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Membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor acts as the entry point for the novel coronavirus, SARS-
CoV-2. Polymorphisms in the ACE2 gene may alter viral binding, regulate the expression of ACE2, and thus, affect disease
severity. In this study, 68 COVID-19 patients with varying degrees of severity and 40 healthy controls were enrolled. The
genetic landscape of the ACE2 gene was explored by whole exome sequencing of 29 individuals, and specific regions of ACE2
were analyzed for the rest of the participants via PCR, followed by barcode-tagged sequencing. The mean soluble ACE2 level
in the plasma of healthy controls and patients did not vary significantly but was higher in the patient group (3 77 ± 1 55 ng/mL
vs. 3 94 ± 1 42 ng/mL). Analysis of exon 1, exon 2, and exon 8 of the ACE2 gene revealed that these regions are highly
conserved in our population. Investigation of exon 11 and its flanking intronic region revealed that deletions in a stretch of
18T nucleotides in the noncoding region significantly decrease ACE2 levels in plasma, as individuals harboring wild-type
variants had higher plasma ACE2 levels compared to those harboring T1del, T2del, and T3del variants. However, the intronic
variants were not found to be significantly associated with disease severity.

1. Introduction

Since its emergence in December 2019, the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), known as the
novel coronavirus, has caused a global pandemic named coro-
navirus disease 2019 (COVID-19). To date, the virus has
caused over 696 million infections worldwide, killing more
than 6.9 million people (https://www.worldometers.info/
coronavirus/). The virus’s ability to cause asymptomatic infec-
tions and viral shedding from asymptomatic individuals has

enabled the virus to spread at a greater speed throughout the
world [1].

The virus consists of a 29.9 kb positive-sense single-
strand RNA (+ssRNA), packed by one of the 4 structural
proteins, the nucleocapsid (N) protein, inside an envelope.
The envelope contains the remaining three structural pro-
teins: membrane protein (M), spike protein (S), and enve-
lope protein (E). The virus also produces sixteen
nonstructural proteins (nsp1−16) which perform the neces-
sary actions for the virus to take over the host cells and rep-
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licate successfully [2]. SARS-CoV-2 gains entry into the host
cells by interaction of the S protein and the angiotensin-
converting enzyme 2 (ACE2) receptor of the lung epithelium
and alveolar type II pneumocytes [3, 4]. The proper interac-
tion between these two proteins is of paramount importance.
As the virus replicates through the action of an RNA-
dependent RNA polymerase (RdRP) enzyme, it harbors
many mutations in the genome [5]. Retaining these muta-
tions gives rise to variants of the virus, which brings changes
to its characteristics, such as infectivity, transmissibility, rep-
lication capability, and adverse immune responses [6].

ACE2 gene is located on the X chromosome that spans
approximately 96 kb of genomic DNA and contains 18 exons
[7]. ACE2 is ubiquitously expressed in different parts of the
human body. Abundant localization of ACE2 has been
found in the epithelia of the lungs and intestine [8]. ACE2-
dependent entry of SARS-CoV-2 through its spike protein
is a critical step of the infection [9]. ACE2 is a member of
the renin-angiotensin system (RAS), and it plays a major
role in the regulation of blood pressure [10]. Thus, the dual
functionality of ACE2, as a blood pressure regulator and as
the receptor for SARS-CoV-2, gives strong motivation to
the researchers behind the cause of disease severity in indi-
viduals with comorbidity especially hypertension and diabe-
tes [11]. Single nucleotide polymorphisms (SNPs) of the
ACE2 gene have been studied in different populations to find
out the relationship with diseases with incompatible results.
SNPs of ACE2 have also been studied to find the association
with essential hypertension, dyslipidemia, hypertrophic car-
diomyopathy, ventricular hypertrophy, and cerebral malaria
[12–14]. Polymorphisms within the ACE2 gene have been
identified to be associated with impaired activity of ACE2,
thus resulting in an abnormal level of its product, angioten-
sin (1-7) [9].

SARS-CoV-2 can cause asymptomatic, mild, moderate,
and severe forms of infection [15]. During the pandemic,
even the same variant of the virus caused different degrees
of disease severity in different populations all over the world
[16]. Many reasons can be attributed to this spectrum of dis-
ease severity, such as environmental factors [17], immuno-
genetics [18], and also economic development level [19].
However, even in the most densely populated countries like
Bangladesh, the devastating impacts of this virus were not
seen as prominent as it was observed in the most developed
regions of the world, particularly in the European countries,
as demonstrated by total cases and deaths per 1 million
population (https://www.worldometers.info/coronavirus/).
Thus, other than the causes mentioned above, host genetic
factors must play an important role.

