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Background. Complicated appendicitis, a potentially life-threatening condition, is common. However, the diagnosis of this
condition is mainly based on physician’s experiences and advanced diagnostic equipment. This study built and validated
machine learning models to facilitate the detection of complicated appendicitis. Methods. A retrospective cohort study was
conducted based on medical charts of all patients undergoing a laparoscopic appendectomy at a city hospital during 2016-
2020. The synthetic minority over-sampling technique (SMOTE) was used to adjust for the imbalance. Multiple classification
approaches were used to train and validate models including support vector machine (SVM), decision tree (DT), K-nearest
neighbor (KNN), logistic regression (LR), artificial neural network (ANN), and gradient boosting (GB). Results. Among 1,950
patients included in the data analysis, there were 483 patients identified as having complicated appendicitis (24.8%). Based on
data without SMOTE adjustment for imbalance, the accuracy levels and AUCs were high in all models using different
parameters, ranging from 0.687 to 0.815. After adjusting for imbalance data using SMOTE, AUC and accuracy levels in the
models using imbalance adjusted data were higher. Of these, the GB had all AUC and accuracy values of approximately 0.8 or
more in both adjusted and unadjusted data. Conclusions. Machine learning approaches including SVM, DT, logistic, KNN,
ANN, and GB have a high level of validity in classifying patients with complicated appendicitis and patients without
complicated appendicitis. Among these, GB had the highest level of validity and should be used or further validated. Our study
indicates the beneficial potentials of machine learning techniques in a clinical setting in general and in the diagnosis of
complicated appendicitis in particular.

1. Introduction

Appendicitis is one of the most common emergency gastro-
enteric diseases. Previous studies have reported that about
7%-10% of emergency cases had abdominal pain, almost
all of whom had right lower abdominal quadrant pain and
were subsequently diagnosed as appendicitis [1]. However,

the prevalence of appendicitis ranges widely across coun-
tries, for example, 206 cases per 100,000 person-years in
South Africa, 100 cases per 100,000 person-years in Amer-
ica, and 206 cases per 100,000 person-years in Korea [2].
Importantly, complicated appendicitis which is considered
a life-threatening condition is also common. The prevalence
of appendicitis with perforation ranges from 16% to 40%
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and is higher in people aged over 50 years (from 55% to
70%) [3]. Patients with appendicitis who had perforation
or phlegmon have a significant higher mortality rate than
those without perforation. Moreover, although appendec-
tomy is still one of the most common treatments, many
recent studies have provided evidence of positive outcomes
of nonoperative treatment in some cases [4]. Therefore, early
and timely diagnosis of complicated appendicitis plays a
vital role in choosing the proper treatment and minimizing
further serious complications.

To date, several scoring systems have been developed
and validated to help screen and diagnose acute appendicitis
and to predict complicated appendicitis such as the Alvar-
ado score, ARIs, RIPASA, and APSI [5–7]. However, these
tools require data which are not always available, especially
in resource-limited settings. For example, to diagnose
appendicitis using the APSI, a CT scan is required. Although
CT scan has been considered a gold standard for diagnosis of
appendicitis, this technique is not feasible in primary care
settings in the absence of specialists and equipment while
the risk of radiation exposure from CT scan is still contro-
versial [7]. Other tools such as the Alvarado requires clinical
symptoms which may be misdiagnosed or subjectively iden-
tified by physicians, leading to both false positive and false
negative appendicitis. Therefore, the use of basic informa-
tion such as blood test and ultrasound to early screen com-
plicated appendicitis is beneficial. Fortunately, the presence
of artificial intelligence and machine learning (ML) tech-
niques can make this idea feasible and practical as reported
in previous studies [8–11].

The advantages of machine learning techniques in the
diagnosis of diseases have been well documented including
its application in appendicitis. First, ML helps physicians
objectively and correctly examine different types of inflam-
mation of the appendix. This is because the clinical signs
and symptoms are not always specific, and physicians have
to combine many information such as health status, signs,
and laboratory tests to support their diagnosis which
depends significantly on their experiences. In this regard,
once trained and tested, ML can make a diagnosis with a
high level of reliability in a timely period. In addition, physi-

cians and surgeons can take advantage of the results pro-
vided by ML to decide the most appropriate treatments for
patients, which helps decrease the risk of adverse events of
appendectomy, either laparoscopic appendectomy or open
appendectomy. For acute appendicitis, many recent studies
reported that antibiotic and nonoperative treatment result
in similar treatment outcomes compared to appendectomy
[12]. Finally, the application of ML in screening and diagno-
sis of complicated appendicitis helps medical systems and
specialists avoid overload, particularly higher tier hospitals
because a certain number of patients can be diagnosed and
treated at primary care settings.

