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Cervical cancer is a critical imperilment to a female’s health due to its malignancy and fatality rate. The disease can be thoroughly
cured by locating and treating the infected tissues in the preliminary phase. The traditional practice for screening cervical cancer is
the examination of cervix tissues using the Papanicolaou (Pap) test. Manual inspection of pap smears involves false-negative
outcomes due to human error even in the presence of the infected sample. Automated computer vision diagnosis revamps this
obstacle and plays a substantial role in screening abnormal tissues affected due to cervical cancer. Here, in this paper, we
propose a hybrid deep feature concatenated network (HDFCN) following two-step data augmentation to detect cervical cancer
for binary and multiclass classification on the Pap smear images. This network carries out the classification of malignant
samples for whole slide images (WSI) of the openly accessible SIPaKMeD database by utilizing the concatenation of features
extracted from the fine-tuning of the deep learning (DL) models, namely, VGG-16, ResNet-152, and DenseNet-169, pretrained
on the ImageNet dataset. The performance outcomes of the proposed model are compared with the individual performances of
the aforementioned DL networks using transfer learning (TL). Our proposed model achieved an accuracy of 97.45% and
99.29% for 5-class and 2-class classifications, respectively. Additionally, the experiment is performed to classify liquid-based
cytology (LBC) WSI data containing pap smear images.

1. Introduction

Cancer is coerced by the obsolete and irregular evolution of
cells in the human body. This deformity can infiltrate the
nearby cells in that tissue together with the other tissues
and may disperse into more body organs. Cervical cancer
arises due to the contagion of the human papillomavirus
(HPV) which causes an anomaly in the cervix through
which the lower portion of the uterus and vagina connect.
Cervical cancer was the fourth most genre of cancer in stat-
ics of new indices and fatalities following breast, colorectum,

and lung cancer in 2020 [1]. The scarcity of screening and
therapeutic systems consequences a high mortality rate in
low and middle-income economies. The preliminary traits
of cervical cancer comprise an erratic feminine cycle, postin-
tercourse vagary bleeding, strong vaginal stink with dis-
charge, inexplicable and relentless pelvic, intestinal, or back
agony, exhaustion, and diminution in weight [2, 3].

An adequate diagnosis can be procured by using the
potential preliminary investigation of cervical lesions for
the contraction of the mortality rate by cause of cervical can-
cer. The most trusted and well-known approach for the
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detection of precancerous cells and cervical lesions is a Pap
smear test [4]. The conventional and prevailing method for
scrutinizing anomalies of peculiar cells of pap slides using
a microscope by clinical experts is a quite sophisticated,
tedious, and slow proceeding that requires decent knowledge
and familiarization.

Artificial intelligence (AI) in computer vision is in grow-
ing vogue amid the researchers to go beyond the bounds of
manual screening of pap smear data. Even though conven-
tional machine learning (ML) models have reduced comput-
ing intricacy, they still require incorporating the extraction
of features manually [5]. DL comes out as one of the fine
automated end-to-end solutions to the multitudinous chal-
lenges in biomedical image processing [6–10]. To produce
a decision support system with high efficacy and potential,
a deep model requires plenty of medical image data for
training. TL addresses this issue, by pretraining the model
over a large amount of data followed by utilizing it with a
limited image dataset of the specific problem [11].

This paper proposes a novel approach that utilizes
concatenated features for the classification of pap smear
WSI images. Here, we used TL for the automatic retrieval
of key features using fine-tuned deep models. Three fine-
tuned DL models VGG-16, ResNet-152, and DenseNet-169
are used for feature extraction. These models use pretrained
weights on the ImageNet dataset. The features retrieved
from these individual models are concatenated and used
for the prediction of test samples. A fully connected network
(FCN) is used for classification by training it on
concatenated features. The structural outline of the proposed
framework is shown in Figure 1.

Commonly, the cells are first segmented from the WSI
slides, and then the segmented cell images are used for the
prediction of cancer. However, cell segmentation is a com-
plex process in itself, and no algorithm performs equally well
for cell segmentation from test slides obtained in distinct
medical procedures and test conditions. Here, in this paper,
we propose a model to analyze the multicell cervix images to
detect the various grades of abnormality. The detection of
abnormal samples from this proceeding enables other down-
stream investigations by segmentation of cells from abnor-
mal WSI images.