Incompatible results have been reported regarding the
association of ACE2 gene variants with the risk as well as
the severity of COVID-19 disease. Studies conducted on
Turkish, Italian, and Spanish populations reported that
ACE2 gene rs2106809 and rs2285666 polymorphisms were
not associated with the severity of COVID-19 infection
[20–22], while Sienko et al. demonstrated that genotypes
AA, TT, GG, TT, and TT, respectively, of rs2285666,
rs2074192, rs4646174, rs4646156, and rs2158083 of the
ACE2 gene have the most significant correlation with

COVID-19 in Polish population [23]. On the other hand,
in another study, Cafiero et al. reported that SNPs within
the members of the renin-angiotensin system such as
rs2074192 within ACE2, rs1799752 within ACE, and rs699
within angiotensinogen (AGT) could potentially be a valu-
able tool for predicting the clinical outcome of SARS-CoV-
2-infected patients [24].

Thus, it is indeed very important to understand the dis-
ease severity from the point of view of host genetics, i.e., the
impact of variants within the ACE2 gene on the COVID-19
disease severity. Suryamohan et al. demonstrated that the
missense variants of ACE2 protein S19P, I21V, E23K,
K26R, T27A, N64K, T92I, Q102P, and H378R were pre-
dicted to increase disease susceptibility while K31R, N33I,
H34R, E35K, E37K, D38V, Y50F, N51S, M62V, K68E,
F72V, Y83H, G326E, G352V, D355N, Q388L, and D509Y
were predicted to be protective that show decreased binding
to S protein [25]. Recently, we demonstrated that the most
frequently harbored missense variants of ACE2 in different
populations show different patterns of binding with the S
protein of different SARS-CoV-2 variants [26]. Thus, in
the present study, we aimed to (i) reveal the landscape of
the polymorphic patterns within the exons of the ACE2
gene, (ii) evaluate the association of flanking intronic vari-
ants with COVID-19 disease severity, (iii) study the relation-
ship between plasma ACE2 levels and COVID-19 severity,
and (iv) explore the roles of the ACE2 variants on plasma
ACE2 levels.

2. Materials and Methods

2.1. Study Design and Sample Collection. The study was
approved by the Ethical Review Committee of the Faculty
of Biological Sciences, University of Dhaka. A total of 68
SARS-CoV-2 infected patients and 40 healthy individuals
were enrolled. Individuals who tested positive for SARS-
CoV-2 by RT-PCR were considered COVID-19 patients.

Samples were collected from the COVID-19 unit of
BIRDEM General Hospital, Dhaka, Bangladesh, and, locally,
after getting full consent from the patients and/or their
closely related attendants during August and October 2021.
Depending on the nature of their symptoms, biochemical
parameters, oxygen saturation, and intensive care unit
(ICU) requirements, the patients were classified according
to disease severity, as suggested by Yuki et al. [27]. Out of
the total infected patients, 24 had mild, 20 had moderate,
and 24 had severe symptoms due to COVID-19 disease.
The average oxygen saturation of mild patients was 97.4%
during the day of sampling for the RT-PCR test, and they
were not admitted to the hospital. Patients with moderate
symptoms were hospitalized with an average oxygen satura-
tion of 94.71% at the time of admission but did not require
oxygen. The average oxygen saturation in severe patients
was below 88.4%, and they were admitted to the ICU. Mild
patients had complaints of abdominal pain, acute gastroen-
teritis, cough, mild fever, body pain, and headache. Moderate
patients also had body pain, cough, mild fever, headache,
muscle aches, sore throat, runny nose, history of hyperten-
sion, diabetes, osteoarthritis, chronic kidney disease, and
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chronic obstructive pulmonary disease. Along with these
symptoms, severe patients had a history of ischemic heart
disease, stroke, long-term diabetes and hypertension, myo-
cardial infarction, chronic renal failure, chronic liver disease,
and more than 15% lung involvement (confirmed by CT scan
report).

Control samples were collected from healthy individuals
who had no record of SARS-CoV-2 infection. They had no
record of fever for at least 30 days before sampling, and no
records of cough and asthma were reported.

