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HIV/AIDS and pneumonia coinfection have imposed a major socioeconomic and health burden throughout the world, especially
in the developing countries. In this study, we propose a compartmental epidemic model on the spreading dynamics of HIV/AIDS
and pneumonia coinfection to investigate the impacts of protection and treatment intervention mechanisms on the coinfection
spreading in the community. In the qualitative analysis of the model, we have performed the positivity and boundedness of the
coinfection model solutions; the effective reproduction numbers using the next-generation operator approach; and both the
disease-free and endemic equilibrium points’ local and global stabilities using the Routh-Hurwiz and Castillo–Chavez stability
criteria, respectively. We performed the sensitivity analysis of the model parameters using both the forward normalized
sensitivity index criteria and numerical methods (simulation). Moreover, we carried out the numerical simulation for different
scenarios to investigate the effect of model parameters on the associated reproduction number, the effect of model parameters
on the model state variables, and the solution behavior and convergence to the equilibrium point(s) of the models. Finally,
from the qualitative analysis and numerical simulation results, we observed that the disease-spreading rates, protection rates,
and treatment rates are the most sensitive parameters, and we recommend for stakeholders to concentrate and exert their
maximum effort to minimize the spreading rates by maximizing the protection and treatment rates.

1. Introduction

Infectious diseases investigated and verified in the laboratory
or in the clinic are illnesses caused by pathogenic microorgan-
isms, and pneumonia is an infectious disease caused by micro-
organisms like bacteria, virus, fungus, and parasites; HIV/
AIDS is also an infectious disease caused by viruses [1–3].

Acquired immunodeficiency syndrome (AIDS) caused
by human immunodeficiency virus (HIV), discovered in
1981, is one of the major deadly infectious diseases that
has been spreading through countries in the world [1,
4–7]. Different literatures reported that HIV/AIDS has been
the major health-affected infectious disease and affected
more than seventy million individuals [1, 8, 9]. HIV attacks
white blood cells and is spreading through sexual contact,
sharing needle, and blood contact or by fluids containing
the HIV virus and by vertical transmission from mother to
child at birth [5, 6].

Pneumonia caused by various pathogenic microbial
agents like virus, bacteria, fungi, and parasites is a major
respiratory infectious disease identified as an inflammatory
condition of the lungs [10–12]. Among the pathogenic
microbial agents which have potential in causing pneumonia
infection, bacteria especially Streptococcus pneumoniae have
been reported as the leading cause [10–12]. The bacteria
microbial agents enter the lungs, rapidly multiply its num-
ber, and settle in the air passage called alveoli of the human
being lung; the lung will be filled with fluid and pus, which
makes breathing difficult [10, 12]. Pneumonia is commonly
a highly transmitted disease and a major cause of morbidity
and mortality in both children and adults throughout
nations in the world [13, 14].

Infectious disease studies using mathematical modelling
approaches have been carried out by different researchers
to tackle the basic epidemic problems and for making pre-
dictions of quantitative measures of different prevention
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and controlling strategies and their effectiveness; see litera-
tures [1–13, 15–36]. Even though mathematical epidemiolo-
gists did not give attention like the common HIV/AIDS and
TB coinfection [32, 34, 35] and other coinfections, the
coinfection of HIV/AIDS and pneumonia in one host is a
common phenomenon. Since pneumonia is one of the most
common opportunistic infections for HIV/AIDS-infected
individuals, some scholars have carried out few essential
mathematical epidemiological research studies on the trans-
mission dynamics of HIV/AIDS and pneumonia coinfec-
tion; see literatures [4, 5]. In this study, we have reviewed
some epidemic mathematical modelling approach researches
which are irrelevant to our proposed study and done by
different scholars in the world. Huo et al. [1] presented a
mathematical model approach study on a stage structure
HIV/AIDS transmission dynamics of HIV/AIDS with treat-
ment strategy. The finding of the study stated that the HIV/
AIDS treatment strategy (ART) is the most effective strategy
at the HIV asymptomatic stage of the HIV infection or
before-AIDS stage to minimize its spreading in the commu-
nity. Omondi et al. [9] presented a sex-structured commu-
nity infection model and discuss male and female HIV
infection trends with heterosexual activities. The finding of
the study stated that the HIV/AIDS treatment (ART)
strategy has a significant impact on controlling HIV/AIDS
transmission in the community. Teklu [24] presented a
mathematical modelling approach research on COVID-19
infection in the presence of prevention and control strate-
gies. The results and findings of the study deduced that
applying COVID-19 vaccination, other protection measures,
home quarantine with treatment, and hospital quarantine
with treatment simultaneously is the most effective strategy
to minimize the COVID-19 spread in the community. Teklu
and Mekonnen [4] analyzed HIV/AIDS and pneumonia
coinfection model with treatment at each infection stage.
From the results of the model analysis, they deduced that
applying treatment mechanisms for both the single infec-
tions and coinfection individuals is the most effective
strategy to minimize the coinfection disease-spreading
dynamics. Teklu and Rao [5] proposed and investigated a
compartmental model on the coexistence of HIV/AIDS
and pneumonia with pneumonia vaccination, treatments of
pneumonia, and HIV/AIDS infection control measures.
The finding of the model analysis stated that to minimize
the coinfection disease spread in the community, controlling
pneumonia infection using vaccination and treatment is
more effective than treatment of HIV/AIDS only infection.