The contribution of this research work is listed below:

(1) A brief insight into current research in cervical can-
cer diagnosis, the use of intensive two-step augmen-
tation, and the proposed HDFCN model to detect
WSI pap-smear cervical images

(2) The proposed method uses optimally extracted deep
features to get concatenated into hybrid features that
are used with FCN for test image classification

(3) This proposed model gets validated on two WSI cer-
vical cancer data—(1) SIPaKMeD data for 5-class
and 2-class classifications and (2) LBC data
classification

(4) McNemar’s statistical tool indicating p value is used
to illustrate the demarcation of efficacy among the

proposed classifier and the individual deep classifier
utilized in the proposed hybrid model.

The remainder of the paper is articulated as follows: Sec-
tion 2 contains the recent work related to cervical cancer
diagnosis using different DL models. Section 3 describes a
detailed description of the proposed method and material
utilized. Section 4 depicts the result of the proposed model
and discussion on various aspects of its performance. Lastly,
Section 5 has some brief conclusions and the futuristic pos-
sibilities of the work.

2. Related Work

With the advancement of computer-aided diagnostic (CAD)
tools, the use of DL has been motivated in the classification
of cervix malignancies. Papers [12–16] give a detailed survey
of the latest DL applications in cervigram histopathological
image classification. The most renowned publicly available
databases of cervical cancer are the Herlev [17], ISBI [18],
Risk factor-based dataset [19], Cervix93 [20], SIPaKMeD
[21], LBC dataset [22], etc.

In [23], 502 pathological images were collected at Xinjiang
Medical University which were used to generate two groups of
image datasets. The first group of 3012 images was generated
by resizing and cropping, and the other group contains
108,432 images obtained using augmentation functions like
rotation, flipping, and image enhancement on the original
set of image data. A convolutional neural network (CNN)
was used to perform 3-class classification with 93.33% and
89.48% accuracy for the first and second groups of images,
respectively. In another work [24], a shallow CNN classifier
was used for the classification of 684 positive and negative area
handcrafted patches of 15 × 15 pixels retrieved from cervi-
gram slides obtained by VIA of 102 women patients.

In this study [25], binary classification was performed
using a stacked autoencoder followed by a softmax layer
on the UCI dataset with 668 samples. The stack autoencoder
and softmax layer were used for dimension reduction of raw
data and classification, respectively, with 97.8% accuracy. In
[26], TL used fine-tuning of the Inception-V3 model for the
classification of 307 histopathology images collected by
AQP, HIF, and VEGF staining at Shengjing Hospital of
China Medical University. Original data got enhanced by
256 multiples, resulting in a total of 78,592 images using
augmentation operations—rotation and flipping, provided
a mean accuracy of 77.3% with the classifier model.

The authors [27] used four CNN classifiers, namely,
AlexNet, DenseNet-121, ResNet-50, and GoogLeNet, to clas-
sify the Herlev dataset by combining the morphology and
appearance-based features to provide topmost accuracy of
94.5%, 71.3%, and 64.5% for 2 class, 4 class, and 7 class,
respectively, with the GoogLeNet classifier. In research
[28], an approach using Mask R-CNN was used for the seg-
mentation and classification of the Herlev database, using
ResNet-10 as a key pillar. During segmentation, the pro-
posed network was pretrained on the COCO dataset and
provided a precision of 0:92 ± 0:06, recall of 0:91 ± 0:05,
and ZSI of 0:91 ± 0:04. The VGG-like model was used for
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the classification of segmented cells with an accuracy of
98.1% for 2-class and 95.9% for 7 class. The work [29] intro-
duced an AI classifier by modification of layers in the
ResNet-50 model which classifies the colposcopy database
of 310 images having 213 HSIL and 97 LSIL cases with an
accuracy of 82.3%.

The experiment [30] proposed a pipeline of CNN-based
feature extraction and classification networks founded on
the identification of the cervix region of interest (ROI) and
trained on two datasets: Intel & MobileODT Dataset and
NCI Guanacaste Project Dataset. The developed model has
a lightweight and faster framework and is found to be quite
useful in mobile application development for low-income
nations for the diagnosis of cervigram images. The work
[31] presented ensemble learning and a CNN model and
achieved an accuracy of 90.4% and 91.6%, respectively, for
the two classifiers on the Herlev dataset with preprocessing
methods. In [32], hybrid TL was implemented with pre-

trained AlexNet and VGG-16 models on 1644 cervix cell
images collected at the National Institute of Health (NIH)
and National Cancer Institute (NCI). This analysis provided
a result of 91.46% accuracy for 2-class classification.