Three (3.0) milliliters of blood samples were collected in
the EDTA-containing vacutainer tube from the study partic-
ipants. The collected samples were transported to the Labo-
ratory of Population Genetics, Department of Biochemistry
and Molecular Biology, University of Dhaka, using an ice
box with appropriate precautionary measures. The subse-
quent experiments and procedures were performed in a neg-
ative air pressure laboratory environment, using protective
equipment to prevent contamination by infectious samples.
While performing the experimental procedures, the sample
categories (both the healthy control and patients with differ-
ent severity classes) were not identifiable. After the experi-
ments were done, during the analysis of the data, the
identity of all groups was revealed. Plasma samples were sep-
arated through centrifugation at 6000 rpm for 5 minutes,
and along with the cellular part of the samples, plasma-
containing tubes were stored at -80°C till further analysis.

A structured questionnaire was prepared to record the
demographic information and the biochemical parameters of
each study participant. Information about the age, gender,
oxygen saturation, degree of severity of the disease, CT scan
report on lung involvement due to SARS-CoV-2, and comor-
bidities like diabetes, hypertension, cardiovascular diseases,
ischemic heart disease, myocardial infarction, chronic
obstructive pulmonary disease, and chronic kidney disease
was recorded, and data regarding biochemical markers like
levels of serum ferritin, D-dimer, and C-reactive protein
(CRP) were measured.

2.2. Determination of Soluble ACE2 in the Plasma of the
Study Participants. The enzyme-linked immunosorbent
assay (ELISA) against the human ACE2 was performed
using the ab235649 Human ACE2 SimpleStep ELISA® Kit
(Abcam, United Kingdom). The kit uses a combination of
three antibodies (an anti-tag antibody coating the well, an
affinity tag labeled capture antibody, and a reporter-
conjugated detector antibody) to immobilize the ACE2 via
immunoaffinity on the well. The detector antibody uses
horse radish peroxidase (HRP) as the reporter enzyme.
The kit has an intra-assay coefficient of variation (CV%) of
2.3%, and in the case of interassay, it is 3.2%. The sensitivity
of this kit is 1052 pg/mL.

The protocol provided by the manufacturer was followed
in all steps of the assay. At first, an antibody cocktail was
prepared, combining the capture and detector antibodies in
the supplied antibody diluent. To prepare the standard
curve, the lyophilized ACE2 provided by the supplier was
reconstituted using the sample diluent normal saline to a
concentration of 4080 ng/mL. Then, a serial dilution was

prepared from the stock solution which ranged from
255 ng/mL to 0ng/mL (blank). The samples were diluted
by adding an equal amount of plasma and sample diluent
normal saline to obtain a 1 : 2 ratio.

The wells were coated with the anti-tag antibody. The
samples were added to the wells, as well as the standards.
Then, the antibody cocktail was added to each well. The
plates were sealed and incubated for 1 hour at room temper-
ature on a plate shaker set at 400 rpm. After incubation, the
plates were washed with the provided wash buffer 3 times. It
was made sure that any excess liquid was removed at each
step. As coloring reagent, 3,3′,5,5′-tetramethylbenzidine
(TMB) was added to the wells and incubated under the same
condition. After 10 minutes, the stop solution was added.
The optical density (OD) was measured at 450nm. The cal-
culations were done by constructing a standard curve, as per
the manufacturer’s instructions.

2.3. Whole Exome Sequence Analyses. DNA was extracted
from the cellular fraction of the blood samples in an organic
method employing EDTA (0.5M, pH8.0), Tris-HCl (1M,
pH7.6), red blood cell lysis buffer (1M Tris, sucrose, and
MgC12, pH8.0), Triton X-100, and SDS, as reported in our
previous studies [28–30], and the quantity and quality of
the extracted DNA were measured using NanoDrop OneC

Microvolume UV-Vis Spectrophotometer (Thermo Fisher
Scientific, US). The ratio of the absorbances observed at
260 nm and 280nm (A260/280) and also at 260 nm and
230 nm (A260/230) was used as the measurement of quality,
and DNA samples having values ~1.8 for A260/280 and 2.0-
2.2 for A260/230 were considered pure.

Extracted DNA samples from 22 blood samples with
COVID-19 disease (severe = 8, moderate = 7, and mild = 7)
and 7 blood samples of healthy individuals with no record
of SARS-CoV-2 infection were used for the whole exome
analysis. Whole exome sequencing was conducted from the
DNA samples using the NovaSeq 6000 sequencing platform
that uses Illumina SBS technology. The sequencing library
was prepared using the Twist Human Core Exome library
preparation kit. The protocol that was followed is the Twist
Human Core Exome Sequencing preparation guide. The
coverage of Twist Human Core Exome is greater than 99%
(33.05Mb human coding regions) of protein-coding genes.
The DNA sequences were assembled and aligned to refer-
ence gene sequences based on the human genome build
GRCh38/UCSC hg38 and analyzed.