The main purpose of this study is to investigate the
impacts of pneumonia protection, pneumonia treatment,
and HIV protection by using condom and HIV treatment
(ART) intervention strategies simultaneously on the trans-
mission dynamics of HIV/AIDS and pneumonia coinfection
in the community. Even though researchers [4, 5] invested
much effort in studying HIV/AIDS and pneumonia coinfec-
tion, they did not consider pneumonia protection, pneumo-
nia vaccination, pneumonia treatment, HIV protection by
using condom, and HIV treatment as prevention and
control strategies simultaneously in their proposed coinfec-
tion model formulation and analysis. And also, the main

contributions of this study are as follows: the health stake-
holders can use the findings of this modified research study
to tackle the HIV/AIDS and pneumonia coinfection in the
community; potential young researchers can develop their
epidemiological modelling knowledge and skills; and poten-
tial senior researchers can modify the study by incorporating
different modelling and intervention aspects. Based on the
findings of the above-reviewed literatures, we have realized
the gaps and are highly motivated to tackle the problem by
modifying the research study [5]. The remaining part of this
study is structured in the following sequence: the model is
formulated in Section 2 and is analyzed in Section 3; sensi-
tivity analysis, numerical simulation, and conclusions of
the study are carried out in Sections 4 and 5, respectively.

2. Model Description and Formulation

Motivated by various scholars’ mathematical modelling
researches in real-world situations, we proposed a coinfec-
tion integer order model on HIV/AIDS and pneumonia
spreading dynamics. To describe and formulate the proposed
coinfection model, we divide the total human population
considered in this study at a time t and represented by N t
into nine mutually distinct classifications as follows: the
number of people who are susceptible to either HIV/AIDS
or pneumonia infection represented by S t , the number of
people who are protected against pneumonia infection repre-
sented byPP t , the number of people who are protected
against HIV infection by using condom is represented
byHP t , the number of people who are infected with pneu-
monia is only represented byPI t , the number of people
who are infected with HIV is only represented by HI t , the
number of people who are AIDS patients represented by
HA t , the number of people who are coinfected with HIV/
AIDS and pneumonia is represented by C t , the number
of people who are treated from HIV/AIDS is represented by
THA t , the number of people who are infected with pneu-
monia is represented by PT t ; and the total number of indi-
viduals who are considered in this study is represented by

N t = S t + PP t +HP t +HI t +HA t
+ PI t + C t + PT t + THA t

1

The force of infection where the susceptible people
acquire HIV/AIDS is defined by

λH t =
β1
N

HI t + αHA t + ϑC t 2

where 1 ≤ σ <∞ and 1 ≤ ϑ <∞ are the modification param-
eters which increase infectivity of individuals and β1 is the
HIV/AIDS spreading rate.

The force of infection where the susceptible people
acquire pneumonia is defined by

λP t =
β2
N

PI t + ωC t 3
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where 1 ≤ ω <∞ is the modification parameter which
increases infectivity and β2 is the pneumonia spreading rate.

To formulate the proposed coinfection model of HIV/
AIDS and pneumonia, let us assume the following: p1, p2,
and 1 − p1 − p2 be portions of the total recruited people Γ
who are entering to the pneumonia-protected class PP t ,
to the HIV protected class HP t , and to the susceptible class
S t , respectively; pneumonia recovery by treatment is not
permanent, human population is homogeneous and is not
constant, there is no HIV transmission fromHIV-treated peo-
ple and no HIV vertical transmission, and there is no simulta-
neous HIV and pneumonia dual-infection transmission.

