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SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this
infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a
viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel
antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by
evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived
antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human
ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and
3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases
for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large
dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate
ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed
docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular
dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the
ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three
preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three
therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies
that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations
would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.

1. Introduction

The World Health Organization (WHO) reported that the
prevalence of SARS-CoV-2 is spreading at an alarming rate,
posing severe health problems. The most recent outburst of
second wave of SARS-CoV-2 has turned into a worldwide

catastrophe. Following the coronavirus (CoV) epidemic in
China in December 2019, WHO classified SARS-CoV-2, as
the newest candidate of theCoronaviridae family withinNido-
virales order [1]. As of 3rd May 2023, WHO has received a
report from around 765,222,932 diagnosed COVID-19 infec-
tions worldwide, with 6,921,614 fatalities [2, 3]. According to
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available information, the virus can be transmitted often by
close, indirect, or direct exposure to infectious persons, as well
as contaminated secretions such as nasal droplets and saliva,
and respiratory secretions released when an infected individ-
ual sneezes, coughs, or speaks [3]. It has been linked to a wide
range of signs and symptoms, consisting of minor to severe ill-
ness, which varies from patient to patient. Complications
might appear anywhere from two to fourteen days after the
virus has been infected. Fever, fatigue, chronic cough, sore
throat, difficulty breathing, impairment of taste/odor, nausea,
sputum production, headache, expectoration, diarrhea,
anorexia, and some other symptoms might occur at separate
phases of the disease [1, 4].

SARS-CoV-2 is a membrane-encased positive-sense
single-stranded RNA ((+) ssRNA) virus having a diameter
ranging from 60 to 140 nanometers [4, 5]. The envelope is
surrounded by spike-shaped glycoprotein protrusions that
resemble crowns under the electron microscope [6]. The
spike (S), nucleocapsid (N), envelope (E), and membrane
(M) proteins are among the four crucial targets encoded by
the SARS-CoV-2 genome. Main protease (3CLpro), RNA-
dependent RNA polymerase (RdRp), and papain-like prote-
ase (PLpro) are some of the nonstructural proteins synthe-
sized by the viral DNA [7]. Nonstructural protein 3 (Nsp3)
proteins containing macrodomains are pervasive and evolu-
tionarily conserved and responsible for the transcription
process [8]. Previous study has established that human
angiotensin converting enzyme 2 (ACE2) receptor has a
greater affinity for the RBD region of the spike protein [9].
The attachment of favorable ligands to the active pockets
of human ACE2 receptor might alter the protein’s structure.
As a result, the viral ACE2 entrance region might be a
feasible object for therapeutic advancement. Since the main
protease of SARS-CoV-2 is vital for its growth and the con-
sequent expression of the replicase polyproteins, it has
turned into an obvious target for anti-COVID-19 therapeu-
tic design [10]. As a result, focusing on these proteins might
help with long-term COVID-19 infection management and
eradication.

The viral disease is spreading at a surprising pace world-
wide, and researchers are racing to develop effective drugs to
use as therapeutic agents. The most promising choices
appear to be natural compounds with substantial bioavail-
ability and minimal cytotoxicity [1]. Clinically approved
antiviral drugs are effective; however, some people become
resistant to drugs. In contrast, it has been claimed that phy-
tochemicals have more acceptable side effects and can be a
satisfactory substitute for synthetic antiviral compounds for
the suppression of viral life-cycle and penetration [10].

Humans have always relied on natural compounds,
especially phytochemicals, to treat health problems since
the dawn of time. Recently, Shawan et al. presented luteo-
lin and abyssinone II as possible phytochemicals against
SARS-CoV-2 [1]. Besides, Manojkumar et al. reported
ervoside had anticoronavirus properties [11]. Similarly,
Emran et al. identified phytochemicals medicagol, faradiol,
and flavanthrin as the potential barrier of SARS-CoV-2
[12]. Computer-assisted drug development (CAD) entails
the usage of computerized techniques to discover, design,

and evaluate therapeutics and associated pharmacologically
active substances [13]. CAD techniques have improved
compound screening significantly over time, aimed at tar-
geting structure prediction and model development, active
site determination, comprehending the protein-ligand
complex, testing a huge dataset of substances by estimat-
ing their pharmacokinetics characteristics, and analyzing
the dynamics of proteins binding with ligands within bio-
logical settings [14]. Existing medicines like Molnupiravir
and Paxlovid have been authorized by the FDA for utiliza-
tion in emergencies; the treatment may be used either
alone or combined with others [15]. For COVID-19
patients, the antiviral drug Molnupiravir has been recom-
mended as a therapeutic for SARS-CoV-2 because it
increases the likelihood of viral RNA alterations while also
inhibiting viral replication [16]. Through inhibition of pro-
teasome breakdown of viral proteins, Paxlovid inhibits
protein production (RNA-dependent RNA polymerase,
helicase, exoribonuclease, RNA-binding protein endoribo-
nuclease). Consequently, the viral transcription and repli-
cation are halted [7].

The main focus of this in silico work was to utilize
computational tools, i.e., molecular docking and MD sim-
ulation to examine the effective binding interactivity and
affinities of repurposed antiviral phytochemicals with the
human ACE2 receptor, Nsp3 macrodomain, and the main
protease of the SARS-CoV-2 virus and identify the finest
ligand hit [17]. Among all other crucial characteristics,
absorption, distribution, metabolism, toxicity, and excre-
tion (ADMET) were evaluated, and the best of them were
selected. Finally, the most effective phytochemicals with
higher binding energy to the target receptor and stronger sta-
bilizing capacity were confirmed by employing molecular
dynamics simulation.

2. Materials and Methods

Virtual screening of natural bioactive molecules has become
the standard method in the present therapeutic development
workflow [18]. In this study, a wide range of repurposed
phytochemicals were used from the NPASS (http://bidd
.group/NPASS/) and PubChem (https://pubchem.ncbi.nlm
.nih.gov/) servers as prospective ligands for SARS-CoV-2.
The recently approved COVID-19 antiviral drugs Molnupir-
avir and Paxlovid were used as control drugs [19]. The
workflow of our work was provided in Figure 1.

2.1. Characterization of Drug-Likeness Properties. A drug-
like molecule can be considered a drug candidate by asses-
sing its drug-like properties. The canonical SMILE sequence
of the 1163 small molecules was fetched from the PubChem
drug web server. The free accessible SwissADME was
employed to compute the major physicochemical descrip-
tors, pharmacokinetic properties, drug-like parameters, and
associated factors [20]. To analyze the results, this applica-
tion employs five principles of Lipinski’s rule [21], Ghose’s
rule [22], Veber’s rule [23], Egan rule [24], Muegge’s rule
[24], the number of rotatable bonds, and TPSA.
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2.2. Characterization of ADMET Properties. pkCSM is an
online tool that employs graph-based structural signatures
for determining and improving pharmacokinetic character-
istics and toxicity in small molecules. To devise an ADMET
prediction benchmark for in silico drug discovery, pkCSM
applies a cut-off scanning strategy [25]. The chosen criteria
for the prediction model were hepatotoxicity, Ames toxicity,
oral rat acute toxicity, human intestinal absorption (HI),
hERG I inhibitor, hERG II inhibitor, P-glycoprotein I inhib-
itor, P-glycoprotein II inhibitor, P-glycoprotein substrate,
BBB permeability (log BB), Caco-2 permeability, CYP2D6
substrate, CYP3A4 substrate, CYP2C19 inhibitor, CYP1A2
inhibitor, CYP3A4 inhibitor, CYP2C9 inhibitor, and
CYP2D6 inhibitor.