2.4. Primer Design, Polymerase Chain Reaction, and
Sequencing of the Exons. Individual regions of the exon
sequences were retrieved from NCBI (reference sequence:
NG_012575.3). Primer3 web-based tool was used to design
primers to amplify each exonic region. Three pairs of primers
harboring exonic regions of exon 1, exon 2, and exon 8 were
used to amplify regions of interest (as shown in Supplemen-
tary Figure 1). The primer sequences are provided in
Supplementary Table 1. Polymerase chain reaction (PCR)
for each primer set to amplify respective exons was
performed, followed by purification of each product. The
PCR conditions are provided in Supplementary Table 2.
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Barcode-tagged sequencing (BTSeq) was done to find out the
landscape of each exon of the ACE2 gene and find mutational
hotspots. Chromatograms were analyzed using Geneious
11.1.5 (https://www.geneious.com). The sequences of each
individual were aligned with the reference nucleotide
sequence of the ACE2 gene of Homo sapiens (NCBI
accession: NG_012575.3).

2.5. Amplification and Sequencing of the Noncoding Region
including the 18T Stretch. Flanking sequences of the exonic
regions analyzed from the whole exome data revealed that
frequencies of deletion of “T” nucleotide(s) within a stretch
of 18Ts residing upstream of exon 11 located from
15573562 to 15573579 of the reference sequence of the X
chromosome (GRCh38.p13 Chr X) varied in patients with
different degrees of disease severity. Thus, this region was
amplified by PCR using a distinct primer pair to have
900 bp amplicons (as shown in Supplementary Figure 2)
which were purified, and then, sequencing was performed
using the BTSeq method. The primer sequences are
provided in Supplementary Table 1, and the PCR
condition is shown in Supplementary Table 2.

2.6. Statistical Analyses. Statistical analyses were conducted
using R programming language (version 4.1.2). Categorical
variables (genetic variants and disease severity classes) were
summarized as percentage, and the continuous variables
(age, biochemical parameters and plasma ACE2 level) were
expressed as mean ± SD. The significance of the difference
in mean plasma ACE2 levels between different groups was
measured using the Welch two-sample t-test and one-way
analysis of variance (ANOVA) (for comparison between
more than 2 groups). As a post hoc analysis, Tukey’s honest
significance test was done. The association between different
groups and disease severity was measured using Fisher’s
exact test. The odds ratio (OR) of risk was calculated at a
95% confidence interval (CI) for each variant (T1del,
T2del, and T3del) and all variants combined, against the
wild type (18T) to measure the odds of different degrees of
disease severity occurring due to different variants on the
18T stretch. Pearson’s correlation coefficient was used to
assess the relationship between age and plasma ACE2 level,
and Spearman’s rank correlation coefficient was used to
evaluate the correlation of plasma ACE2 level with disease
severity. The plots were generated with the ggplot2 package,
and the remaining calculations were done using the dplyr
and epitools packages in R [31] [32]. A p value of less than
0.05 was considered statistically significant.

3. Results

3.1. Demographic and Biochemical Information of the Study
Participants. Out of the total study participants (n = 108),
49 were female, and 59 were male. And in the patient group
(n = 68), there were 31 females and 37 males. The demo-
graphic and biochemical data of enrolled patients are sum-
marized in Table 1.

It is observed from Table 1 that the mean CRP level is
significantly different between patients with different

degrees of disease severity, with the moderate group hav-
ing the highest level (92 07 ± 57 41mg/L). Male patients
had a significantly higher mean CRP level (72 29 ± 41 09
mg/L) than female patients. The oxygen saturation level
was also significantly different between the severity classes,
with the severe group having the lowest saturation level
(88 4 ± 5 26%) and the mild group having the highest sat-
uration (97 4 ± 1 52%).

3.2. Whole Exome Sequencing (WES) and Identification of
Mutational Hotspot. The whole exome sequencing revealed
the genetic landscape of the ACE2 gene in the selected
samples. The exonic regions were fully conserved in all
29 individuals; that is, no synonymous or nonsynonymous
variants were found within the three exons of interest
(exon 1, exon 2, and exon 8) of ACE2 receptor that con-
stitute the binding regions for the S protein of SARS-CoV-
2. However, there were many variants observed in the
flanking intronic regions. The results are summarized in
Figure 1.

Three (3) individuals (one individual from the control,
mild, and moderate groups each) harbored the reference
ACE2 sequence; that is, they had no variants in the ACE2
gene.

The observed allele frequency in our dataset and those
reported in different databases are shown in Table 2.