In the study [33], a deep network ColpoNet was intro-
duced to detect colposcopy images collected at the National
Cancer Institute (NCI) and achieved an accuracy of 81.35%,

 Resizing and
augmentation

VGG16

ResNet152

DenseNet169

+ FCN

Superficial-intermediate

Parabasal

Koilocytotic

Dyskeratotic

Metaplastic

Pap smear WSI
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extraction
Classification

layers Final predictionsFeature
concatenation

Figure 1: Structural outline of the proposed framework.

Table 1: Pipeline of augmentation functions.

S.no. Aug_function Augmentations

1 Aug
Rotate (-45, 45), scale {“x”: (0.8, 1.2), “y”: (0.8, 1.2)}, translation {“x”: (-0.15, 0.15),

“y”: (-0.15, 0.15)}, shear (-2, 2), h_flip (1.0), v_flip (1.0)

2 Clahe clip_limit (1, 10), tile_grid_size (3, 21), gamma_contrast (0.5, 2.0), channel_clahe

3 Edge edge_detect alpha = 0, 0:5ð Þð , directed_edge_detect (alpha = 0, 0:5ð Þ, direction = 0:0, 1:0ð Þ)
4 Sharp Sharpen (alpha = 0:2, 0:8ð Þ, lightness = 0:75, 1:5ð Þ)
5 Canny Canny (alpha = 0:5, 0:8ð Þ, sobel kernel size = 3, 7ð Þ)
6 Red red_channel (add ((10, 100), rotate = 0, 45ð Þ)
7 Green green_channel (add ((10, 100), rotate = 0, 45ð Þ)
8 Blue blue_ channel (add ((10, 100), rotate = 0, 45ð Þ)
9 Noise

Blur (sigma = 0, 1:22ð Þ, gauss_noise (scale = 0:111∗255),
laplace_noise (scale = 0, 0:111∗255ð Þ)

10 Color
channel_shuffle (1.0), grayscale (1.0), hue_n_saturation (0.5, 1.5),
add_hue_saturation (-50, 50), kmeans_color (n colors = 4, 16ð Þ

11 Flip histogram_equalization, v_flip (1.0), h_flip (1.0)

12 contrast_n_shit
Contrast (LinearContrast (0.75, 1.5)), brightness (0.35, 1.65),

brightness_channel ((0.5, 1.5), per channel = 0:75)

Table 2: Structure of augmented SIPaKMeD data.

Class Train Validation Test

SI 975 25 26

P 832 22 22

K 1846 48 48

M 2106 54 55

D 1729 45 45

Total 7488 194 196
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providing better efficiency than GoogleNet, AlexNet,
ResNet-50, VGG-16, and LeNet. In the research [34], a deep
framework containing seven networks, namely, ResNet-50, 5
incidents of ResNet-101, and a graph convolution network
with edge traits (E-GCN), was introduced. The initial six
networks were used for feature interpretation, and GCN
classified the cervix images based on fused node and edge
features. The proposed model evaluated a database with
7,688 colposcopic images and obtained an accuracy of
78.33% for positive and negative instance classification.

The work [35] implemented two classifiers TL-based
VGG-19 and an ensemble model on colposcopy (CYENET)
which were used to classify the colposcopy image data with
5,679 images collected by Intel & MobileODT and available
at Kaggle. The proposed CYENET classifier gave a result of
92.3% with a 19% improvement in classification accuracy to
VGG-19 (TL). In another study [36], the ResNet-50 model-
based deep CNN (DCNN)model is used to perform classifica-
tion besides three ML classifiers XGB, SVM, and RF, on
cervicography data comprising 4,119 images with positive
and negative incidences. Linear regression was applied to
select 10 attributes out of 300; those were fed to the ResNet-
50 classifier which performed better than others with accuracy
and AUC of about 90.65% and 0.97, respectively.

In this experiment [37], CytoBrain was introduced
which comprises a compact VGG network to identify the
cervical cell from WSI slides. This model showed faster
and more precision with an accuracy of about 88.3% on
huge data containing 198,952 cervix cell images. In [38], a
deep residual network was developed that assesses the per-
formance with distinct activation functions like ReLU,
PReLU, and Leaky-ReLU with accuracies of 98.3%, 100%,
and 99.2%, respectively. In the work [39], a deep CNN-
based capsule module (CNN-CapsNet) was implemented
by utilizing a few residual blocks which classified 8-stages
in magnetic resonance (MR) images of the TCGA-CESC
database with an accuracy of 90.28%.