2.3. Molecular Docking by AutoDock vina

2.3.1. Ligand Preparation. At pH7.4, polar hydrogen atoms
were introduced to the downloaded 3D molecular ligands
in SDF (spatial data file) format using the build module of
the Avogadro 1.2.0. The same program was then used to
conduct geometry optimization and energy reduction
employing the MMFF94 force field and steepest descent
option. These structures were retained in the PDB [26]
extension for additional investigation. To add polar hydro-
gens and fix torsions of the ligands, AutoDockT tools-
MGLTool 1.5.6 was used [27].

2.3.2. Protein Preparation. The preferred structures of SARS-
CoV-2 main protease in complex with FSCU015 (PDB ID:
7NT3), Nsp3 macrodomain in complex with ADP-ribose
(PDB ID: 7KQP), and inhibitor bound human ACE2-
related carboxypeptidase (PDB ID: 1R4L) were taken from
RCSB repository (https://www.rcsb.org/). Initially, the 3D
structures were prepared in the PyMOL program [1].

Swiss-PdbViewer was subsequently used to minimize the
energy of the selected proteins [28]. Next, the energy-
minimized structures were loaded into AutoDock-
MGLTools 1.5.6 to incorporate polar hydrogen and convert
the PDB to PDBQT format.

2.3.3. Active Site Detection and Grid Box Preparation. Find-
ing a ligand-binding region on a protein is the basic strategy
for the molecular docking technique [29]. The possibility
of protein-ligand attachment relies on numerous factors
such as hydrogen bonds, hydrophobic or hydrophilic
interactions, electrostatic and salt bridges. CASTp 3.0 web-
site (http://sts.bioe.uic.edu/castp/) was employed to detect
the active region of target proteins [30]. It applies an alpha
shape detection approach to determine topographic prop-
erties and estimate protein area and volume for identifying
ligand-binding cavities.

2.3.4. Binding Affinity Prediction by AutoDock vina. Virtual
screening via docking studies is extensively used in
computer-led pharmaceutical research to uncover promising
drug-like substances. Initially, AutoDock vina was exploited
to conduct rigid molecular docking among the proteins and
selected compounds (ligands and control drugs), including a
search area of 27,000m3 and exhaustiveness 10, and ligands
being flexible while receptors remained rigid [18]. AutoDock
vina calculates the binding energy and fixes the binding
poses using the Lamarckian genetic algorithm. Here, in this
study, 149 small molecules were docked with three target
proteins (coordinates of geometry-optimized ligands of the
best hits provided in Supplementary Table 5).

2.4. Glide Docking and MM-GBSA Analyses. Schrodinger
was employed to perform glide docking and MM-GBSA
analyses (Maestro 12.5, Schrodinger Suites 2020-3).
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Figure 1: Complete work flow of the structure-based virtual screening study.

3BioMed Research International

https://www.rcsb.org/
http://sts.bioe.uic.edu/castp/


Previously screened ligands having higher affinity for target
proteins than the reference drugs were explored in this step.

2.4.1. Preparation of Ligand Structures. The LigPrep module
yields top hits of 3D configurations for small molecules,
beginning from 1-dimensional/2-dimensional/3-dimen-
sional structures in Maestro, Mol2, SMILES, or SD format
[31]. By introducing hydrogens, ionizing at pH (7 ± 2:0),
and subtracting salts, the LigPrep tool builds molecules
and constructs 3D structures of them. Following that energy
minimized and geometrically refined ligands were prepared
by employing a built-in OPLS3e force field in Schrödinger
Maestro 12.5 [32].

2.4.2. Preparation of Protein Structures. The protein struc-
tures (main protease, Nsp3, human ACE2 receptor) were
loaded straight into the protein preparation wizard [32].
Protein structures were preprocessed by setting up bond
orders, adding hydrogens and cap termini, and filling the
missing atoms by prime module. At pH7.0, the PROPKA
application was used to calculate the protonation phases.
Following that, the water portion around the protein was
eliminated above 3.0Å, and restrained minimization was
executed utilizing the OPLS3e force field.

2.4.3. Preparation of Receptor Grid Box. The grid region
directs small molecules to the binding center of the protein,
making it an important part of molecular docking research.
The grid model was created with the standard options of a
Van der Waals radius scaling marker of 1.0 and a charge
threshold score of 0.25 in the receptor grid generation pack-
age. The attached ligands UQZ, AR6, and XX5 within the
protein structures main protease, Nsp3, and human ACE2
receptor, respectively, were used to define the region for
the grid map.

2.4.4. Glide Docking and MM-GBSA Studies. Glide is a com-
bined molecular docking technology that can facilitate both
ligand and receptor flexibility [33]. Glide XP was developed
to retrieve the finest docking poses having the greatest-
scoring compounds. For drug molecules, a minimum scor-
ing of 0.15 and a Van der Waals radius scaling marker of
0.80 was applied.

Docking score = a × VdW+ b × Coul + Hbond +Metal
+ Lipo + BuryP + RotB + Site:

ð1Þ

Here, a and b are coefficient constants for VdW and
Coul, respectively, VdW is the Van der Waals energy, Coul
is the Coulomb energy, H-bond is the hydrogen bonding
with the receptor, Metal is the binding with metal, Lipo is
the constant term for lipophilic, BuryP is the buried polar
group penalty, RotB is the rotatable bond penalty, and Site
is the active site polar interaction [1].

The binding free energy among the receptor and the col-
lection of small molecules was measured using the prime
MM-GBSA module. The binding energy of the ligand-
protein constructs was estimated utilizing the OPLS3e force

field, and the docked conformations were minimized utiliz-
ing Prime’s native optimization tool.

ΔGbind Binding Free Energyð Þ = ΔEMM+ ΔGsolv + ΔGSA:
ð2Þ

Here, ΔEMM represents lowered energy deviations
among the totality of the energies of the protein and ligand
and protein-ligand complex. ΔGsolv displays the divergence
in the GBSA solvation energy of the complex structure and
the aggregate of the salvation energies for the ligand and
protein. ΔGSA describes the deviation in the energies for
the surface area of a complex and the total surface area of
the ligand and protein complex [34].

2.5. Molecular Dynamics Simulation by GROMACS. The
molecular dynamics program simulates the movements of
a protein molecule utilizing the interaction potential to com-
pute interatomic energies and equations of motion that reg-
ulate the machinery’s dynamics in the drug design study. It
illustrates the stability and flexibility data of ligand binding
to a flexible target protein. GROMACS (https://simlab
.uams.edu/) service was exploited to simulate the protein-
ligand conformations, and the GROMOS96 43a1 force field
was employed to produce the topological data of the com-
plex constructs [35]. The PRODRG (http://davapc1.bioch
.dundee.ac.uk/cgi-bin/prodrg) Server was employed to ren-
der small molecule topology and coordinate information
[36]. The aqueous phase of macromolecules was produced
sequentially using the SPC water model (simple point-
charge) and subsequently neutralized using 0.15M NaCl
solution [37]. A triclinic box was used to contain the bimo-
lecular environment, and 5000 iterations of steepest descent
strategies were used to minimize energy. The equilibrium of
ion molecules around the macromolecule was accomplished
at 310K and 1.0 bar utilizing NPT (constant pressure) and
NVT (constant volume) setups. After 100 nanoseconds of
simulation, it provided trajectories of simulated structures,
including the root-mean-square deviation (RMSD), the root-
mean-square fluctuation (RMSF), the solvent-accessible sur-
face area (SASA), hydrogen bonds (HBs), and the radius of
gyration (Rg) [38].