The variants rs11340646, rs769765211, and rs775397699
all occur at an 18T stretch on chromosome X, which is just
upstream of exon 11. rs113691336 and rs971249 are also
highly prevalent in our study population, but their occur-
rence is fairly similar in all groups of participants (control,
mild, moderate, and severe). That is why we decided to pro-
ceed with the 18T region of the ACE2 gene including exon
11, along with exons 1, 2, and 8.

3.3. Polymerase Chain Reaction (PCR) and Amplicon
Sequencing. Upon performing PCR reactions for the remain-
ing 79 samples (33 controls and 46 samples), no variants
were observed in exons 1, 2, and 8 either. Therefore, we
can conclude that this particular region is highly conserved
in our population, i.e., harboring neither synonymous nor
nonsynonymous variants.

After analyzing exon 11 along with its upstream and
downstream nucleotides (900 bp), it was observed that 4
(16.6%) severe patients, 4 (20.0%) moderate patients, 2
(8.3%) mild patients, and 5 (12.5%) healthy individuals har-
bored wild-type (WT) stretch of 18T nucleotides. Further,
deletion of a single T (T1del) nucleotide from the stretch
was found in 10 (41.7%) severely infected, 6 (30.0%) moder-
ately infected, 3 (12.5%) mildly infected, and 15 (37.5%)
healthy individuals; deletion of two T (T2del) nucleotides
was found in 10 (41.7%) severely infected, 8 (40.0%) moder-
ately infected, 17 (70.8%) mildly infected, and 19 (47.5%) of
the healthy individuals; and deletion of three T (T3del) was
found in 2 (10.0%) moderately infected, 2 (8.3%) mildly
infected, and 1 (2.5%) of the healthy individuals while this
particular type was not found in patients with severe
symptoms.
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3.4. Association of Genetic Variants with Disease Severity. No
significant association was found between genetic variants
occurring at the 18T stretch and disease severity (p = 0 186).

For odds ratio estimation, the control and mild pheno-
types were considered protective, whereas moderate and
severe phenotypes were taken as risk groups. The results
are given in Table 3.

We also calculated the OR between WT and all variant
groups, considering the previous stratification of protective
and risk groups, and obtained similar results (OR = 0 56;
95% CI = 0 18‐1 71, p = 0 28).

Therefore, the deletions play a protective role against the
development of moderate and severe COVID-19, as the OR
is less than 1 in all cases. However, the results were not sig-
nificant, as the p values are higher than 0.05.

3.5. Levels of ACE2 Measured in the Plasma of Study
Participants. The ACE2 levels in the plasma of 72 samples
(20 healthy controls, 22 mild patients, 11 moderate patients,
and 19 severe patients) were measured. We calculated the
mean plasma ACE2 levels and stratified them against differ-
ent parameters.

When stratified against gender, no significant difference
was observed in the mean ACE2 level in male and female
participants (p = 0 61). The results are shown in Figure 2.

Male participants have higher plasma ACE2 level (indi-
cated in red), compared to female participants (shown in
blue), but the difference was not statistically significant. We
also analyzed if age is correlated with ACE2 level. But no sig-
nificant correlation was observed (r = −0 02, p = 0 86).
Therefore, age and gender have not played any confounder
role in our analyses. The correlation between age and plasma
ACE2 level is shown in Figure 3.

We then proceeded to stratify plasma ACE2 levels
against disease severity. The results are summarized in
Figure 4.

The results indicate that the severe patients have the
highest plasma ACE2 level (4 26 ± 2 0ng/mL), and the mild
group has the lowest (3 57 ± 0 856ng/mL). But the mean
ACE2 levels were not significantly different between the dis-
ease severity groups. When grouped together, it was
observed that the plasma ACE2 level was higher in the
patient group (3 94 ± 1 42ng/mL), compared to the control
group (3 77 ± 1 55ng/mL), but the results were not signifi-
cantly different either (p = 0 7). A weak positive correlation
was found between the plasma ACE2 levels and disease
severity (Rs = 0 18, p = 0 13).

We observed significant difference (p = 0 02) in mean
plasma ACE2 levels between individuals harboring different
variants of the 18T stretch. The results are shown in Figure 5.

Individuals with the WT variant (18T) contain the high-
est plasma ACE2 level (5 05 ± 2 76ng/mL), and the individ-
uals harboring the T2 deletion (rs769765211) have the
lowest plasma ACE2 level (3 52 ± 0 88ng/mL). In the post
hoc analysis, we observed that the highest (WT) and lowest
(T2del) ACE2 groups differ significantly in plasma ACE2
concentration (p = 0 01).