Based on Tables 1 and 2 and the model descriptions and
assumptions given above, the flow chart for the spreading
dynamics of HIV/AIDS and pneumonia coinfection is illus-
trated in Figure 1.

Based on Figure 1, we derive the system of nonlinear
differential equations of the coinfection model as follows:

dS
dt

= 1 − p1 − p2 Γ + ε1PP + ε2HP + ηPT − λH + λP + μ S,

dPP

dt
= p1Γ − δλH + ε1 + μ PP,

dHP

dt
= p2Γ − ε2 + μ + σλP HP,

dHI

dt
= λHS + δλHPP − μ + τ + ξ1 + ϕ1λP HI ,

dHA

dt
= τHI − μ + μ1 + ξ2 + ϕ2λP HA,

dPI
dt

= λPS + σλPHP − μ + μ2 + γ + φλH PI,

dC
dt

= φλHPI + ϕ1λPHI + ϕ2λPHA + ρλPTHA − μ + μ3 + θ C,

dPT

dt
= γPI − μ + η PT ,

dTHA
dt

= ξ1HI + ξ2HA + θC − μ + ρλP THA,

4

with initial data,

S 0 > 0,

PP 0 ≥ 0,

HP 0 ≥ 0,

HI 0 ≥ 0,

HA 0 ≥ 0,

HI 0 ≥ 0,

C 0 ≥ 0,

PT 0 ≥ 0,

THA 0 ≥ 0

5

Adding all the differential equations in the system,
(4) gives

dN
dt

= Δ − μN − μ1HA + μ2PI + μ3C 6

3. Qualitative Analysis of the Model (4)

3.1. Nonnegativity and Boundedness of the Model Solutions.
Since the proposed model (4) deals with human beings, we
need to investigate that each of the model solution variables
is nonnegative and bounded in the region.

Ω = S, PP ,HP,HI ,HA, PI , C, PT , THA ∈ℝ9
+,N ≤

Γ

μ

7

Theorem 1. Nonnegativity.
Depending on the initial data given in equation (5),

each of the model solutions S t , PP t , HP t , HI t ,HA
t , PI t ,C t , PT t , and THA t of the system (4) is
nonnegative for t > 0.

Proof. Let the initial data be S 0 > 0, PP 0 > 0,HP 0 > 0,
HI 0 > 0, HA 0 > 0, PI 0 > 0, C 0 > 0, PT 0 > 0, and
THA 0 > 0. Then, t > 0, we need to prove that all the model
solutions S t > 0, PP t > 0,HP t > 0, HI t > 0, HA t >
0,PI t > 0, C t > 0, PT t > 0, and THA t > 0.

Now, let us define the following set: τ = sup t > 0 S
t > 0, PP t > 0,HP t > 0,HI t > 0,HA t PI t > 0, C t
> 0, PT t > 0 andTHA t > 0 . Because the model state
variables S t , PP t ,HP t , HI t , HA t PI t , C t ,
RT t andTHA t are continuous, we deduce that τ > 0.

If τ =∞, then nonnegativity holds. But, if 0 < τ <∞,
S τ = 0 or PP τ = 0 or HP τ = 0 or HI τ = 0,HA τ =
0 or PI τ = 0 or C τ = 0 or PT τ = 0 or THA 0 = 0.

Rearranging the first equation of the model (4) gives us

dS
dt

+ λH + λP + μ S = 1 − p1 − p2 Γ + ε1PP + ε2HP + ηPT

8

We apply the method of integrating factors, and after

some computations, we determined the result S τ =M1S 0

+M1
τ
0 exp

λH+λP+μ dt 1 − p1 − p2 Γ + ε1PP t + ε2HP t
+ ηPT t dt > 0,
where-

M1 = exp− μτ+
τ

0
λH w +λP w > 0, S 0 > 0, PP t > 0,HP t >

0, PT t > 0,and by the meaning of τ,S τ > 0, hence S τ ≠ 0.
Similarly, rearranging the second equation of the system

(4) gives us dPP/dt + δλH + ε1 + μ PP = ε1Γ , and we have

got PP τ =M1PP 0 +M1
τ
0 exp

ε1+μ+δλH t dtp1Δdt > 0,

whereM1 = exp− ε1τ+μτ+
τ

0
δλH w > 0, PP 0 > 0, by defini-

tion of τ, PP τ > 0, hence PP τ ≠ 0.
Similarly, one can determine the results; HP τ > 0

henceHP τ ≠ 0, HI τ > 0 hence HI τ ≠ 0, PI τ > 0 hence
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PI τ ≠ 0, C τ > 0 hence C τ ≠ 0, PT τ > 0 hence PT τ
≠ 0, and THA τ > 0 hence THA τ ≠ 0. Thus, by definition
of τ given above, τ =∞, and hence, each of the model (3)
solutions is nonnegative.