The study [40] deployed a TL-based exemplar pyramid
model utilizing DarkNet19 or DarkNet53 for the retrieval
of 21,000 attributes in which 1000 utmost-informatory were
selected by neighborhood component analysis (NCA). SVM
used these elected attributes for the classification of the LBC
and SIPaKMeD databases and provided accuracies of
99.47% and 98.26%, respectively. In research [41], a novel
deep architecture, HLDnet, was evolved that utilizes a faster
RCNN network to detect HSIL+ cervigram images by dual-
channel detection (acetic acid and Lugol’s iodine cervigram).
It achieved an accuracy of 0.86 for 400 training and valida-
tion and 200 tests, better than single-channel detection

(either acetic acid or Lugol’s iodine cervigram). There is
more related work available in clinical practices [42–46]
thanks to advances in computer vision methods. Some of
these are observed as competent in performing the same or
even better as the pathologists on medical data.

3. Material and Methods

3.1. Experimental Data. This work utilizes a publicly accessi-
ble SIPaKMeD database containing 966 WSI pap smear
images and 4,049 images of handcrafted cropped cells [21].
An optical magnifying device (OLYMPUS BX53F) with a
camera having a charge-coupled device (CCD) sensor
(Lumenera’s INFINITY-1) has been used to capture these
pictures. The dataset is categorized into 5 classes by clinical
professionals. The classes “superficial-intermediate (SI)”
and “parabasal (P)” refer to “normal,” images sorted as “koi-
locytotic (K)” and “dyskeratotic (D)” indicate “abnormal,”
and the remaining “metaplastic (M)” belongs to have
“benign” cells. The experiment is performed on WSI slides
and grouped into 5 class and 2 class (normal and abnormal).

Furthermore, the proposed framework is evaluated using
liquid-based cytology (LBC) data available online at Mendeley
data [22]. Based on the Bethesda system, the collection
includes 963 WSI LBC high-resolution images organized into
four sets of classes: “no squamous intraepithelial lesion
(NILM),” “low-grade squamous intraepithelial lesion (LSIL),”
“high-grade squamous intraepithelial lesion (HSIL),” and
“squamous cell carcinoma (SCC).” The “NILM” indicates a
“normal” grade, while the “LSIL,” “HSIL,” and “SCC” refer
to “abnormal.”

3.2. Preprocessing

3.2.1. Resizing and Division. The cervigram WSI images of
both databases are of high resolution with 2048 × 1536
pixels. The images are resized to 224 × 224 pixels to reduce
computation costs and make them fit into DL models. The
resized data is get divided into a train, validation, and test
data in the ratio of 3 : 1 : 1.

3.2.2. Data Augmentation. DL models require a sufficient
amount of data to train them efficaciously. Two-step data
augmentation is utilized on the resized training data to
increase the amount of data to be learned. Firstly, training
data is augmented using a heavy augmentation pipeline con-
sisting of numerous augmentation strategies such as affine
transformations, perspective transformations, contrast
changes, Gaussian noise, dropout of regions, hue/saturation
changes, cropping/padding, and blurring. This augmenta-
tion pipeline, shown in Table 1, has 12 sets of augmentation
functions that generated 12 augmented images for one train-
ing sample. A detailed description of these augmentations
can be found in the ImgAug library [47].

Now, training data becomes 13 times more multiple than
before. The structure of train, validation, and test data after
resizing and augmenting SIPaKMeD and LBC data is given in
Tables 2 and 3, respectively. Further, real-time data augmenta-
tion is performed using the “ImageDataGenerator” function of
the Keras library that performs a random transformation on

Table 3: Structure of augmented LBC data.

Class Train Validation Test

NILM 4758 123 123

LSIL 871 23 23

HSIL 1261 33 33

SCC 572 15 15

Total 7462 194 194
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images so the model can be trained on distinct images on each
epoch. The different arguments of the function are set to be:
featurewise center = false, rotation range = 25, fill mode =
nearest, zoom range = 0:2, width shift range = 0:1, height
shift range = 0:1, horizontal flip = true, vertical flip = true,
brightness range = ð0:5, 1:5Þ, and channel shift range = 20.