2.6. Molecular Dynamics Simulation and Post MM-GBSA
Evaluation by Desmond. The molecular dynamics simula-
tion provides evidence regarding the mobility and stability
of the bound protein-ligand complex. On Desmond soft-
ware, the MD simulation and post-MMGBSA analysis of
the main-protease_ligand, Nsp3_ligand, and human ACE2
receptor_ligand complexes were performed [39]. These
compounds were solvated on a cubic TIP3P water model
using the system builder package. A minimal spacing of 10
was maintained between the protein and the solvated region.
Subsequently, Na+ salts were supplied until the final system
strength reached 0.15M, which is the physiological salt con-
centration present in the human body. The integrated
OPLS3e force field was used to optimize the final system’s
energy. To complete the MDS, we used the isothermal iso-
baric ensemble (NPT) at 1.013 bar and 310° K. The total
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Figure 2: Schematic illustration of 7NT3_CHEMBL503 (Lovastatin), 7NT3_Molnupiravir, and 7NT3_Paxlovid complexes. (a, b) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c, d) Share 3D
and 2D interactions of protein and ligand complex. Magenta color represents proteins, and yellow color presents ligands. (e, f) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (g, h) Share
3D and 2D interactions of protein and ligand complex. Here, protein is in agenta color and ligand is in yellow color. (i, j) Share the pose
and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (k, l) Share 3D
and 2D interactions of protein and ligand complex. Here, protein in magenta color and ligand in yellow color.
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Figure 3: Schematic illustration of 7KQP_CHEMBL490355 (Sulfuretin), 7KQP_Molnupiravir, and 7KQP_Paxlovid complexes. (a, b) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c, d) Share 3D and 2D
interactions of protein and ligand complex. Magenta color represents proteins and yellow color presents ligands. (e, f) Share the pose and surface
view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (g, h) Share 3d and 2D interactions of
protein and ligand complex. Here, protein inmagenta color and ligand in yellow color. (i, j) share the pose and surface view of protein and ligand
complex. Here, protein is in purple and cyan colors and ligand is in blue color. (k, l) Share 3D and 2D interactions of protein and ligand complex.
Here, protein is in magenta color and ligand is in yellow color.
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Figure 4: Schematic illustration of 1R4L_CHEMBL4216332 (Grayanoside A), 1R4L_Molnupiravir, and 1R4L_Paxlovid complexes. (a, b)
Share the pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c,,
d) Share 3D and 2D interactions of protein and ligand complex. Magenta color represents proteins and yellow color presents ligands. (e,
f) Share the pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors, and ligand is in blue color.
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duration of the simulation run was 100 nanoseconds (ns). It
was paired with a recording duration of 100 picoseconds
(ps), during which 1000 frames were incorporated into the
trajectory. Next, we studied the trajectories in the simulation
interaction diagram (SID) program, and the reported results
comprised RMSD, RMSF, protein-ligand contact outline,
and biophysical properties of ligands. After running the sim-
ulations, MM-GBSA was evaluated employing the thermal
MM-GBSA.py program. During the assessment, a 0-1000
periodic frame was incorporated for the analysis [40].

2.7. Prediction of Molecular Target with SwissTargetPrediction
Server. The anticipation of a molecular target for a small-
molecule is vital for drug research and development. These
studies are essential for assessing the potential for adverse
reactions or cross-reactivity in Homo sapiens caused by the
action of that bioactive small molecule. We employed Swis-
sTargetPredcition (http://www.swisstargetprediction.ch/) to
determine the human body receptors for small compounds
that had previously been identified by molecular docking
and shown stability via MD simulation investigations [41].
The canonical smiles of the small compounds were used in
the server and analyzed.

2.8. Prediction of Biological Activity by PASS-Way2Drug Tool.
The PASS-Way2Drug webserver (http://www.pharmaexpert
.ru/passonline/) was employed to the prediction of biological
activity scales for Lovastatin, Sulfuretin, and Grayanoside A
[42]. For PASS recommendations to be reliable, the Pa (likeli-
hood to be effective) threshold should be set at 70% or above.
This is because surpassing the Pa>70% threshold yields very
reliable predictions [42]. Calculated ligand activity was based
on Pi and Pa scores.

3. Results

3.1. Analysis of Drug-Like Properties. In this experiment,
1163 drug-like substances were checked for their drug-like
activities. All of them have been filtered using five principles
of Lipinski’s filtration technique, which included molecular
mass (recommended value: <500), the number of hydrogen
bond donors (ideal value: ≤5), the number of hydrogen bond
acceptors (standard range: ≤10), lipophilicity (represented as
LogP, normal value: <5), and molar refractivity (preferable
range: 40–130). Additionally, the ligands were screened
based on the criteria of Ghose, Veber, Egan, and Muegge’s
rule. Subsequently, 497 out of 1163 compounds were

Table 6: XP Gscore and MM-GBSA values between the main protease (PDB ID: 7NT3) and the best hit phytochemical and control drugs.

Drug
XP Gscore
(kcalMol−1)

MM-GBSA scores
(kcalMol−1) Hydrogen bonds Hydrophobic bonds

Lovastatin -6.01 -52.85 HIS163, GLU166, GLN189
LEU27, CYS44, MET49, TYR54, PHE140,

LEU141, CYS145, GLY154, MET165

Molnupiravir -5.035 -43.48 GLU166
CYS44, MET49, PRO52, TYR54, CYS145,

MET165, LEU167, PRO168

Paxlovid -5.185 -43.34 GLU166, ASN142
CYS44, MET49, PRO52, TYR54, PHE140,

LEU141, GLY143, MET165, LEU167

Table 7: XP Gscore and MM-GBSA values between the Nsp3 (PDB ID: 7KQP) and the best hit phytochemical and control drugs.

Drug
XP Gscore
(kcalMol−1)

MM-GBSA scores
(kcalMol−1) Hydrogen bonds Hydrophobic bonds

Sulfuretin -9.563 -52.85 ALA38, ASN40, GLY47, ALA50
ALA39, VAL49, PRO125, LEU126, LEU127,

ALA129, ILE131, PHE132, PHE156

Molnupiravir -7.604 -43.48 VAL49, ALA39, LEU126
ALA38, ALA39, PRO125, LEU126, LEU127,

ALA129, ILE131, PHE132, PHE156

Paxlovid -2.727 -43.34 GLY48, GLY130, LEU126
ALA38, VAL49, PRO125, LEU126, LEU127,

ALA129, ILE131, VAL155, PHE156

Table 8: XP Gscore and MM-GBSA values between the human ACE2 receptor (PDB ID: 1R4L) and the best hit phytochemical and control
drugs.

Drug
XP Gscore
(kcalmol−1)

MM-GBSA scores
(kcalmol−1) Hydrogen bonds Hydrophobic bonds

Grayanoside A -7.87 -63.54 ARG273, HIS345, ALA348, GLN375
TYR127, LEU144, TRP271, PHE274, CYS344,
PRO346, ALA348, PHE504, TYR510, TYR515

Molnupiravir -6.02 -40.53 ALA348, GLN375, ARG514 PRO346, TRP349, PHE504, TYR510, TYR515

Paxlovid -5.679 -32.02 ARG273, HIS345, ALA348, GLN375,
TYR127, LEU144, TRP271, PHE274, CYS344,
PRO346, ALA348, PHE504, TYR510, TYR515
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Figure 5: 2D interaction of (a) 7NT3_Lovastatin, (b) 7NT3_Molnupiravir, and (c) 7NT3_Paxlovid complexes.
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Figure 6: 2D interaction of (a) 7KQP_Sulfuretin, (b) 7KQP_Molnupiravir, and (c) 7KQP_Paxlovid complexes.
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Figure 7: 2D interaction of (a) 1R4L_Grayanoside A, (b) 1R4L_Molnupiravir, and (c) 1R4L_Paxlovid complexes.
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shortlisted for the following evaluation (Supplementary
table1). Table 1 represented the drug-like properties of the
best-hit phytochemicals and control drugs.