Theorem 2 Boundedness. Each of the model solutions given
in the region Ω (7) is bounded in ℝ9

+.

Proof. In the absence of infections, the sum of all the differ-
ential equations given in (6), and by the nonnegativity
condition in Theorem 1, we have dN/dt ≤ Γ − μN . Based
on the concept of the standard comparison theorem, we

determined the result dN/Γ − μN ≤ dt, and integrating
both sides gives us the result − 1/μ ln Γ − μN ≤ t + c,
where c is some constant, and after some computations, we
have the result

0 ≤N t ≤ Γ/μ . Therefore, the model (4) solutions
with positive initial data given in (5) are bounded.

3.2. Qualitative Analysis HIV/AIDS Infection Submodel.
Now, make the state variables corresponding to
pneumonia-only infection of the coinfection model (4) as
PP = PI = C = PT = 0, we have the HIV/AIDS infection
submodel given by

dS
dt

= 1 − p2 Γ + ε2HP − λH + μ S,

dHP

dt
= p2Γ − ε2 + μ HP ,

dHI

dt
= λHS − μ + ξ1 + τ HI ,

dHA
dt

= τHI − μ + μ1 + ξ2 HA,

dTHA

dt
= ξ1HI + ξ1HA − μTHA,

9

where λH t = β1/N1 HI t + αHA t andN1 = S +HP +
HI +HA + THA.

3.2.1. Local Stability of Disease-Free Equilibrium Point. The
HIV/AIDS submodel (8) disease-free equilibrium (DFE) is
computed by making each equation of the dynamical system
(8) equal to zero where there are no infections and treated
groups. Therefore, the submodel (8) DFE is given by E0

H =
S0,H0

P,H0
I ,H0

A, T0
HA = Γ/μ ε2 + μ 1 − p2 /ε2 + μ , p2Γ/

ε2 + μ , 0, 0, 0 .
Using the same method stated in [22] on the HIV/AIDS

submodel (8), we have computed the matrices F and V by

F =

β1
N0

1
S0

β1
N0

1
αS0 0

0 0 0

0 0 0

=

β1ε2 + β1μ 1 − p2
ε2 + μ

β1ε2α + β1μα 1 − p2
ε2 + μ

0

0 0 0

0 0 0

,

V =

μ + ξ1 + τ 0 0

−τ μ + μ1 + ξ2 0

−ξ1 −ξ2 μ

10

Table 1: Parameters used in the model formulation.

Parameter Interpretation

μ Natural mortality rate

Γ People recruitment rate

ε1 Pneumonia protection loss rate

ε2 HIV protection loss rate

θ HIV/AIDS and pneumonia coinfected people
treatment rate

Φ1,Φ2 Modification parameters

φ Modification parameter

μ2 Death rate by pneumonia disease

μ1 Death rate by AIDS disease

γ Pneumonia treatment rate

ξ1 HIV-infected treatment rate

ξ2 AIDS patient treatment rate

β1 HIV/AIDS spreading rate

β2 Pneumonia spreading rate

p1 Portion of recruitment rate

p2 Portion of recruitment rate

η Pneumonia immunity loss rate

ρ, ω, φ, ϑ Modification parameters

μ3 Death rate by the coinfection

Table 2: Variables used in the coinfection model.

Variable Epidemiological meaning

S Susceptible people

PP People who are protected against pneumonia

HP People who are protected against HIV/AIDS

HI HIV-infected individuals

HA AIDS patients

PI Pneumonia-infected people

C People coinfected with HIV/AIDS and pneumonia

PT People treated from pneumonia

THA HIV/AIDS-treated people
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The HIV/AIDS submodel (8) basic reproduction number
is the largest eigenvalue in magnitude of the next generation
matrix FV−1 and is computed as

R0
H =

β1 μ 1 − p2 + ε2
μ + ξ1 + τ μ + ε2

+
β1μα 1 − p2 + β1ε2α

μ + μ1 + ξ2 μ + ε2
11

The threshold quantity R0
H (basic reproduction number)

of the HIV/AIDs submodel (8) is the expected number of sec-
ondary HIV infections produced by single infected human
during its entire period of infectiousness throughout the whole
susceptible community, and the HIV/AIDS submodel disease-
free equilibrium point E0

