce radioresistance
of tumor cells [24–27]. GPC4 can activate the Wnt/β-
catenin pathway and its downstream targets to increase 5-
fluorouracil (5-FU) resistance and cell stemness in pancre-
atic cancer [28]. MERTK can inhibit the immune effect of
the body against tumors through the inflammatory pathway
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Figure 8: Validate the constructed risk model in a validation queue. (a) Survival status, risk score distribution, and heat map of candidate
gene expression for the validation cohort. (b) Survival curves of patients in high-risk and low-risk groups in the validation cohort. (c) Time-
dependent ROC curves of the risk model in the validation cohort. (d) Nomogram of composite risk scores and clinical characteristics in the
validation cohort. (e) Nomogram calibration at 3 and 5 years.
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and PD-1 signaling axis, as well as regulating the functions
of various immune cells [29]. MERTK inhibitors have been
confirmed to be used in combination with radiotherapy or
chemotherapy in glioma, NSCLC, head and neck squamous
cell carcinoma, and other tumors to achieve better efficacy
[30–32]. In addition, ERO1A, PKP2, and MERTK have been
proved to promote the progress and drug resistance of
NSCLC by enhancing the activation of tumor and PI3K,
EGFR, and other signal pathways [33–35]. In this study,
we identified the good prognosis prediction effect of this risk
model and confirmed this prediction effect using chemo-
therapy patients in the GSE42127 dataset as a validation
cohort. This may help the clinical treatment of NSCLC
patients with chemotherapy or radiotherapy and provide
potential targets for individualized treatment.

Although our study provides a risk model constructed
with GRGs that has a good predictive effect on the prognosis
of NSCLC patients with chemotherapy or radiotherapy,
there are still many limitations. First, all data in our study
are publicly available retrospective samples, and a certain
number of prospective samples need to be included to con-
firm our results. Second, we only focus on clinical prognosis
and do not dig deep into specific molecular mechanisms.
Third, our research is a bioinformatics study, and there is a
lack of specific basic experiments to verify.

5. Conclusion

In conclusion, this study clustered NSCLC patients with che-
motherapy or radiotherapy into two clusters based on GRGs.
Functional analysis and immune scores showed that high
glycolytic activity can lead to suppressed immune status
and poor prognosis. At the same time, we also established
a corresponding risk scoring model, hoping to provide new
ideas and theoretical support for clinical treatment.
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