3.2. Analysis of ADMET Properties. A total of 149 drug-like
substances were qualified after this analysis. Moreover, from
estimating distribution levels, all the compounds are imper-
meable to the blood-brain barrier. Metabolic inability could
cause lower bioavailability and excretion, high toxicity, and
drug-drug interactions. These 149 small substances function
as isoforms of the CYP 2D6 and 3A4 enzymes. Diverse com-
putational algorithms are used to evaluate toxicity: hERG
inhibitors, AMES toxicity, maximum tolerated dosage Hep-
atotoxicity. Ligands with a negative value in these models
were chosen for the following step. ADMET properties of
the best-hit phytochemicals and control drugs were pre-
sented in Table 2. Finally, we filtered out 149 drug-like sub-
stances from this analysis (Supplementary table2).

3.3. Analysis of Molecular Docking Results by AutoDock vina.
In structure-based pharmaceutical research, molecular dock-
ing is a commonly used strategy to identify the finest ligand
hits against a particular protein. The docking method pre-
dicts the ligand orientation, location, conformation in the
protein’s active site, binding interaction, and affinity. Auto-

Dock vina determines the binding energy and poses of trial
ligands by employing a grid-based technique. Previously
selected small molecules were docked with three SARS-
CoV-2 target proteins. Out of the 149 small compounds,
97 small molecules exhibited a higher binding affinity for
the main protease (Supplementary Table 3a), 75 small
molecules for the Nsp3 (Supplementary Table 3b), and 106
small molecules for human ACE2 receptor compared to
the control therapeutics (Supplementary Table 3c).

Lovastatin’s binding energy for the main protease was
-7.2 kcal/mol, which was considerably higher than that of
the control ligands, Molnupiravir (-6.4 kcal/mol), and Paxlo-
vid (-6.6 kcal/mol) (Table 3). Lovastatin produced a robust
hydrogen interaction with the amino acids ARG131
(2.30102Å) of the main protease, whereas Molnupiravir
and Paxlovid formed three and six hydrogen bonds with
the target protein, respectively, with THR26, HIS41,
ASN119, ASN142, GLY143 (1.98365Å), and CYS145 resi-
dues (AutoDock vina). Sulfuretin had binding energy of
-8.8 kcal/mol for Nsp3 compared to the control ligands mol-
nupiravir and Paxlovid, which had binding energies of -7.7
and -7.5 kcal/mol, respectively (Table 4). Sulfuretin formed
seven strong hydrogen bonds with the Nsp3 protein
(VAL49, LEU126, SER128, ALA129, GLY130, PHE156,
and ALA38), whereas Molnupiravir and Paxlovid created

(a) (b)

(c)

Figure 8: Illustration of 3D representation of (a) 7NT3_complexes, (b) 7KQP_complexes, and (c) 1R4L_complexes. Black circle portrays
the binding pockets and incorporates ligands and cocrystallized compounds.
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six (ASN40, GLY47, VAL49, ALA50, LYS44, and ALA38
(1.90623Å)) and three (LYS158, LEU160, and TYR161
(1.23877Å)) amino acid residues. Sulfuretin also created seven
hydrophobic bonds (ALA38, PHE132, VAL49, ALA38,
ALA50, VAL49, and PRO125) with the same protein. For
human ACE2 receptor, Grayanoside A showed a binding
affinity of 7.8 kcal/mol compared to the control molecules
Molnupiravir (-7.6 kcal/mol) and Paxlovid (-7.0 kcal/mol)
(Table 5). Molnupiravir and Paxlovid formed five (ASP206,
HIS378, ASN394, ARG514, and LYS562 (2.198Å)) and six
(ASP206, ALA348, TRP349 (1.978Å), ASP350, HIS378,
and ARG514) hydrogen bonds with the target protein,
human ACE2 receptor, respectively. Grayanoside A formed
three strong hydrogen bonds (ARG273, ARG273, and
GLU406) and six hydrophobic bonds (VAL209, LYS562,
TRP566, LEU95, LYS562, and ALA99) with the human
ACE2 receptor.

3.4. Analysis of Glide and MM-GBSA Scores. Glide incorpo-
rates high-throughput virtual screening (HVS), estimating
protein-ligand interacting sites and grading ligands using
experimental score systems. Out of the 149 small com-
pounds, 120 small molecules exhibited greater binding
energy for SARS-CoV-2 main protease (Supplementary
Table 4a), 75 small molecules for Nsp3 (Supplementary
Table 4b), and 99 small molecules for human ACE2
receptor compared to control therapeutics (Supplementary
Table 4c) (Figures 2–4), and it showed the comparative
representation of protein-ligand complexes of the best hit
ligands and control drugs. Here, Tables 6–8 summarized
the Glide score and MM-GBSA scores between three target
proteins and the best hit phytochemicals and control
drugs. Analysis of glide XP score and MMGBSA values, it
was evident that Lovastatin is better candidate than other
potential ligands. It formed three hydrogen bonds (HIS163,
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Figure 9: Schematic illustration of 100 ns molecular dynamics simulation of 7NT3_CHEMBL503 (Lovastatin) (green), 7NT3_Molnupiravir
(blue), and 7NT3_Paxlovid complexes (yellow). Representations (a, b, c, d, e, and f) share the RMSD, RMSF, Rg, hydrogen bonds, and SASA
values of 7NT3_CHEMBL503 (Lovastatin), 7NT3_Molnipiravir, and 7NT3_Paxlovid complexes. Representation b shares ligand RMSD
value of Chembl503, Molnupiravir and Paxlovid.
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GLU166, and GLN189) and nine hydrophobic bonds (LEU27,
CYS44, MET49, TYR54, PHE140, LEU141, CYS145, GLY154,
and MET165) with the main protease (PDB ID: 7NT3).
Sulfuretin showed glide and MMGBSA scores of -9.563 and
-52.85 (kcal/mol). It created four hydrogen bonds (ALA38,
ASN40, GLY47, and ALA50) and nine hydrophobic bonds
(ALA39, VAL49, PRO125, LEU126, LEU127, ALA129,
ILE131, PHE132, and PHE156). Grayanoside A managed a
glide and MMGBSA scores of -7.87 and -63.54 (kcal/mol). It
maintained four hydrogen bonds (ARG273, HIS345, ALA348,
and GLN375) and ten hydrophobic bonds (TYR127, LEU144,
TRP271, PHE274, CYS344, PRO346, ALA348, PHE504,
TYR510, and TYR515) with the human ACE2 receptor (PDB
ID: 1R4L) (Figures 5–7). Lovastatin, Sulfuretin, and
Grayanoside A were found inside the binding cavity with the
cocrystallized compound (Figure 8). As a result, they were
proved to be the best candidate for main protease and Nsp3
of SARS-CoV-2 and human ACE2 proteins, respectively.