Therefore, the aim of this study was to examine the
validity of ML in detecting complicated appendicitis at a ter-
tiary hospital in Ho Chi Minh City, Vietnam. Findings from
this study provide scientific evidence of whether or not ML
can be used in other resource-limiting settings.

2. Materials and Methods

2.1. Study Design and Settings. A retrospective cohort study
was conducted based on medical charts of all patients who
had a laparoscopic appendectomy at the Department of Gas-
trointestinal Surgery in Gia Dinh People Hospital in Ho Chi
Minh City, Vietnam, from 2016 to 2020. This hospital is a
city hospital with 18 specialty departments. Each year,
approximately 1000 patients have appendicitis and subse-
quently have laparoscopic appendectomy which is a stan-
dard of treatment at the hospital. During the study period,
all medical records of these patients including all clinical
and subclinical information as well as surgery reports were
collected. This study was approved by the Ethical Committee
at Gia Dinh People Hospital (approval number: 16/NDGĐ-
HĐĐĐ).

2.2. Measurement. At the study hospital, patient’s data are
stored in electronic medical records. However, similar to
other resource-limited hospitals in Vietnam, this electronic
medical record system is not perfect. Although identification
information of all patients is available in such a system,
detail data are not always available. In our study, about

Table 1: Data structure used in data analysis.

Variable Type Unit Description

Age Numeric Year Range: 11 - 91

Gender Binary 1=male; 0=female

White blood cell count (WBC) Numeric 103 cell/mm3 Range: 1.80 - 29.21

Neutrophil Numeric 103 cell/mm3 Range: 1.58 - 27.47

Lymphocyte Numeric 103 cell/mm3 Range: 0.18 - 8.10

Neutrophil lymphocyte ratio (NLR) Numeric Range: 0.40 - 65.04

C-reactive protein (CRP) Numeric mg/L Range: 0.2 - 420.3

Diameter of appendix on ultrasound Numeric mm Range: 1 - 80

Appendix position on ultrasound Binary 1=right lower abdominal quadrant; 0=other positions

Infiltration on ultrasound Binary 1=yes; 0=no

Abdominal fluid on ultrasound Binary 1=yes; 0=no

Complicated appendicitis Binary 1=yes; 0=no
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50% of patients’ data were extracted from a hard copy of
their medical records. Data were extracted from both elec-
tronic and hard copy medical records, including demo-
graphic characteristics (i.e., age and gender), blood tests,
and ultrasound. Blood tests consisted of total white blood
cell count (cells per cubic millimeter—cells/mm3), granulo-
cyte count (cells/mm3), lymphocyte count (cells/mm3), and
C-reactive protein test (mg/L). The diameter of the appen-
dix, extraluminal free air, periappendiceal fluid, and abscess
was recorded through ultrasound results. The ultrasound
data were based on the conclusions noted in the medical
records, not from the ultrasound images. The diagnosis of
complicated appendicitis was confirmed based on inflamma-
tion of the appendix including perforation (appendiceal rup-
ture), phlegmon, and generalized peritonitis (accounting for
appendicitis). These conditions were identified based on
standard surgical reports. The data structure is summarized
in Table 1.

2.3. Data Analysis. Among 4,242 patients who underwent a
laparoscopic appendectomy at the hospital during 2016–
2020, there were missing data in either blood tests, ultra-
sound results, or surgical reports in 1217 patients and thus
were excluded from the analysis. Data of 1,950 patients
included in the analysis were randomly divided into two
parts: 70% for training and 30% for testing. Ideally, the data
used for both training and testing should have one control
(i.e., no complicated appendicitis) per case (i.e., complicated
appendicitis) which results in a prevalence of complicated
appendicitis of 50%. In fact, the prevalence of complicated
appendicitis was much lower, and thus, the imbalance of
the real data might affect the validity of the models fitted.
Therefore, the synthetic minority over-sampling technique
(SMOTE) was used to adjust for the imbalance [13, 14]. In
this study, both imbalanced and balanced data based on
SMOTE were used to build and evaluate models. Because
the features included were in different ranges, normalization
was also applied using the standard formula: xnorm = ðx –
xminÞ/ðxmax – xminÞ. Although principal component analysis
is beneficial for the situations where there are high-
dimensional data, we also used this approach to check the
12 features included. Multiple classification approaches were
used to train models including support vector machine
(SVM), decision tree (DT), K-nearest neighbor (KNN),
logistic regression (LR), artificial neural network (ANN),
and gradient boosting (GB). These approaches are com-
monly used in previous studies in disease classification
[15]. The testing and evaluation of these models were based
on the area under the curve (AUC) and the accuracy score.
All data analyses were conducted using Python.