3.3. Methods

3.3.1. Feature Extraction Using Transfer Learning. The over-
all architecture of the proposed method is shown in Figure 2.

The preprocessed training data is being used for feature
extraction using the fine-tuning of DL models. The DL
models are certain subtypes of ML structures having more
complex architecture based on a neural network with lesser
human intercede [48]. These models are extensively utilized
in extricating high-level features, providing progressive exe-
cution over the conventional approach, and expanding
interpretability conjointly with the understanding and han-
dling of biological information. Commonly used DL frame-
works are CNNs, recurrent neural networks (RNNs), and
recursive neural networks (RvNNs). Among these, CNN is

ResNet152 DenseNet169

Image preprocessing
(a) Resizing
(b) Data enhancement using
augmentation pipeline

(c) Real-time data augmentation

Dataset division
(training, validation
data, testing data)

Training
data

VGG16

Freeze

WSI dataset

FCN

Sequential

Dense

Batch-
normalization

Dropout

ClassificationFeature concatenation (feat = feat_1 + feat_2 + feat_3)

Performance measures
(accuracy, precision, sensitivity, F-score, AUC)

Testing
data

Unfreeze

Freeze

Unfreeze

Freeze

Unfreeze

Feature extraction

feat_1 feat_2 feat_3

Preprocessing

Figure 2: The overall architecture of the proposed method.
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the most prominent structure of DL having interconnected
networks of neurons drafted in a combination of convolu-
tional layers, pooling layers, and fully connected (FC) layers.
Feature learning and classification are the prime utilization
of the CNN model, as shown in Figure 3 [49].

The convolution layers extract a variety of visual fea-
tures, including edges, objects, and textures by performing
convolution of input and the kernel filter. The preactivation
output zl of the convolution layer is defined as

zl = vl−1 ∗Wl ð1Þ

where vl−1 is the activation output of the previous layer, ∗ is
the convolutional operator, and W is the weights. Subse-
quently, pooling layers include various operations like global

average pooling, L-2 normalization, and max pooling to
retain relevant features from the convolution layer output.
Some of the pooling operators are given

average − pool vxyl =
1
s2
〠
s

i,j
hl−1x+ið Þ y+jð Þ

max − pool vxyl =max
i,j

hl−1x+ið Þ y+jð Þ

ð2Þ

The multidimensional feature map retrieved from these
layers is used to convert it into a vector at the classification
stage using the fully connected network (FCN). Here, in this
work, three prevalent CNN-based DL methods VGG-16,
ResNet-152, and DenseNet-169 are utilized for this purpose.

Input Convolution Max-pool Convolution Max-pool Fully-connected Output

Feature extraction Classification

Figure 3: CNN model.

Input

ReLU

ReLU

+

Weight layer

Weight layer

Figure 4: The residual block structure of ResNet.

x f4 (x)f3(x)f1 (x) f2 (x)

Figure 5: The densely connected structure of DenseNet.
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VGG-16. The Visual Geometry Group (VGG) was
introduced with the concept of inserting a pile of small fil-
ters of size 3 × 3 instead of filters with sizes 5 × 5 and 11
× 11 in the preceding deep networks. Additionally, the
convolution filter of size 1×1 with rectified linear unit
(ReLU) activation function is inserted in between convolu-
tional layers for complexity regulation and linear transfor-
mation. VGG-16 holds 16 layers, comprising convolution
layers of kernel size 3× 3 with padding of 1, and max pool
layers of size 2×2 with a stride of 2, followed by three FC
layers. This model has an input size of 224×224× 3 with
approx. 138 million computation parameters [50].

ResNet-152. The residual network (ResNet) came with
a more deep network by skipping connections to resolve
the vanishing gradient issue. The substitute route connec-
tion made by the residual structure shown in Figure 4 per-
mits the gradient to flow without fading, resulting in
enhanced performance of the network. The residual
behavior of ResNet for the lth stage with x input and out-
put H of the activation function can be formulated as

xl =Hl xl−1ð Þ + xl−1: ð3Þ

The ResNet-152 model has 152 layers, more than 8
times deeper than VGG networks, nevertheless having a
lesser computational complexity with approximately 60.4
million parameters [51].