3.5. Analysis of Molecular Dynamics Simulation. To circum-
vent the fundamental drawback of molecular docking, we
ran a computational MD simulation, which incorporated
the dynamic character of the protein following inhibitor
binding. This experiment produced statistical figures for
the RMSD, RMSF, hydrogen bonds, SASA, and Rg values
of protein-ligand complexes. The average RMSD of main
protease_Lovastatin, main protease_Molnupiravir, and main
protease_Paxlovid complexes for the main protease was
0.312696293nm, 0.291836715 nm, and 0.326214306nm,
respectively, indicating that the chosen drug candidate Lov-
astatin exhibited an identical result compared to Molnupira-
vir and Paxlovid (Figure 9). As per Figure 9, the main
protease_Lovastatin and main protease_Molnupiravir com-
plexes were stable with a fixed RMSD value less than 0.35
from 30 to 80ns, but the main protease_Paxlovid complex
had an increased RMSD value more than 0.35 after 75ns.
Similarly, the predicted average RMSD values of the ligands
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Figure 10: Schematic illustration of 100 ns molecular dynamics simulation of 7KQP_CHEMBL490355 (Sulfuretin) (green), 7KQP_
Molnupiravir (blue), and 7KQP_Paxlovid complexes (yellow). Representations (a, b, c, d, e, and f) shares the RMSD, RMSF, Rg,
hydrogen bonds, and SASA values of 7KQP_CHEMBL490355 (Sulfuretin), 7KQP_Molnipiravir, and 7KQP_Paxlovid complexes.
Representation b share Ligand RMSD value of CHEMBL490355, Molnupiravir, and Paxlovid.
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Lovastatin, Molnupiravir, and Paxlovid were 0.594898993nm,
0.96096714nm, and 0.531292037nm, respectively. Through-
out 100ns simulation, the RMSF value of amino acids for
backbone components of the main protease_Lovastatin com-
plex was less than 0.4nm, but the main protease_Molnupira-
vir and main protease_Paxlovid complexes showed some
inconsistent higher fluctuation. The RMSD fluctuation of the
ligands inside the first three loop regions between 50 and 80
amino acids was less than 0.40nm. However, the RMSF oscil-
lation inside the other three considerably larger loop areas was
higher than 0.40 for Molnupiravir and Paxlovid. The average
Rg values of the complexes main protease_Lovastatin, main
protease_Molnupiravir, and main protease_Paxlovid were
2.109437nm, 2.128492nm, and 2.122325654nm, respec-
tively, describing the increased compactness of the Lovastatin
complex. Main protease_Lovastatin, main protease_Molni-

piravir, and main protease_Paxlovid complexes had an aver-
age of 215.0, 209.0, and 216.0 hydrogen bonds, respectively,
showing a significant dynamic interaction of the main prote-
ase_Lovastatin complex. Figure 9(f) represented the solvent-
accessible surface area (SASA) of structures. While the main
protease_Lovastatin and main protease_Molnupiravir com-
plexes had an average SASA value of 127.8404086nm2 and
130.891962nm2, the main protease_Paxlovid complex had a
lower value of 119.4976923nm2.

The average RMSD value of the Nsp3_Sulfuretin and
Nsp3_Paxlovid complexes for SARS-CoV-2 Nsp3 protein
was 0.297815nm and 0.284552759 nm, respectively, though
the Nsp3_Molnupiravir complex displayed an increased var-
iation of RMSD value exceeding 0.35 nm after 45ns
(Figure 10). During the 100ns simulation timeline with
Nsp3 protein, control drugs molnupiravir and Paxlovid
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Figure 11: Schematic illustration of 100 ns molecular dynamics simulation of 1R4L_CHEMBL4216332 (Grayanoside A) (green), 1R4L_
Molnupiravir (blue), and 1R4L_Paxlovid (yellow). Representations (a, b, c, d, e, and f) share the RMSD, RMSF, Rg, hydrogen bonds, and
SASA values of 1R4L_CHEMBL4216332 (Grayanoside A), 1R4L_Molnipiravir, and 1R4L_Paxlovid complexes. Representation b share
ligand RMSD value of CHEMBL4216332, Molnupiravir and Paxlovid.
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had an RMSD value above 0.6nm and 0.8nm. However, after
an initial equilibration phase, Sulfuretin stayed below 0.4nm,
indicating the most stable of the three ligands. Except for the
C-terminal and N-terminal areas, the RMSF value of the
Nsp3_Sulfuretin, Nsp3_Molnupiravir, and Nsp3_Paxlovid
complexes was less than 0.4nm. Furthermore, there was higher
fluctuation among the structures inside larger loop sections
between 41 and 46, 83 and 91, 97 and 105, and 116 and 135
amino acids. The Rg values of the Nsp3_Sulfuretin and
Nsp3_Molnupiravir complexes stabilized after initial equilibra-
tion steps, but the Rg value of Nsp3_Paxlovid complexes oscil-
lated more during the whole run time. According to
Figure 10(e), the average count of hydrogen bonds among the
complexes Nsp3_Sulfuretin, Nsp3_Molnupiravir, and Nsp3_
Paxlovid were 116.0, 117.0, and 119.0, indicating a similar
course of interaction within the 100ns timeframe. The SASA
value of the Nsp3_Sulfuretin, Nsp3_Molnipiravir, and Nsp3_
Paxlovid complexes were stable with an average value of
79.26847nm, 79.74635nm, and 81.74065634nm respectively.

The RMSD value of the human ACE2 receptor_Grayano-
side A, human ACE2 receptor_Molnupiravir, and human
ACE2 receptor_Paxlovid complexes for human ACE2 protein
stayed under 0.35nm, and stable throughout the 100ns run

(Figure 11). Likewise, the ligands Grayanoside A, Molnupira-
vir, and Paxlovid had average RMSD values of 0.601344nm,
0.933326nm, and 0.43800nm, respectively. The RMSF of
backbone heteroatoms per residue of the human ACE2 recep-
tor_Grayanoside A complex stayed within 0.4nm, with higher
RMSF oscillation inside loops from 137 to 139 and 338 to 340
residues. On the other hand, peaks inside loop regions beyond
0.4 nm were evident from 137 to 140 and 331 to 345 residues
for human ACE2 receptor_Molnupiravir and human ACE2
receptor_Paxlovid complexes, respectively. The average Rg
values of human ACE2 receptor_Grayanoside A, human
ACE2 receptor_Molnipiravir, and human ACE2 receptor_
Paxlovid complexes were 2.329435, 2.342172667, and
2.335405325nm, respectively. The average hydrogen bond
interactions for the complexes human ACE2 receptor_Graya-
noside A and human ACE2 receptor_Molnupiravir were
499.0 and 492.0, respectively, whereas the complex human
ACE2 receptor_Paxlovid had a higher value of 498.0.
Figure 11 shows that the SASA values of the human ACE2
receptor_Grayanoside A, human ACE2 receptor_Molnupira-
vir, and human ACE2 receptor_Paxlovid complexes were sta-
ble throughout the simulation, suggesting that the protein’s
surface area remained unaltered.
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Figure 12: Simulation graph of root-mean-square deviation (RMSD) showing Lovastatin_7NT3 (orange), Molnupiravir_7NT3 (yellow),
and Paxlovid_7NT3 (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Lovastatin (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-square fluctuation (RMSF) of Lovastatin_7NT3 (orange),
Molnupiravir_7NT3 (yellow), and Paxlovid_7NT3 (green).
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3.6. Evaluation of MD Simulation and Post-MD Simulation
MM-GBSA Results from Desmond. Analyzing the simulation
trajectory, we plotted the RMSF, RMSD, biophysical proper-
ties of ligands, and protein-ligand network. We found an
average RMSD plot of 1.92, 1.78, and 1.75Å for Lova-
statin_7NT3, Molnupiravir_7NT3, and Paxlovid_7NT3
complexes. The protein structure of the Sulfuretin_7NT3
complex remained under 3Å throughout the simulation.
The ligands Sulfuretin, Molnupiravir, and Paxlovid had
average RMSD of 1.55, 1.27, and 1.71Å respectively, indicat-
ing a stable conformation with protein. Similarly, the aver-
age RMSF of Lovastatin_7NT3, Molnupiravir_7NT3, and
Paxlovid_7NT3 complexes was 0.87, 0.91, and 1.04Å respec-
tively. Except for N-terminal and C-terminal zones, all com-
plexes stayed under 3Å (Figure 12). Sulfuretin interacted
with 7NT3 creating bonds with THR26 (hydrogen bonds
and water bridges), GLY143 (hydrogen bonds and water
bridges), SER144 (hydrogen bonds and water bridges),
CYS145 (hydrogen bonds and water bridges), and GLU166
(hydrogen bonds, water bridges, and ionic bonds) amino
acids for 30%, 20%, 30%, 40%, 20%, and 100% of 100 ns
timeframe. Molnupiravir interacted with HIS41 (hydropho-
bic), GLU166 (water bridges), VAL186 (hydrogen bonds
and water bridges), and GLN189 (hydrogen bonds and
water bridges) for 80%, 100%, 70%, and 90% of 100ns time-
scale. Paxlovid had bonds with HIS41 (hydrophobic, hydro-

gen bonds, and water bridges), GLY143 (hydrogen bonds
and water bridges), SER144 (hydrogen bonds and water
bridges), and GLU166 (hydrogen bonds, water bridges, and
ionic bonds) for 50%, 90%, 40%, and 300% of the simulation
period (Figure 13).