3. Results

Among 4,242 patients who underwent a laparoscopic appen-
dectomy at the hospital during 2016–2020, there were miss-
ing data in either blood tests, ultrasound results, or surgical
reports in 1217 patients and thus were excluded from the
analysis. Among 1,950 patients included in data analysis,
45.0% (n = 678) were males and the mean age was 37.3

(SD = 15:9) years. Based on surgery reports, there were 483
patients identified as having complicated appendicitis
(24.8%). There were significant differences between patients
with and patients without complicated appendicitis in most
characteristics measured including age, gender, neutrophil,
C-reactive protein, diameter of appendix, and appendix
position (Table 2). Figure 1 presents results from the princi-
pal component analysis. Although a few features did not
have high levels of explanation, these features have been
proven to be important characteristics of acute appendicitis
in clinical practice. Therefore, all these 12 features were kept
in further analysis.

Table 3 presents results after building and evaluating dif-
ferent models including SVM, DT, logistic, KNN, ANN, and
GB. Based on data without SMOTE adjustment for imbal-
ance, the accuracy levels and AUCs were high in all models
using different parameters, ranging from 0.687 to 0.815.
After adjusting for imbalance data using SMOTE, AUC
and accuracy levels in the model using imbalance adjusted
data were higher (Table 3).

Based on the k-fold validation, optimal parameters were
selected and the results are presented in Figures 2 and 3. All
models with optimal parameters had good to excellent abil-
ity to classify patients with complicated appendicitis and
patients without complicated appendicitis. Of these, the GB
had all AUC and accuracy values of approximately 0.8 or
more in both adjusted and unadjusted data.

4. Discussion

This study was among the very first in Vietnam to evaluate
ML approaches in clinical settings and the first in the classi-
fication of complicated appendicitis. In a population with a
relatively low prevalence of complicated appendicitis, the
ML approaches including SVM, DT, logistic, KNN, ANN,
and GB had good to excellent performance in classifying
patients with complicated appendicitis and patients without
complicated appendicitis.

The prevalence of patients with complicated appendicitis
in this study was the same as that reported in previous stud-
ies where around 25% of the 300,000 cases of appendectomy
each year had complicated appendicitis based on CT scan
[16]. Other studies in Vietnam have reported the percentage
of complicated appendicitis of 30%-40% [17, 18]. In particu-
lar, Van Tan illustrated that 31% of complicated appendicitis
cases were determined during the surgery, while Quoc Anh
et al. found a percentage of complicated appendicitis of
38% based on operative reports and pathology results. One
possible explanation for our findings is the study population.
For example, while patients in our study were those who
underwent laparoscopic appendectomies, patients from
other studies were those who underwent either laparoscopic
or open appendectomies. Because open appendectomies are
normally indicated for patients with severely complicated
appendicitis, the prevalence of complicated appendicitis is
expected to be higher. Moreover, although a CT scan can
be considered the gold standard in the diagnosis of compli-
cated appendicitis, the prevalence of complicated appendici-
tis found during operative or based on operative reports may
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be relatively different. In our study, this imbalance distribu-
tion of complicated appendicitis versus noncomplicated
appendicitis was adjusted in further analysis.

The inclusion of features in ML approaches is important
and contributes significantly to the overall performance of
the models. In our study, features used in building machine

Table 2: Characteristics of patients with complicated appendicitis and without complicated appendicitis.

Criteria
Total

(N = 1950)

Complicated appendicitis
Yes

N = 483
(24.8%)

No
N = 1467 (75.2%)

Odds ratio (95% confidence
interval) ∗

Age (year) (mean, standard deviation) 37:3 ± 15:9 40:6 ± 17:3 36:2 ± 15:2 1.02 (1.01 - 1.02)

Gender (n, %)

Male 678 (45.0) 233 (48.2) 652 (44.4) 1.17 (0.95 – 1.43)

Female 826 (55.0) 250 (51.8) 815 (55.6) Ref

White blood cell count (WBC) (103 cell/mm3) (mean,
standard deviation)

14:0 ± 3:9 14:4 ± 4:3 13:8 ± 3:8 1.04 (1.01 - 1.06)

Neutrophil (103 cell/mm3) (mean, standard deviation) 11:4 ± 3:9 11:9 ± 4:0 11:2 ± 3:8 1.05 (1.02 - 1.08)

Lymphocyte (103 cell/mm3) (mean, standard deviation) 1:6 ± 0:7 1:5 ± 0:7 1:7 ± 0:7 0.61 (0.52 - 0.72)