H = S0,H0
P ,H0

I ,H0
A, T0

HA = Γ/μ ε2
+ μ 1 − p2 /ε2 + μ , p2Γ/ε2 + μ , 0, 0, 0 has a local asymp-
totic stability whenever R0

H < 1, and unstable whenever
R0

H > 1

3.2.2. EndemicEquilibriumPoint (S) Existence andUniqueness.
In this subsection setting, the right-hand side of the HIV/
AIDS-only dynamical system given in equation (9) is equal to

zero, and after a number of steps of computations, we have
determined the endemic equilibrium point(s) given by

S∗ =
D1

D2 μ + λ∗H
,H∗

P

=
p2Γ
D2

,H∗
I

=
D1λ

∗
H

D2D3 μ + λ∗H
,H∗

A

=
D1τλ

∗
H

D2D3D4 μ + λ∗H
, andT∗

HA

=
D1D4ξ1λ

∗
H +D1τξ2λ

∗
H

D2D3μ μ + λ∗H
,

12

where D1 = ε2Γ + μΓ 1 − p2 , D2 = ε2 + μ , D3 = μ + ξ1
+ τ , D4 = μ + μ1 + ξ2 .

Now, substitute H∗
I and H∗

A in the HIV/AIDS force of
infection given by λ∗H = β1/N∗

1 H∗
I + αH∗

A , and computing
for λ∗H , we have determined that

PP S

p1�
�2

�2

(1 − p1 − p2) �
p2�

�

�

�

��P

��H�1�P

� 2� P

�
P

� H

�1 HP

PTPIHI

HA THA

C

�

� + �3
�

� + �1 �

�� �
� + �2

��H �

Figure 1: The flow chart of the HIV/AIDS and pneumonia codynamics spreading dynamics with forces of infections λH t and λP t given
in (2) and (3), respectively.

λ∗H =
= −D3D4μ

D1D2τμΓ 1 − β1 μ 1 − p2 + ε2 / μ + ξ1 + τ μ + ε2 − β1μα 1 − p2 + β1ε2α / μ + μ1 + ξ2 μ + ε2

=
−D3D4μ

D1D2τμΓ 1 −R0
H

> 0
13
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if and only if R0
H > 1.

Thus, based on the final result λ∗H > 0, there is a unique
positive endemic equilibrium for the HIV/AIDS submodel
given in equation (9) if and only ifR0

H > 1.

Lemma 3. The HIV/AIDS monoinfection model given in
equation (9) has a unique endemic equilibrium solution if
and only if R0

H > 1.

3.2.3. DFE Global Asymptotic Stability

Lemma 4 (The Castillo-Chavez et al. criteria stated in [23]).
If the HIV/AIDS submodel can be written as

dX
dt

= I X, V ,

dV
dt

= J X, V ,H X0, 0 = 0,
14

where X ∈ℝm be the components of noninfected individuals
and V ∈ℝn be the components of infected individuals includ-
ing treated class, and E0

H = X0, 0 denotes the disease-free
equilibrium point of the dynamical system (7).

Assume (i) for dX/dt = I X0, 0 , Y0 is globally asymp-
totically stable (GAS). (ii) J X, V = BV − Jˇ X, V
, Jˇ X, V ≥ 0 for X,V ∈Ω1 where B =DV J X0, 0 is an
M-matrix, i.e., the off-diagonal elements of B are nonnega-
tive, and Ω1 is the region in which the system makes biologi-
cal sense. Then, the fixed point E0

H = X0, 0 is globally
asymptotically stable equilibrium point of the system (8)
wheneverR0

H < 1.

Lemma 5. The HIV/AIDS submodel disease-free equilibrium
point E0

H = Γ/μ ε2 + μ 1 − p2 /ε2 + μ , p2Γ/ε2 + μ , 0, 0, 0
is globally asymptotically stable if R0

H < 1 and the two suffi-
cient conditions given in Lemma 4 are satisfied.