Protein structures of Sulfuretin_7KQP, Molnupiravir_
7KQP, and Paxlovid_7KQP showed an average RMSD value
of 1.97, 1.77, and 1.65Å. All the complex structures
remained under 3Å which suggested that the ligands were
tightly bound inside the binding pocket of receptor struc-
tures. The ligands Sulfuretin, Molnupiravir, and Paxlovid
displayed an average RMSD of 0.19, 1.33, and 2.37Å respec-
tively. RMSF plot presented an average of 0.94, 1.97, and
0.92Å for Sulfuretin_7KQP, Molnupiravir_7KQP, and Pax-
lovid_7KQP complexes implying structural stability
(Figure 14). Sulfuretin made bonds with ASN40 (hydrogen
bonds and water bridges), LYS44 (hydrogen bonds, water
bridges, and ionic bonds), HIS45 (hydrogen bonds and
water bridges), GLY48 (hydrogen bonds and water bridges),
PHE156 (hydrogen bonds and water bridges) residues of
7KQP for 17%, 30%, 25%, 30%, and 20% of simulation time-
frame. Molnupiravir_7KQP complex formed bonds with
THR57 (hydrogen bonds and water bridges), ASN58
(hydrogen bonds and water bridges), HIS86 (hydrophobic,
hydrogen bonds, and water bridges) residues for 20%, 11%,
and 26% of simulation timeframe. Paxlovid_7KQP complex
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Figure 13: Contact maps of Lovastatin_7NT3 (a), Molnupiravir_7NT3 (b), and Paxlovid_7NT3 (c) complexes.
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maintained binding network with ALA38 (hydrophobic,
hydrogen bonds, and water bridges), ASN40 (hydrogen
bonds and water bridges), LYS44 (hydrogen bonds and
water bridges), GLY46 (hydrogen bonds and water bridges),
GLY48 (hydrogen bonds, water bridges, and ionic bonds),
ILE131 (hydrophobic, hydrogen bonds, and water Bridges),
and GLU156 (hydrophobic and water bridges) residues for
55%, 45%, 70%, 52%, 55%, 80%, and 55% of the simulation
run (Figure 15).

Next, the Grayanoside A_1R4L, Molnupiravir_1R4L,
and Paxlovid_1R4L complex structures maintained an aver-
age RMSD of 1.97, 1.80, and 2.22Å respectively. Grayano-
side A_1R4L complex remained 2.7Å throughout the
timeframe demonstrating a stable protein-ligand associa-
tion. The average RMSD of the ligands Grayanoside A, Mol-
nupiravir, and Paxlovid was 2.15, 1.23, and 2.03Å
respectively. The proteins of Grayanoside A_1R4L, Molnu-
piravir_1R4L, and Paxlovid_1R4L complexes maintained
an average RMSD of 0.83, 0.93, and 1.31Å respectively. A
small steep was observed between 115 to 125 residues for
Grayanoside A_1R4L and Molnupiravir_1R4L complexes
(Figure 16). Grayanoside A had TYR127 (hydrogen bonds),
GLU145 (hydrogen bonds and water bridges), ARG273
(hydrophobic, hydrogen bonds, and water bridges), HIS345

(hydrophobic and water bridges), GLU402 (hydrogen bonds
and water bridges), PHE504 (hydrogen bonds), and HIS505
(hydrophobic, hydrogen) binding residues with 1R4L pro-
tein for 90%, 110%, 330%, 110%, 80%, 100%, and 40% of
simulation cycle. Molnupiravir_1R4L complex formed inter-
action with ALA348, ASP350, GLU398, TYR510, and
ARG514 for 120%, 80%, 119%, 82%, and 80% of the simula-
tion period. On the other hand, Paxlovid_1R4L complex had
interactions with ARG273, HIS345, ALA348, and GLU406
residues for 200%, 70%, 65%, and 90% of the simulation
timescale (Figure 17). We also superimposed the pre_MD
and post_MD structures of protein-ligand complexes in
Desmond and found less than 2Å deviation (Figure 18).

The average postsimulation MM-GBSA of Lovastatin_
7NT3, Molnupiravir_7NT3, and Paxlovid_7NT3 complexes
were −52:56 ± 8:93, −50:52 ± 12:75, and −49:68 ± 16:27kcal/
mol, respectively. Sulfuretin_7KQP, Molnupiravir_7KQP,
and Paxlovid_7KQP complexes had average postsimulation
MM-GBSA scores of −66:17 ± 11:62, -36:51 ± 13:74, and −
54:30 ± 15:45kcal/mol, respectively. Grayanoside A_1R4L,
Molnupiravir_1R4L, and Molnupiravir_1R4L complexes
showed an average MM-GBSA value of −74:94 ± 8:50, −
34:23 ± 12:82, and −57:50 ± 24:35kcal/mol, respectively,
(Tables 9–11).
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Figure 14: Simulation graph of root-mean-square deviation (RMSD) showing Sulfuretin_7KQP (orange), Molnupiravir_7KQP (yellow),
and Paxlovid_7KQP (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Sulfuretin (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-quare fluctuation (RMSF) of Sulfuretin_7KQP (orange),
Molnupiravir_7KQP (yellow), and Paxlovid_7KQP (green).
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3.7. Analysis of Target within Human. The target sites in
humans where Lovastatin binds (in humans) are cyto-
chrome p450, oxidoreductase, kinase, family A of G
protein-coupled receptor, enzyme, and membrane receptor
and the possibility of binding, respectively, are 16%, 12%,
8%, 8%, 8%, and 4% respectively. For Sulfuretin, they they
may bind with kinase (52%), enzyme (24%), and membrane
receptor (4%); and for Grayanoside A, they they may bind
with protease (20%), kinase (20%), surface antigen (4%),
enzyme (12%), and family A of G protein-coupled receptor
(4%). Control drug Paxlovid provides the binding possibility
in target sites are protease (60%), enzyme (16%), family A of
G protein-coupled receptor (8%), membrane receptor (4%),
and surface antigen (4%). The prediction tool did not show
any human target for Molnupiravir (Figure 19).

3.8. Analysis of Activity Spectra of the Phytochemicals. Using
the identified compounds, prediction of activity spectra for
substances (PASS) was carried out and is shown in Supple-
mentary Tables 6a, 6b, 6c. In our study, we used PASS to
build a predictive model, and we kept the Pa (likelihood of
activity) that was higher than 70%; since an absolutely
durable forecast may be made using the Pa > 70% (0.7)
criteria. Lovastatin had 18 biological activities, Sulfuretin
showed 27 activities, and Grayanoside A possessed 30
biological features. Lovastatin, Sulfuretin, and Grayanoside
A present Pa values greater than 0.70 across the board to

be considered for use as an active biological agent in the
treatment of SARS-CoV-2.

4. Discussion

In recent years, pandemics and epidemics caused by viruses
have become one of the most prevalent reasons for infec-
tions and mortality worldwide. SARS-CoV-2, the updated
variant of coronaviruses, has led to a catastrophe, with
665,518,891 and 6,714,212 confirmed cases and fatalities,
respectively (11th January,2023; https://covid19.who.int/).
Surprisingly, currently, a limited amount of effective anti-
SARS-CoV-2 therapeutics are available, and most of them
are under investigation [43].