We also analyzed if there is any significant difference
between the mean plasma ACE2 levels between WT and
the deletion variants altogether. It was observed that individ-
uals harboring the WT variant had higher plasma ACE2
levels (5 05 ± 2 76ng/mL) compared to individuals harbor-
ing any deletion variants (3 68 ± 0 95ng/mL). However, the
results were not statistically significant (p = 0 13).

Among the 29 samples that were subjected to WES,
plasma ACE2 was measured in 26 of them (6 each of con-
trol, moderate, and severe and 8 mild individuals). Apart
from the 3 deletion variants on the 18T stretch, 8 other
intronic variants were identified in WES. Their impact on
plasma ACE2 was also analyzed. The results are shown in
Figure 6.

Among the variants, only the presence of rs4646140 sig-
nificantly decreases the plasma ACE2 levels (p = 0 03). For
the rest of the variants, no significant changes in plasma
ACE2 were observed. The detailed results are provided in
Supplementary Table 3.

4. Discussion

To establish the role of host genetic variability in the pro-
gression of COVID-19, we conducted this study aimed
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Table 2: Frequency of different variants of the ACE2 gene observed in the WES dataset and different databases.

rs ID Chr Start End Ref Alt
Allele frequencies (MAF) (%)

WES data 1000GP (phase 3) gnomAD v3.1.2

. chrX 15562065 15562065 A G 3.5 N/A N/A

rs11340646 chrX 15573562 15573562 T — 44.8 67 56.1

rs769765211 chrX 15573562 15573563 TT — 6.9 0.1 0.1

rs775397699 chrX 15573562 15573564 TTT — 10.3 0.008 N/A

rs200260858 chrX 15575575 15575576 TG — 3.5 0.7 1.8∗10-3

rs113691336 chrX 15578020 15578020 — ATAAG 86.2 83 73

rs4646140 chrX 15587729 15587729 C T 10.3 6 3.6

rs776459296 chrX 15589463 15589463 — T 31 6 0.3

rs971249 chrX 15589527 15589527 T C 86.2 80.5 69.2

rs2285666 chrX 15592225 15592225 C T 51.7 35 23.8

rs540248863 chrX 15571886 15571886 T G 3.5 0.5 0.1

1000 gp = 1000 Genomes Project; gnomAD = Genome Aggregation Database.

Table 3: Odds ratio of risk for identified variants.

Variant Protective (n = 64) Risk (n = 44) p value OR at 95% CI

WT 7 8 — 1

Variants

rs11340646 (T1del) 18 16 0.68 0.78 (0.22-2.72)

rs769765211 (T2del) 36 18 0.16 0.44 (0.13-1.45)

rs775397699 (T3del) 3 2 0.60 0.61 (0.05-5.17)
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Figure 2: Violin plot showing the plasma ACE2 concentration in male and female participants. Male participants have higher plasma ACE2
level (indicated in red), compared to female participants (shown in blue). The black dots in the error bars correspond to the mean value in
each group.
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towards exploring the genetic landscape of the ACE2 gene in
the Bangladeshi population with different degrees of
COVID-19 severity and also establishing a relationship of
disease severity with the levels of soluble ACE2 protein in
plasma. According to dbSNP, the host receptor ACE2 (Gene
ID: 59272) harbors different types of polymorphisms that
include synonymous (292), noncoding transcript variant
(25), inframe insertion (1), inframe deletion (6), intron
(21237), and missense (701) variants (https://www.ncbi

.nlm.nih.gov/snp/). Missense variants may alter the structure
of the ACE2 which may affect the attachment with the spike
protein of SARS-CoV-2 and, thus, disease severity.

WES and PCR-sequencing identified no genetic variant
in the exons targeted in this study (exon 1, exon 2, exon 8,
and exon 11). We targeted these particular regions because
they encode the region of ACE2 protein that binds to the
viral spike RBD [26]. According to the latest release of the
gnomAD dataset (v3.1.2) (https://gnomad.broadinstitute
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Figure 3: Scatterplot with marginal histogram demonstrating the distribution and correlation between plasma ACE2 levels and participant’s
age. Only a marginally negative correlation was observed (r = −0 02).
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black dots within the error bars represent the mean ACE2 levels for each group.
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.org), the highest allele frequencies of any missense variants
in exons 1, 2, 8, and 11 are 0.4%, 0.01%, 0.4%, and 0.003%,
respectively. Also, the highest frequencies of synonymous
variants occurring in exons 1, 2, 8, and 11 are 0.01%,
0.01%, 0.19%, and 9.6∗10-4%, respectively. Therefore, the
results are consistent with the observations of a low fre-
quency of variants in the chromosomal regions that corre-
spond to exons 1, 2, 8, and 11. So, observing no variants
within the exonic regions can be accounted for. The low alle-
lic frequency of missense variants is also reported by Novelli
et al. [22]. Similar results were also observed in a study
conducted in Turkey, where a larger cohort, consisting
of 946 individuals, only revealed two missense variants
(rs41303171 and rs4646116) of the ACE2 gene in the
Turkish population [33].