DenseNet-169. This method is also used to resolve the
issue of the vanishing gradient followed by the ResNet
model. The contrast between ResNet and DenseNet is that
ResNet utilizes an additive approach to associate all preced-
ing feature maps, whereas DenseNet concatenates all the
previous layers as shown in Figure 5. The value of variable
x in DenseNet can be a map with the progressive complex
group of functions as

x⟶ x, f 1 xð Þ, f 2 x, f 1 xð Þ½ �ð Þ + f3 x, f 1 xð Þ, f 2 x, f1 xð Þ½ �ð Þ½ �ð Þ⋯ ::½ �:
ð4Þ

The DenseNet-169 model comprises 169 layers, which is
larger than the other members of the DenseNet group and
has less computational complexity than the VGG and
ResNet model with approximately 14.3 million parameters
[52]. Figure 6 gives a visualization of feature maps for a sam-
ple image of SIPaKMeD data through a specific layer of the
aforementioned DL models.

Feature map for VGG16
layer: block2_conv1 

Feature map for ResNet152
layer: conv2_block1_1_conv

layer: conv2_block1_1_conv

Sample image
(224 × 224 × 3)

Figure 6: Visualization of feature maps for VGG-16, ResNet-152, and DenseNet-169.
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Figure 7: Confusion matrix for SIPaKMeD WSI 5-class classification using (a) VGG-16, (b) ResNet-152, (c) DenseNet-169, and (d)
proposed model.
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Performing image classification utilizing the DL
approach requires plenty of computations that need the sup-
port of large data and long-running time of graphic process-
ing unit (GPU) amid training of the model, which results in
outlays of considerable computational resources and less
productivity. TL accelerates the training process by utilizing
the pre-trained model on a contemporary problem, which
may result in more efficacy and overall accuracy. TL is sub-
stantially used as a design method in ML models to train
with the small dataset by utilizing parameters of the pre-
trained model trained on one of some publicly available
large datasets [53].

This paper utilizes the TL approach with the three DL
models VGG-16, ResNet-152, and DenseNet-169 using pre-
trained weights on ImageNet datasets. The ImageNet dataset
accommodates 1000 categories of objects with 1,281,167,

50,000, and 100,000 samples of training, validation, and test-
ing instances, respectively. These models are fine-tuned by
keeping some of the lower layers to be frozen and the higher
layers kept unfrozen as shown in Figure 2. In this experi-
ment, the lower layers of models VGG-16, ResNet-152,
and DenseNet-169, up to layers “block4_pool,” “conv4_
block29_out,” and “conv4_block1_0_relu,” respectively, are
kept frozen, and the higher layers beyond this are being kept
unfreeze. The weight parameters obtained by pretraining
these models on the ImageNet dataset are utilized for fine-
tuning the models by utilizing our training data of the
pap-smear dataset. To extract the array of features some of
the additional layers like global max pooling, batch normal-
ization, dropout, and dense layers have been added to all
three models which result in a bunch of 1024 features set
from each model. All three models are trained on training

Table 4: Performance metrics for different fine-tuned classifiers and proposed model on SIPaKMeD WSI data.

Data Models Accuracy (%) Precision (%) Recall (%) F-score (%)

SIPaKMeD WSI 5-class

VGG-16 94.89 95.88 95.77 95.83

ResNet-152 93.37 93.76 94.66 94.21

DenseNet-169 90.82 91.94 92.06 92

Proposed model 97.45 97.94 98.08 98.01

SIPaKMeD WSI 2-class

VGG-16 97.16 95.7 100 97.8

ResNet-152 96.45 94.62 100 97.24

DenseNet-169 94.33 93.55 97.75 95.6

Proposed model 99.29 98.92 100 99.46

Best results are shown in bold.
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Figure 9: Confusion matrix for LBC WSI data classification using (a) VGG-16, (b) ResNet-152, (c) DenseNet-169, and (d) proposed model.
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data with a learning rate of 10-4 for 100 epochs, batch size of
32, and Adam optimizer. The batch size is set to 1 for valida-
tion and test data. The feature combinations “feat_1,” “feat_
2,” and “feat_3” from each model are extracted in terms of
weight files and saved as H5 extension files.

3.3.2. Feature Concatenation. Each of the feature combina-
tions extracted from the three fine-tuned models i.e. ‘feat_
1’, ‘feat_2’, and ‘feat_3’ has an array of 1024 features. These
feature combinations are concatenated to produce hybrid
features. Let there be two feature vectors v and w of

Table 5: Performance metrics for different fine-tuned classifiers and proposed model on LBC data.