Following the outbreak of SARS-CoV-2, Mpro, also
regarded as 3CLpro (main protease), became a viable thera-
peutic focus due to its involvement in the development of
replication-translation mechanisms. Furthermore, given the
accessibility of high-resolution protein structures, these pro-
teins have a highly conserved sequence and no homology
with human proteins [44]. Nsp3 is a multidomain protein
with a Glu-rich acidic domain at the N-terminus, an X
domain, a SUD domain, a papain-like protease domain,
and a transmembrane domain. Nsp3 is responsible for viral
multiplication and pathogenesis in humans and facilitates
immune evasion via its hydrolyzing capability [43]. The
attachment of the SARS-CoV-2 Spike protein to human
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Figure 15: Contact maps of Sulfuretin_7KQP (a), Molnupiravir_7KQP (b), and Paxlovid_7KQP (c) complexes.
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ACE2 receptor on the cellular wall permits the virus to enter
cells, which is required for infection to begin [45]. To inhibit
these viral proteins, we utilized phytochemicals with drug-
like properties.

This research was divided into three sections, namely,
virtual screening (VS) of the physicochemical and pharma-
cokinetic features of drug-like compounds, virtual screening
by molecular docking of proteins and ligands, and simula-
tion of the best hit complexes. In the initial stage, we studied
the drug-like characteristics of the ligands utilizing the five
principles of Lipinski. We stuck to the established guidelines,
i.e., hydrogen bond donors ≤ 5, hydrogen bond acceptors ≤
10, molecular mass < 500, and logP < 5. The molecular
weight of a small molecule can influence its absorption, bile
excretion ratio, blood-brain barrier passage, and engage-
ments involving receptors [46]. Likewise, hydrogen donor
and hydrogen acceptor groups are mostly responsible for
the permeability and polarity of the drug-like molecules.
Lipophilicity is an indicator that influences the metabolism
and solubility of those molecules. A lower or higher score
might impede this characteristic [47]. TPSA refers to the
area belonging to polar atoms like nitrogen, oxygen, and
their associated hydrogens [48]. Out of 1163 small mole-
cules, 497 of them passed the criteria. We tested the pharma-

cokinetic figure of the ligands before analyzing their binding
affinity and orientation. The characteristics of a small mole-
cule in terms of ADMET properties make it a viable candi-
date. Using the human intestinal absorption (HI)
prediction score and the Caco-2 permeable theory, the prob-
ability that the small molecules would reach systemic circu-
lation and exert their function was calculated [49]. P-
glycoprotein serves as a drug carrier and eliminating com-
pounds from different organs [50]. The main subfamily
(2D6, 2C9, and 3A4) of cytochrome P450 monooxygenase
(CYP) enzymes is crucial in the metabolism of the drug-
like molecules [51]. In the initial phases of pharmaceutical
research, AMES mutagenicity is commonly used to deter-
mine the probability of genotoxicity and teratogenicity
[52]. Cardiovascular poisoning might be caused by inhibit-
ing the cardiac human ether-a-go-go-related (hERG) gene
[53]. We also tested the maximum tolerated dose of chemi-
cal substances for the human body. Eventually, only 149
drug-like molecules passed the ADMET evaluation.

The importance of virtual screening employing molecu-
lar docking has grown significantly in the field of drug devel-
opment over time. According to the study, 24 small
molecules had a greater binding affinity against the main
protease (7NT3) than the reference compounds:
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Figure 16: Simulation graph of root-mean-square deviation (RMSD) showing Grayanoside A_1R4L (orange), Molnupiravir_1R4L (yellow),
and Paxlovid_1R4L (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Grayanoside A (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-square fluctuation (RMSF) of Grayanoside A_1R4L (orange),
Molnupiravir_1R4L (yellow), and Paxlovid_1R4L (green).
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Figure 17: Contact maps of Grayanoside A_1R4L (a), Molnupiravir_1R4L (b), and Paxlovid_1R4L (c) complexes.

Figure 18: Superimposed representation of the pre-MD and post-MD structures of Ligand_7NT3, Ligand_7KQP, and Ligand_1R4L
complexes.
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Molnupiravir and Paxlovid (-5.035 and -5.185 kcal/mol,
respectively). The MM-GBSA approach is recognized for
its impressive precision in estimating the free binding energy
of small molecules to target proteins. Both analyses indicated
that Lovastatin (CHEMBL503) had a higher glide score and
binding-free energy value of -6.01 kcal/mol and -52.85 kcal/
mol, respectively. Recently, Mashraqi et al. found fenoterol
had a glide score and MM-GBSA values of −7.14 and
-38.733 kcal/mol [54]. We found Lovastatin attached to the
active site residues (His41, Cys145) in the docking study
and after MD simulation. Though CHEMBL182992,
CHEMBL1909923, CHEMBL1972346, CHEMBL249454,
CHEMBL477778, CHEMBL557501, and CHEMBL4216332
had better glide XP scores over 6 kcal/mol, the binding-free
energy is higher for CHEMBL503 (Lovastatin). Similarly,
two small compounds, CHEMBL490355 (Sulfuretin) and
CHEMBL226683, showed binding energies greater than 9.0
Kcal/mol than control therapeutics against Nsp3 (7KQP).
But the binding free energy (-46.31 kcal/mol) and the num-
ber of hydrogen bonds were higher for CHEMBL490355
(Sulfuretin). So, Sulfuretin was selected as the best candidate
against Nsp3. Recently, Mishra et al. reported ZINC82673 as
the potential inhibitor of Nsp3 with glide and MM-GBSA
values of −9.348 and 50.175 kcal/mol [55]. It was also found
inside the binding pocket (Asp22, Ile23, Gly48, Val49,

Gly130, or Phe156) [43]. A total of 20 phytochemicals had
higher glide XP scores over 6 kcal/mol and 2 of them showed
binding-free energy above –50 kcal/mol against human
ACE2 receptor. Based on the glide and MMGBSA scores,
as well as the number of hydrogen bonds, we selected Graya-
noside A as the lead candidate against human ACE2 recep-
tor (1R4L). Most of the residues of the active site (Tyr515,
Arg514, His505, Phe504, Glu402, His378, Glu375, His374,
Asp368, Cys361, His345, Cys344, and Glu145) were found
attached to Grayanoside A [56]. Pai et al. found that iso-
chlorogenic acid showed inhibition activity against human
ACE2 receptor with a glide score MM-GBSA values of
−8.799 and −44.248.

MD simulations offer a plethora of energetic data on
protein and ligand binding, as well as a wealth of structural
figures on biological macromolecules. This type of knowl-
edge is crucial for comprehending the structural and func-
tional correlation of the receptor and the basis of protein-
ligand association, and also for steering the therapeutic
research [51]. During the simulation trajectory, the RMSD
of the protein Cα and RMSF of the amino acids, also the
ligand-protein H-bonding association, the solvent-
accessible surface area (SASA), and the radius of gyration
(Rg), were assessed to determine the steadiness of the com-
plex structures [52]. The RMSD value is considered to indi-
cate the flexibility and dynamic character of the protein. It
showcased the movement of amino acids along with the
MD simulation [38]. Thus, a relatively large RMSD value
suggested more motion, whereas a relatively low RMSD
value of protein showed less movement. The RMSD results
suggested that the RMSD value of the main protease_Lova-
statin backbone was identical to those of the reference com-
plexes main protease_Molnupiravir and main protease_
Paxlovid. The ligands Lovastatin and Paxlovid remained
steady, with two short peaks. As a result, the protein might
remain stable during the simulation, after the attachment
of the Lovastatin molecule. A detailed investigation of the
RMSF demonstrated the specific fluctuation of amino acids
in the catalytic and noncatalytic areas of the protein-ligand
complexes. The RMSF value confirmed that the attachment
of Lovastatin to the receptor might not increase flexibility.
The Rg values display the compactness of the protein with
folding and unfolding nature by the thermodynamic con-
cept. The interaction of the ligand Lovastatin did not
modify the structure of the protein. Hydrogen bonds are
another vital determinant of protein-ligand stability.
Protein-ligand interaction is stronger with more hydrogen
bonds. When compared to the reference complexes, the
main protease_Lovastatin complex had a similar amount
of hydrogen bonds, indicating a stable protein-ligand con-
struct. The unfolding of the protein during the denatur-
ation process exposes nonpolar hydrophobic interactions
to the aqueous system. As a result, the protein’s structure
is disrupted. The SASA value computing determines the
fluctuation in the accessibility of protein to solvent [57].
The SASA analysis revealed a similar tendency, with both
main protease_Lovastatin and main protease_Molnupiravir
complexes exhibiting significant similarities throughout the
simulation.