Proof. To prove Lemma 5, let us apply Lemma 4 on the HIV/
AIDS infection submodel (8), and we have determined the
following matrices:

dX
dt

= I X, V =
1 − p2 Γ + ε2HP − λH + μ S

ε2Γ − ε2 + μ HP

,

dV
dt

= J X, V =

λHS − μ + ξ1 + τ HI

τHI − μ + μ1 + ξ2 HA

ξ1HI + ξ1HA − μTHA

,

I X0, 0 =
1 − p2 Γ + ε2H

0
P − μS0

ε2Γ − ε2 + μ H0
P

,

15

where

X0 = S0,H0
P =

Γ

μ

ε2 + μ 1 − p2
ε2 + μ

,
p2Γ
ε2 + μ

16

is globally stable which satisfies condition (i) of Lemma
4 and

B =DV J X0, 0 =

β1S
0

N0
1

− μ + ξ1 + τ
β1αS

0

N0
1

0

τ − μ + μ1 + ξ2 0

ξ1 ξ2 −μ
17

After a number of steps of computations, we have
determined the result given by

Jˇ X, V =

Jˇ1 X, V

Jˇ2 X, V

jˇ3 X, V

=

β1S
0

N0
1
HI +

β1αS
0

N0
1

HA −
β1
N1

HIS −
β1α

N1
HAS

0

0

=

β1HI
S0

N0
1
−

S
N1

+ β1αHA
S0

N0
1
−

S
N1

0

0

18

From the definitions of state variables and total pop-
ulation, we can justify the inequality S ≤N1 that implies
S/N1 ≤ S0/N0

1 and hence Jˇ1 X, V ≥ 0, which satisfies
criteria (ii) of Lemma 4; thus, the HIV/AIDS submodel
(8) disease-free equilibrium point E0

H = S0,H0
P ,H0

I ,H0
A,

T0
HA = Γ/μ ε2 + μ 1 − p2 /ε2 + μ , p2Γ/ε2 + μ , 0, 0, 0 is

globally asymptotically stable if R0
H < 1.

Epidemiologically, it means whenever R0
H < 1, the HIV/

AIDS-only disease dies out while the total population
increases.

3.3. Qualitative Analysis of Pneumonia Infection Submodel.
Now, making all the state variables corresponding to
HIV/AIDS infection in the full model (4)
asHP =HI =HA = C = THA = 0, we have the pneumonia
submodel given by

dS
dt

= 1 − p1 Γ + ε1PP + ηPR − λP + μ S,

dPP

dt
= p1Γ − ε1 + μ PP ,

dPI

dt
= λPS − μ + μ2 + γ PI ,

dPT

dt
= γPI − μ + η PT ,

19
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with force of infection illustrated by

λP =
β2
N2

PI t , 20

and with initial data S 0 > 0, PP 0 ≥ 0, PI 0 ≥ 0, PT 0
≥ 0, total number of human beings involved is given by
N2 t = S t + PP t + PI t + PT t .

3.3.1. Local Stability of Disease-Free Equilibrium Point. The
pneumonia submodel (19) disease-free equilibrium point is
computed by making the model equations equal to zero,
where PI = PT = 0. Thus, the pneumonia submodel disease-
free equilibrium point is given by E0

P = S0, P0
P , P0

I , P0
T = Γ/

μ ε1 + μ 1 − p1 /ε1 + μ , p1Γ/ε1 + μ, 0, 0 .
The pneumonia submodel (19) basic reproduction num-

ber is the estimated number of new pneumonia-infected
individuals produced by one infectious individual in a com-
munity. Similarly, using the same criteria stated in [22], we
computed the pneumonia reproduction number given
byR0

P = β2 μ 1 − p1 + ε1 / μ + μ2 + γ μ + ε1 .
The pneumonia submodel (19) basic reproduction

number is defined as the estimated number of secondary
infected individuals produced by single infectious individ-
ual during its entire period of infectiousness throughout
the whole susceptible population, and using the same cri-
teria, the disease-free equilibrium point given by E0

P = S0,
P0
P, P0

I , P0T = Γ/μ ε1 + μ 1 − p1 /ε1 + μ , p1Γ/ε1 + μ , 0, 0
is locally asymptotically stable whenever R0

P < 1 and unstable
whenever R0

P > 1

3.3.2. Existence and Uniqueness of Endemic Equilibrium
Point. The endemic equilibrium points of the pneumonia
submodel given in equation (19) are computed by making
the right-hand side of the system as zero, and after some
computations, we have determined that