Neutrophil lymphocyte ratio (NLR) (median,
interquartile range)

7.0 (4.5 -
11.0)

8.2 (5.3 -
12.5)

6.8 (4.4 - 10.8) 1.03 (1.01 - 1.05)

C-reactive protein (CRP) (mg/L) (median, interquartile
range)

14.2 (4.6 –
44.6)

39.8 (10.9 -
105.0)

11.0 (3.8 - 28.8) 1.02 (1.01 - 1.02)

Diameter of appendix on ultrasound (mm) (mean,
standard deviation)

9:3 ± 3:0 10:0 ± 2:9 9:1 ± 3:0 1.13 (1.09 - 1.18)

Appendix position on ultrasound (n, %)

Right lower abdominal quadrant 1498 (76.8) 322 (66.7) 1176 (80.2) 0.49 (0.39 - 0.63)

Other positions 452 (23.2) 161 (33.3) 291 (19.8) Ref

Infiltration on ultrasound (n, %)

Yes 1513 (77.6) 368 (76.2) 1145 (78.0) 0.90 (0.70 - 1.16)

No 437 (22.4) 115 (23.8) 322 (22.0) Ref

Abdominal fluid on ultrasound (n, %)

Yes 511 (26.2) 172 (35.6) 339 (23.1) 1.84 (1.46 - 2.31)

No 1439 (73.8) 311 (64.4) 1128 (76.9) Ref
∗Odds ratio and 95% confidence interval were from traditional logistic regression.
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Figure 1: Principal component analysis of all features included.
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learning models have been well documented in clinical litera-
ture and were confirmed from our data. Complicated appen-
dicitis was found in old patients with high neutrophil and

lymphocyte, neutrophil to lymphocyte ratio (NLR), CRP,
diameter, and position of the appendix (from abdominal ultra-
sound). Particularly, a retrospective study with 498 patients

Table 3: Characteristics of machine learning models to classify complicated appendicitis.