Table 9: Post MDMM-GBSA based binding free energy evaluation
for main protease (3CLpro) (PDB ID: 7NT3) and the best hit
phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Lovastatin_7NT3 −52:56 ± 8:93 -61.49 to –43.63

Molnupiravir_7NT3 −50:52 ± 12:75 -63.27 to –37.77

Paxlovid_7NT3 −49:68 ± 16:27 -65.95 to –33.41

Table 10: Post MD MM-GBSA based binding free energy
evaluation for Nsp3 (PDB ID: 7KQP) and the best hit
phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Sulfuretin_7KQP −66:17 ± 11:62 -77.79 to –54.55

Molnupiravir_7KQP −36:51 ± 13:74 -50.25 to –22.77

Paxlovid_7KQP −54:30 ± 15:45 -81.85 to –33.15

Table 11: Post MD MM-GBSA based binding free energy
evaluation for human ACE2 receptor (PDB ID: 1R4L) and the
best hit phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Grayanoside A_1R4L −74:94 ± 8:50 -83.57 to –66.40

Molnupiravir_1R4L −34:23 ± 12:82 -46.22 to –21.72

Paxlovid_1R4L −57:50 ± 24:35 -81.85 to –33.15
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In the context of Nsp3, the ligand Sulfuretin did not pro-
duce conformational changes to the protein. Firstly, the
RMSD value revealed that Nsp3_Sulfuretin was consistently
stable compared to the reference complexes. Throughout the

simulation, the Sulfuretin molecule remained relatively sta-
ble. Upon binding of the Sulfuretin molecule, the Nsp3_Sul-
furetin complex displayed lesser fluctuation in comparison
to the reference complexes. According to the Rg value of
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Figure 19: Predicted top 25 classes of H. sapiens molecular targets for (a) Lovastatin, (b) Sulfuretin, (c) Grayanoside A, and (d) Paxlovid.
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the Nsp3_Sulfuretin complex, it remained steady during the
simulation timeframe, suggesting the compactness of the
protein following inhibitor binding. Nsp3_Sulfuretin com-
plex displayed a similar amount of hydrogen interactions
as the reference complexes demonstrating excellent
protein-ligand stability. Similarly, the SASA value revealed
that the Nsp3_Sulfuretin complex remained unchanged
throughout the simulation, supporting earlier findings. The
simulation results for human ACE2 protein showed that
the binding of the Grayanoside A molecule caused a small
consequence on the structure of human ACE2 protein. The
RMSD graph of protein-ligand complexes and ligands
implied that the ligand (CHEMBL1909923) might not desta-
bilize the protein. The RMSF results revealed that there was
a similar fluctuation, suggesting the identical nature of the
binding of the three ligands (CHEMBL1909923, Molnupira-
vir, and Paxlovid). The plots of Rg, hydrogen bond, and
SASA value also confirmed the previous viewpoint, indicat-
ing that the Grayanoside A molecule’s attachment did not
impair the stability of human ACE2 protein. In case of Des-
mond, we found similar results that further validate our
findings. The RMSD values suggested that Lovastatin, Sul-
furetin, and Grayanoside A were firmly bound to the pro-
teins. The RMSF plots implied that the main protease
(3CLpro), Nsp3, and human ACE2 receptor were structur-
ally stable while bound with respective ligands. The
protein-ligand attachment maps continuously showed that
the proposed ligands-maintained contact with active site res-
idues. Lastly, the postsimulation MM-GBSA results stated
that Lovastatin, Sulfuretin, and Grayanoside A had a higher
free-binding affinity for their respective proteins.

Previous structure-based computational research yielded
similar findings, demanding wet-lab investigation. Accord-
ing to study lead by Gurung et al., bonducellpin D was found
as a potential inhibitor for SARS-CoV-2 3CLpro protein
[58]. In another study, Eissa et al. identified vidarabine as
prospective antiviral agent for SARS-Cov-2 nonstructural
protein-10 [59]. Ottavia Spiga et al. found simeprevir and
lumacaftor the most potent inhibitors of Spike protein on
the basis of their computational findings [60]. Kusumaning-
sih et al. found luteolin and naringenin as the probable drug
candidates for main protease of SARS-CoV-2 [61]. Lova-
statin, Sulfuretin, and Grayanoside A have been reported
as antiviral agents [62–64]. Our structure-based strategy
again showed antiviral activity of these small substances
against SARS-CoV-2 critical protein targets. However, these
compounds should be examined further in the pharmaceuti-
cal research facility to evaluate their potency, inhibitory
power, and toxicity against their respective targets. While
there is no denying the enormous success of drug repurpos-
ing, the in silico approach is not without its limitations. In a
similar fashion, one disadvantage of molecular docking is
the lack of proper scoring functions and algorithms, which
may compromise molecular screening. Another challenge
that researchers face is the difficulty in selecting the most
effective target combinations due to the absence of quantifi-
able data for assessing network dynamics, as well as the
inability to construct the molecular network of the disease
[18, 65]. Apart from those certain constraints due to data

reliability, biasness and irregularities in the available current
data, our study shows a comparison between established
compounds and screened compounds using several bioin-
formatics tools and introduces in silico models that can
swiftly present a summary of prospective therapeutic
options economically and expediently for a microorganism
such as SARS-CoV-2, which is constantly mutating and
without any established therapy.

5. Conclusion

Repurposing drug-like phytochemicals is a secure means of
building new therapeutics, with the main benefit of lowering
the cost and duration of preclinical trials for novel candi-
dates. The COVID-19 infectious disease induced by the
SARS-CoV-2 outbreak has caused a worldwide medical
catastrophe and finding a suitable cure for the virus con-
tinues to be a primary concern. The findings of our work
indicated that using a structure-based strategy such as
molecular docking and MD simulations, novel therapeutic
candidates may be developed that selectively address the
nonstructural protein 3, the main protease from SARS-
CoV-2, and the human ACE2 protein. A preliminary screen-
ing of 1163 small phytochemicals combining drug-likeness
and ADMET characteristics resulted in the identification of
149 of them. The degree of binding interaction and energy
between the filtered compounds and the main protease, non-
structural protein 3, and human ACE2 receptor was esti-
mated utilizing the docking procedure on the AutoDock
vina and Schrodinger Suites. Compounds Lovastatin, Sulfur-
etin, and Grayanoside A outperformed Molnupiravir and
Paxlovid in terms of binding score and hydrogen bond num-
bers against the main protease, Nsp3, and human ACE2
receptor, respectively. Eventually, 100 ns MD simulation
studies of 3CLpro_ligand, Nsp3_ligand, Grayanoside A_
ligand complexes were completed to evaluate and improve
our proposed design. This investigation is aimed at deter-
mining the promising inhibitors and devise protocols for
continual improvement of COVID-19 medications. To sum-
marize, all the repurposed compounds suggested here may
provide a holistic understanding of structure-based drug
development for SARS-CoV-2 given that they continue to
remain potent in further drug development processes.
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