S∗ =
1 − p1 ΓK1K2K3 + ε1p1ΓK2K3
K1K2K3 λ∗P + μ − K1ηγλ

∗
P

,

P∗
P =

p1Γ
K1

, P∗
I =

1 − p1 ΓK1K2K3λ
∗
P + ε1p1ΓK2K3λ

∗
P

K1K2
2K3 λ∗P + μ − K1K2ηγλ

∗
P

,

P∗
T =

1 − p1 ΓK1K2K3γλ
∗
P + ε1p1ΓK2K3γλ

∗
P

K1K2
2K3

2 λ∗P + μ − K1K2K3ηγλ
∗
P

,

21

where K1 = ε1 + μ, K2 = γ + μ + μ2, and K3 = μ + η.
We substitute P∗

I stated in equation (21) in equation
(20), we computed as N∗

2λ
∗
P = β2P

∗
I and gives us the result

1 − p1 ΓK1K2
2K3

2 + ε1p1ΓK2
2K3

2 + p1ΓK2
2K3

2λ∗P
+ p1ΓK2

2K3
2μ + 1 − p1 ΓK1K2K3

2λ∗P − p1ΓK2K3ηγλ
∗
P

+ ε1p1ΓK2K3
2λ∗P + 1 − p1 ΓK1K2K3γλ

∗
P + ε1p1ΓK2K3γλ

∗
P

− β2 1 − p1 ΓK1K2K3
2 − β2ε1p1ΓK2K3

2 = 0
22

Rearranging (22), we have derived the nonzero linear
equation.

B1λ
∗
P + B0 = 0 23

where

B1 = p1ΓK2K3 K2K3 − ηγ

+ 1 − p1 ΓK1K2K3 K3 + γ

+ ε1p1ΓK2K3 K3 + γ > 0,
24

B0 = ΓK2K3
2 1 − p1 K1K2 + ε1p1K2 1 −R0

P < 0
25

if and only if R0
P > 1 since each parameter has a positive

value. Computing the expression in equation (23), we have
obtained the result given by

if and only ifR0
P > 1 since each of the parameters is positive.

Thus, the pneumonia submodel given in equation (19) has a
unique positive endemic equilibrium point only
wheneverR0

P > 1.

Lemma 6. The pneumonia submodel given in equation (19) has
a unique positive endemic equilibrium if and only ifR0

P > 1.

3.3.3. Global Asymptotic Stability of Disease-Free
Equilibrium Point

Lemma 7. The pneumonia submodel (19) disease-free equi-
librium point given by the expression

E0
P = 1 − p1 Γ ε1 + μ + ε1p1Γ/μ ε1 + μ , p1Γ/ε1 + μ ,

0, 0 is globally asymptotically stable if and only if R0
P < 1

and the two sufficient conditions given in Lemma 4 holds.

Proof. Using the criteria stated by Lemma 4 above on the
pneumonia submodel (19) and setting X ∈ℝ2 be the compo-
nents of noninfected individuals and V ∈ℝ2 be the

λ∗P = −
B0
B1

=
ΓK2K3

2 p2K1K2 + ε1p1K2 R0
P − 1

p1ΓK2K3 K2K3 − ηγ + p2ΓK1K2K3 K3 + γ + ε1p1ΓK2K3 K3 + γ
> 0 26
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components of infected individuals including recovery class.
Then, we have determined the following matrices:

dX
dt

= I X, V =
1 − p1 Γ + ε1PP + ηPT − λP + μ S

p1Γ − ε1 + μ PP

,

dV
dt

= J X, V =
λPS − γ + μ + μ2 PI

γPI − μ + η PT

,

I X, 0 =
1 − p1 Γ + ε1PP − μS

p1Γ − ε1 + μ PP

,

B =DV J X0, 0 =
β2S

0

S0 + P0
P

− γ + μ + μ2 0

γ − μ + η

27

After we perform some calculations, we have determined
that

Jˇ X, V =
Jˇ1 X, V

Jˇ2 X, V

=
β2S

0PI

S0 + P0
P

−
β2PIS
N2

0

=
β2PI

S0

S0 + P0
P

−
S
N2

0

28

Since ≤S0, PP < P0
P , one can show that S − S0 ≤ 1, PP

− P0
P ≤ 1, and Jˇ1 X, V ≥ 0; thus, the disease-free equilib-

rium point E0
P = 1 − p1 Γ ε1 + μ + ε1p1Γ/μ ε1 + μ , p1Γ/

ε1 + μ , 0, 0 of the pneumonia monoinfection model (19)
is globally asymptotically stable if R0

P < 1. Epidemiologi-

cally, it means whenever R0
P < 1, the pneumonia-only dis-

ease dies out while the total population increases.

3.4. Qualitative Analysis of Pneumonia and HIV/AIDS
Coinfection Model. In Sections 3.2 and 3.3, we analyzed the
HIV/AIDS and pneumonia single infection models, respec-
tively, and based on the results on these submodels now con-
sidered and analyzed the full HIV/AIDS and pneumonia
coinfection model in the bounded regionΩ illustrated in
equation (7).