Model and parameters used Description

Imbalance
unadjusted data

Imbalance adjusted
data

N = 1950 N = 2934
AUC Accuracy AUC Accuracy

SVM

Linear Liner function 0.711 0.752 0.730 0.655

Gaussian Radial basis function 0.699 0.798 0.754 0.666

Sigmoid Sigmoid function 0.627 0.726 0.637 0.596

Polynomial Polynomial function 0.728 0.805 0.791 0.726

DT

Gini Gini impurity 0.574 0.689 0.719 0.719

Entropy Information gain - entropy 0.609 0.697 0.758 0.758

Logistic

NCG Newton -CG 0.711 0.805 0.737 0.675

LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno 0.711 0.805 0.737 0.675

Lib Liblinear 0.714 0.803 0.789 0.729

SAG Stochastic average gradient descent 0.711 0.805 0.737 0.675

SAGA Stochastic average gradient accelerated 0.714 0.802 0.789 0.726

KNN

Uniform Uniform weights 0.680 0.779 0.815 0.734

Distance Distance weights 0.672 0.776 0.831 0.741

ANN

GD_a Gradient descent, identity 0.732 0.807 0.809 0.743

GD_b Gradient descent, logistic 0.713 0.802 0.803 0.737

GD_c Gradient descent, tanh 0.734 0.805 0.81 0.742

GD_d Gradient descent, ReLU 0.748 0.807 0.826 0.766

SGD_a Stochastic gradient descent, identity 0.692 0.776 0.690 0.632

SGD_b Stochastic gradient descent, logistic 0.681 0.752 0.614 0.535

SGD_c Stochastic gradient descent, tanh 0.695 0.774 0.691 0.633

SGD_d Stochastic gradient descent, ReLU 0.688 0.752 0.689 0.631

LBFGS_a Limited-memory BFGS, identity 0.744 0.802 0.811 0.750

LBFGS_b Limited-memory BFGS, logistic 0.641 0.687 0.820 0.755

LBFGS_c Limited-memory BFGS, tanh 0.644 0.704 0.853 0.776

LBFGS_d Limited-memory BFGS, ReLU 0.707 0.776 0.838 0.754

GB

GB1 Friedman MSE, sqrt, deviance 0.741 0.812 0.887 0.823

GB2 Friedman MSE, log, deviance 0.753 0.810 0.890 0.820

GB3 Friedman MSE, deviance 0.746 0.802 0.887 0.825

GB4 Friedman MSE, sqrt, AdaBoost 0.771 0.815 0.888 0.818

GB5 Friedman MSE, log, AdaBoost 0.750 0.810 0.894 0.821

GB6 Friedman MSE, AdaBoost 0.756 0.810 0.887 0.820

GB7 MSE, sqrt, deviance 0.745 0.807 0.89 0.821

GB8 MSE, log, deviance 0.743 0.810 0.886 0.814

GB9 MSE, deviance 0.740 0.803 0.887 0.824

GB10 MSE, sqrt, AdaBoost 0.752 0.809 0.889 0.808

GB11 MSE, log, AdaBoost 0.745 0.812 0.89 0.818

GB12 MSE, AdaBoost 0.755 0.812 0.887 0.820
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who had appendectomy illustrated that CRP was great validity
of detecting and distinguishing between complicated and
uncomplicated appendicitis [19]. Moreover, a systematic
review study illustrated that the mean age of the complicated

group is 44 years old (from 3 to 81 years old), and the total
amount of white blood cell, especially that of lymphocyte is
one of the most important factors affecting the detection of
complicated appendicitis [16]. In a broader perspective,
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Figure 2: ROC curves of optimal models in classifying patients with and without complicated appendicitis. (a) Imbalance unadjusted data.
(b) Imbalance adjusted data (SMOTE).
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almost all our results are similar as the recently medical litera-
ture published worldwide. The consistency of our study find-
ings indicated the clinical relevance of our models.

With regards to models trained and validated, there were
no significant differences in the accuracy levels and AUCs
between unadjusted data and adjusted data. Good to excellent
performance of these models indicated their potential in iden-
tifying complicated appendicitis. In our study, there was an
imbalance in data where the ratio of complicated and uncom-
plicated appendicitis groups was relatively low. This imbal-
ance could cause false evaluation of the models [20]. The
synthetic minority over-resampling (SMOTE) used in our
study has been proven to have advantages over other tech-
niques such as the over-resampling methods in fitting the
imbalanced data. In this study, accuracy and AUC were used
to evaluate the models fitted. While accuracy is a commonly
use metric and is more understandable, AUC is preferred to
accuracy for imbalanced data. However, after adjusting for
imbalanced data using the SMOTE, there is almost no differ-
ence between these two metrics. It appeared in our study that
GB had the best properties with high values of accuracy and
AUC regardless of imbalance adjustment. The accuracy is
one of the most common metrics for classification which esti-
mates the probability of the true value label class thanks to the
overall effectiveness, while the AUC includes the value of the
function of sensitivity and specificity [21].

Several implications can be learned from our study. First,
the relatively low prevalence of complicated appendicitis
found in this study among patients who underwent a laparo-
scopic appendectomy at a city hospital highlights the high
probability of misclassification of complicated appendicitis.
As suggested by Bhangu et al. [4] and Khorram-Manesh
et al. [12] patients with noncomplicated appendicitis can
be treated with internal medicine, and appendectomy should
only be indicated for patients with complicated appendicitis.
This hypothesis is underpinned by the absence of a routine
CT scan. Second, despite the absence of a CT scan, the inclu-
sion of features in our ML models is to ensure the feasibility
of this approach, especially for primary care settings.
Coupled with the advantages of ML and models built, our
study can be easily deployed and used in similar resource-

limited settings. Third, although the study was conducted
in a city hospital, the proportion of data used in the analysis
was low compared to the total number of patients eligible for
this study due to missing data. High data quality remains a
big challenge in resource-limited settings. For example, in
Vietnam, many hospitals do not have an electronic medical
record system. Some hospitals have an electronic medical
record system but such system is not optimal. Moreover,
data entry is not standardized and most data are stored in
the form of text. To take full advantage of artificial intelli-
gence and ML in healthcare, these issues should be
addressed in all hospitals.

Our study has several limitations. First, the sample size is
relatively small for this type of study and data were collected
from a single hospital. This limits our study’s generalizabil-
ity. Further studies are needed to confirm our study findings.
Moreover, the rate of complicated appendicitis cases is rela-
tively low, while the qualitative of data is not enough as our
expectation. Although our models showed the good to great
results, they should be used as a screening tool, not a diagno-
sis. The actual diagnosis still needs to be decided by special-
ists and other associated clinical evidence.

5. Conclusions

Machine learning approaches including SVM, DT, logistic,
KNN, ANN, and GB have a high level of validity in classify-
ing patients with complicated appendicitis and patients
without complicated appendicitis. Among these, GB had
the highest level of validity and should be used or further
validated. Although further studies are needed to confirm
our findings in different settings and populations, the accu-
racy found in our study indicates the beneficial potentials
of machine learning techniques in a clinical setting in gen-
eral and in the diagnosis of complicated appendicitis in
particular.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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