Data Models Accuracy (%) Precision (%) Recall (%) F-score (%)

LBC WSI data

VGG-16 98.97 98.13 97.59 97.86

ResNet-152 97.94 93.33 97.29 95.27

DenseNet-169 97.42 91.67 96.71 94.12

Proposed model 99.49 98.33 99.26 98.79

Best results are shown in bold.
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Figure 10: Fine-tuned VGG-16. (a) Accuracy curve. (b) Loss curve for SIPaKMeD 5-class classification.
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dimensions n×1 and m×1, respectively, their concatenated
feature vector having dimension k×1. This concatenation
of two feature vectors can be represented as:

z = v⨁wwhere v ∈ Rn andw ∈ Rm ð5Þ

z = v1, v2,⋯, vn½ �T ⨁ w1,w2,⋯,wm½ �T ð6Þ

z = v1,⋯, vn,w1; ;⋯,wn½ �T ∈ Rn+m ð7Þ

f zð Þ: Rn+m ⟶ Rk ð8Þ
Here ⨁ is called the concatenation operator. Each of

the feature combinations ‘feat_1’, ‘feat_2’, and ‘feat_3’
has a vector of size 1024×1, and the feature vector ‘feat’
produced by concatenation of these feature combinations
is having a size of 3072×1.

3.3.3. Fully Connected Network (FCN). Lastly, a segment of
the FCN network has been implemented to perform the clas-
sification of cervical cancer test images. This network con-
tains a sequential model with dropout, batch
normalization, and dense (softmax activation function)
layers. The input dimension of the FCN network is set to
3072 to feed the concatenated feature set “feat.” The output
node of dense layers is set equal to the number of classes in
the dataset. The output prediction “ak” for any test cervix
image of class “k” is related as

akϵ 〠
i=1,:,k,:,n

ai: ð9Þ

Here, n is the total number of classes in the cervical data-
set. The experiment is performed by setting the learning rate
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Figure 11: Fine-tuned ResNet-152. (a) Accuracy curve. (b) Loss curve for SIPaKMeD 5-class classification.
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to 10-4 for 300 epochs and a batch size of 1 with an Adam
optimizer for testing of the data.

4. Results and Discussion

4.1. Implementation Environment. The proposed model is
developed on a system with an operating system of Win-
dows 10 having a graphic card from Nvidia Tesla V100
and 16GB of GPU RAM. The experiment is performed
on the Python 3.7 programming environment with requi-
site libraries like Scikit-learn, Tensorflow, Keras, Cuda,
CuDNN, etc.

4.2. Performance Measures. The selection of the optimum
classifier for best performance is achieved by choosing com-
petent performance metrics. Accuracy, precision, recall, and
F-score are some of the indices used in this research to assess

the performance of the model [54]. Accuracy (ACC) in
equation (10) gives the proportion of correctly predicted
cases to the total number of cases. Precision (PRE) in equa-
tion (11) represents the fraction of correctly estimated posi-
tive patterns to all positively predicted patterns. Sensitivity
(SEN) in equation (12) shows the rate of genuinely antici-
pated positive to all correctly classified instances. F-score
(FS) in equation (13) formulates the harmonic average of
precision (PRE) and sensitivity (SEN).

ACC =
TRPOS + TRNEG

TRPOS + TRNEG + FALPOS + FALNEG
, ð10Þ

PRE =
TRPOS

TRPOS + FALPOS
, ð11Þ
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Figure 12: Fine-tuned DenseNet-169. (a) Accuracy curve. (b) Loss curve for SIPaKMeD 5-class classification.
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SEN =
TRPOS

TRPOS + FALNEG
, ð12Þ

FS =
2 ∗ PRE ∗ SEN
PRE + SEN

, ð13Þ

where TRPOS is the true positive, TRNEG is the true neg-
ative, FALPOS is the false positive, and FALNEG is the
false negative.

4.3. Results. This section shows the outcomes of the experi-
ment performed on WSI SIPaKMeD cervical cancer data.
Here, the implementation of the proposed model has also
been analyzed on another cervical cancer database, i.e.,
LBC data. The performance is evaluated for individual
fine-tuned models such as VGG-16, ResNet-152, and
DenseNet-169 classifiers as well as for the proposed model.
Figures 7 and 8 show the confusion matrix obtained for
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Figure 13: Proposed model. (a) Accuracy curve. (b) Loss curve for SIPaKMeD 5-class classification.