Also, recently, it was found that a region of our DNA sit-
uated on chromosome 3 (locus 3p21.31), spanning a length
of 49.3 kb, consisting of 6 genes (SLC6A20, LZTFL1,
CCR9, FYCO1, CXCR6, and XCR1), was associated with
the risk of developing severe COVID-19 [34]. A later study
revealed that this region was inherited from the Neander-
thals and was harbored by almost half the population in
South Asia [35]. The ACE2 gene was also annotated in the
Neanderthal genomes. We performed sequence alignment
of the Neanderthal ACE2 gene sequence with the human
ACE2 reference sequence and observed no changes between
the ACE2 genes from modern humans and the Neanderthal
reference sequence. Indeed, individual genomes of the Nean-
derthals harbor a few variants when compared with that of
the modern human reference, but none of those variants
are in any of the exons of the ACE2 gene. Also, our target
region, the 18T stretch, was no different either. Therefore,
the ACE2 gene is highly conserved, and that is reflected in
our study as well.

However, the intronic regions flanking the exons harbor
many variants. Our region of interest, the 18T stretch
upstream of exon 11, has shown 1, 2, or 3 T deletions
(T1del, T2del, and T3del, respectively) in our study popula-
tion. Although the deletion variants are not significantly
associated with the disease severity, they significantly alter
the plasma ACE2 level. Among the other variants, only
rs4646140 is significantly associated with lower plasma
ACE2 levels.

ACE2 is a tissue enzyme. Thus, circulating levels of
ACE2 are low. As a result, the significance of measuring cir-
culating ACE2 in pathological conditions remains important
which may indicate a great clinical significance [36]. For
example, increased levels of ACE2 have been found to be
associated with an increased risk of major cardiovascular
events [37, 38]. Previously, elevated levels of soluble ACE2
in the plasma of COVID-19 patients were found to be signif-
icantly associated with disease severity. Thus, the plasma
ACE2 level can be a predictor of infectivity and outcome
of COVID-19 [39]. We also observed a higher concentration
of plasma ACE2 in the patient groups (3 94 ± 1 41ng/mL),
compared to healthy controls (3 77 ± 1 55ng/mL). We
observed the highest ACE2 concentration in the severe
group of patients (4 26 ± 2ng/mL), consolidating its ability
to predict disease outcomes. However, the mean level of

ACE2 in the plasma of healthy controls and patients did
not vary significantly. Also, the plasma levels of soluble
ACE2 in patients with mild, moderate, and severe symptoms
did not show a significant difference from that of the mean
values of healthy controls and among themselves as well.
But the levels of soluble ACE2 in the plasma of healthy con-
trols and mild patients were found to be lower compared to
moderate and severe patients (though not significant). Maza
et al. demonstrated significantly higher levels of serum
ACE2 in patients with milder symptoms compared to
patients with moderate and severe symptoms in the Finnish
population [40]. However, in our study on the Bangladeshi
population, different results were observed.

Conversely, Bani Hani et al. demonstrated that ACE2
level is elevated in critically ill patients who are admitted to
the ICU, which is represented in our severe group [41].
Our results are compliant with their study. Also, in another
study, Kragstrup et al. showed that high plasma ACE2 is
associated with increased maximal illness severity (which
corresponds to the severe group of our study) [39]. Also,
the levels of ACE2 estimated in the plasma matched with
that of the levels reported in Swedish individuals [42]. So,
the role of plasma ACE2 is ambiguous till now, and we
report in favor of its higher concentration being related to
disease severity.

As reported by Iyer et al., the deletion variants,
rs11340646 (T1del), rs769765211 (T2del), and rs775397699
(T3del), were not significantly associated with COVID-19
risk or disease progression [43]. Our study also did not find
any significant association between the deletion variants and
disease severity. Therefore, our study is in concordance with
the study from Iyer et al. [43]. Also, we tried to identify if
any of the variants play a protective or risk role in the
COVID-19 severity, but no significant results were obtained.

The distribution pattern of soluble ACE2 in the plasma
of individuals harboring T1del, T2del, and T3del has
also been studied. We report the association between
the T-deletion (T-del) variants and subsequent plasma
ACE2 levels. The WT variant is associated with the highest
plasma ACE2 level in our population, whereas T2 del is asso-
ciated with the lowest level. And noticeably, the T1del and
T3del variants are also associated with lower mean ACE2
levels than the wild type. To our knowledge, the association
between the T-del variants with plasma ACE2 level has not
been studied before. Our study is the first one to report this
association.

The T-del variants have been identified as nonsense-
mediated mRNA decay (NMD) variants in the Ensembl
database that act in the surveillance mechanism in erroneous
gene expression in eukaryotes [44]. This might be the possi-
ble molecular mechanism behind the lower plasma ACE2
levels in individuals harboring these variants. The presence
of such variants initiates the binding of several factors to
the primary transcript and will cause the elimination of pre-
mature mRNA [45]. It is evident that mutation-, codon-,
gene-, cell-, and tissue-specific differences in NMD efficiency
can influence the underlying disease pathology [46]. The
deletion variants, on the other hand, showed a protective
role against the development of severe COVID-19, as
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depicted by lower odds ratio. Although the results were not
statistically significant, the odds ratio shows a trend of
higher occurrence of the deletion variants in participants
in the protective group (control and mild patients), com-
pared to the risk group (moderate and severe patients). In
fact, in the protective group consisting of 64 individuals, 57
(89%) harbored one of the deletion variants, while in the risk
group (n = 44), 36 individuals (82%) harbored deletion var-
iants. Therefore, deletion variants occur at a higher fre-
quency in the protective group, compared to individuals in
the risk group. Also, the presence of these genetic variants
significantly decreases plasma ACE2 levels. Therefore, it is
hypothesized that these variants cause lower expression of
ACE2 in individuals who harbor them, by nonsense-
mediated decay of the transcript. And the lower plasma
ACE2 is associated with protection against the development
of severe COVID-19. Our data also show higher level of
plasma ACE2 in the patient group, compared to healthy
controls. Also, among the patient group, severe patients
had the highest plasma ACE2 level. Therefore, the presence

of these NMD variants reduces plasma ACE2 level and con-
fers protection against development of severe COVID-19.
The proposed mechanism is summarized on Figure 7.

It is worth noting, however, that the regulation of gene
expression in eukaryotes is achieved via a complex network.
The intricate network between many processes ultimately
regulates the level of expression. The presence of the NMD
variants may contribute to the mechanisms that cause a
decrease in gene expression, but other factors, even the pres-
ence of other variants, may also act to counteract the effect
of this process. In our study, we observed the splice site var-
iant rs2285666 occurring in 15 samples (51%) that were sub-
jected to whole exome sequencing, out of a total of 29. This
variant is reported to increase ACE2 expression, as we have
also shown in Figure 6 [47]. Also, other noncoding regions
that have not been explored in this study, especially the
intronic variants that are excluded while analyzing the
exome, may have a significant impact on the ACE2 expres-
sion levels. Also, the role of tissue-specific miRNAs in mod-
ulating ACE2 levels has been reported as well [48]. Another
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Figure 7: The proposed mechanism of the protective role played by the 18T deletion variants by nonsense-mediated mRNA decay (NMD).
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interesting observation has been made on the role of NMD
in X chromosome dosage compensation and stability of
transcripts originating from the X chromosome compared
to autosomal transcripts [49]. In that study, it was revealed
that the transcripts of the genes residing on the X chromo-
some have a significantly higher half-life compared to auto-
somal transcripts, and this feature is achieved by the
contribution of UPF1, a key player of the NMD machinery.
This might also explain why the presence of the NMD vari-
ants does not completely eliminate the ACE2 transcripts but
rather acts as a point in the regulatory pathway. Therefore,
these NMD variants might work in favor of reducing the
ACE2 mRNA level but do not eliminate the transcript
entirely, resulting in the expression of the protein, but only
causing a decrease in the process.

Thus, noncoding intronic variants may have an impact
on the expression level of the ACE2 gene which in turn
may be one of the risk-associated factors for disease severity.
However, further laboratory experiments including tran-
scriptomic studies, as well as protein level measurement in
tissues, are warranted to reveal the role of these variants in
the molecular mechanisms of the expression and regulation
of plasma ACE2.

5. Conclusion

COVID-19 patients, particularly the severe group, have
higher plasma ACE2 levels, compared to healthy controls.
Deletion on an 18T stretch upstream of exon 11 of the
ACE2 gene significantly lowers the plasma ACE2 levels.
However, the deletion variants are not significantly associ-
ated with the COVID-19 disease severity.
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