Table 6: Comparison of classification accuracy for the proposed
model with previous methods on SIPaKMeD WSI data.

Methods
Classification accuracy

(%)
5 class 2 class

Ensemble [56] 94.09 98.27

CNN+PCA [57] 96.37 —

Fuzzy-based ensemble [58] 95.43 98.55

RCAN-DenseNet-121 [59] 91.09 —

ResNet-50 [60] 91 —

Wavelet+CNN+RF [61] 97.01% —

Proposed model 97.45 99.29

Best results are shown in bold.
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the 5-class and 2-class classifications of WSI SIPaKMeD data
for the different classifiers. Both the figures describe that the
confusion matrix obtained for the proposed model predicts
the least incorrect instances.

Table 4 depicts the results obtained from different classi-
fiers and our proposed model on SIPaKMeD WSI data for
classification into 5 class and 2 class. Here is the perfor-
mance of the individual fine-tuned models of VGG-16,
ResNet-152, and DenseNet-169 are confronted with our
proposed HDFCN model. Our proposed model achieves
better results than the other classifiers with an accuracy of
97.45% and 99.29% for 5-class and 2-class classifications,
respectively. For 5-class classification, our model predicts
the pap-smear images with a precision score of 97.94%, a
recall value of 98.08%, and an F-score of 98.01%. This model
outperforms the other classifiers with the precision, recall,
and F-score values of 98.92%, 100%, and 99.46%, respec-
tively, in 2 class classification. Furthermore, the proposed
model is assessed for LBC WSI pap-smear data. The confu-
sion matrix and the performance indices obtained for the
baseline fine-tuned classifiers and the proposed model are
shown in Figure 9 and Table 5, respectively. The accuracy-
loss curve for 5-class classification of SIPaKMeD pap smear
data is shown in Figures 10–13. Observation shows that the
proposed model achieves excellent results in classifying this
data with the accuracy, precision, recall, and F-score value
of 99.49%, 98.33%, 99.26%, and 98.79%, respectively.

4.4. Discussion

4.4.1. Comparative Analysis. Table 6 represents the compar-
ison of the proposed model with the existing state-of-the-art
methods for 5-class and 2-class classifications of SIPaKMeD
WSI data. The comparison review of the performance of the
proposed model for LBC WSI data is given in Table 7. These
comparisons convincingly conclude the preciseness of the
framework in cervical cancer classification.

4.4.2. McNemar’s Test. Here, we performed McNemar’s sta-
tistical non-parametric test on the baseline classifiers and
our proposed model [55]. Table 8 shows the p value calcu-
lated through McNemar’s test between the individual base-
line classifiers (VGG-16, ResNet-152, and DenseNet-169)
and the proposed model. This test signifies the fact that the
individual baseline classifiers and the proposed model are
dissimilar in extracting features if the p value computed is
less than 5% or 0.05. As this p value is calculated below

0.05 for all the cases on both the datasets utilized, the null
hypothesis is false, and the proposed classifier is dissimilar
to the other DL classifier with enhanced performance. This
scrutiny proves the reliability and authenticity of the frame-
work we proposed in the classification of cervical cancer
WSI pap-smear data.

5. Conclusion and Future Work

The escalating use of computer vision models in the early-
stage detection of cervical cancer motivates us to propose
this hybrid framework. The proposed work utilizes two-
step data augmentation to increase the amount of training
data. The proposed HDFCN model utilizes the hybrid fea-
tures obtained from the concatenation of features extracted
from the fine-tuned models of three prevalent DL algo-
rithms: VGG-16, ResNet-152, and DenseNet-169. These
hybrid features are used for the classification of cervical can-
cer WSI pap-smear data. The proposed model is evaluated
on SIPaKMeD data and gives an accuracy of 97.45% for 5-
class classification and 99.29% for 2-class classification.
Moreover, the experiment performed on LBC WSI data pro-
vides 99.49% accuracy. The precise recognition of infected
WSI images enables experts to perform a more in-depth
analysis of cells within the images. The futuristic approach
to this method involves the utilization of more optimal fea-
ture selection algorithms, progressive resizing, and advanced
ensemble methods to further improve model performance
and computation cost-cutting.
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