3.4.1. Stability of Disease-Free Equilibrium Point. The full
coinfection model (4) disease-free equilibrium point is com-
puted by setting each of the equations in the model equal to
zero in the absence of infections and treatment such that
HI =HA = PI = C = PT = THA = 0. Thus, after some calcula-
tions, we have determined the HIV/AIDS and pneumonia
coinfection disease-free equilibrium point given by

E0
HP = S0, P0

P,H
0
P,H

0
I ,H

0
A, P

0
I , C0, P0T, T

0
HA

=
1 − p1 − p2 Γ ε1 + μ ε2 + μ + ε1p1Γ + ε2p2Γ ε1 + μ

μ ε1 + μ ε2 + μ
,

ε1Γ

ε1 + μ
,

p2Γ
ε2 + μ

, 0, 0, 0, 0, 0, 0

29

Similarly, using the same criteria stated in [22], the coin-
fection model (4) basic reproduction number denoted by
R0

HPis to be determined as

FV−1 =

β1 μ 1 − p2 + α2
μ + ξ1 + τ μ + ε2

+
β1μα 1 − p2 + β1ε2α

μ + μ1 + ξ2 μ + ε2
0 0 0 0 0

0
β2 μ 1 − p1 + ε1
μ + μ2 + γ μ + ε1

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

30

The coinfection model (4) basic reproduction number is
the dominant eigenvalue in magnitude of the next genera-
tion matrix F V−1 given by

R0
HP = max R0

H ,R
0
P

=max
β1 μ 1 − p2 + α2
μ + ξ1 + τ μ + ε2

+
β1μα 1 − p2 + β1ε2α

μ + μ1 + ξ2 μ + ε2
,
β2 μ 1 − p1 + ε1
μ + μ2 + γ μ + ε1

,
31
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where R0
H represent the HIV/AIDS-only basic reproduction

number, R0
P represents the pneumonia only basic reproduc-

tion number, and R0
HP represents the coinfection basic

reproduction numbers, respectively.
In the similar manner of the single infections, the basic

reproduction number of HIV/AIDS and pneumonia coin-
fection is defined as the estimated number of secondary
infectious produced by one coinfected individual during its
entire period of infectiousness in the whole susceptible pop-
ulation, and the disease-free equilibrium point given by

E0
HP = S0, P0

P,H
0
P,H

0
I ,H

0
A, P

0
I , C

0, P0
T, T

0
HA

=
1 − p1 − p2 Γ ε1 + μ ε2 + μ + ε1p1Γ + ε2p2Γ ε1 + μ

μ ε1 + μ ε2 + μ
,

ε1Γ

ε1 + μ
,

p2Γ
ε2 + μ

, 0, 0, 0, 0, 0, 0

32

is locally asymptotically stable if and only if R0
HP < 1 and

unstable if R0
HP > 1.

3.4.2. Endemic Equilibrium of the Model (4). The full coin-
fection model (4) endemic equilibrium points are deter-
mined by setting each differential equation equal to zero,
and we obtained the result given by

S∗ =
1 − p1 − p2 Γ + ε1P

∗
P + ε2H

∗
P + ηP∗

T

λ∗H + λ∗P + μ
,

P∗
P =

p1Γ
δλ∗H + ε1 + μ

,

H∗
P =

p2Γ
δε2 + μ + σλ∗P

,

H∗
I =

λ∗HS
∗ + δλ∗HP

∗
P

μ + ξ1 + τ + ϕ1λ
∗
P

,

H∗
A =

τH∗
I

μ + μ1 + ξ2 + ϕ2λ
∗
P

,

P∗
I =

λ∗PS
∗ + δλ∗PH

∗
P

γ + μ + μ2 + φλ∗H
,

C∗ =
φλ∗HP

∗
I + ϕ1λ

∗
PH

∗
I + ϕ2λ

∗
PH

∗
A + ρλ∗PT

∗
HA

μ + μ3 + θ
,

P∗
T =

γP∗
I

μ + η
,

T∗
HA =

ξ1 H
∗
I + ξ2 H

∗
A + θC∗

ρλ∗P + μ

33

The coinfection model (4) we proposed is highly non-
linear, and hence, the explicit computation of the endemic
equilibrium point(s) in terms of the illustrated model
parameters is difficult analytically; however, based on the

previous analyses of the HIV/AIDS and pneumonia sub-
models, the endemic equilibrium point(s) represented by
E∗
HP = S∗, P∗

P ,H∗
P ,H∗

I ,H∗
A, P∗

I , C∗, P∗
T , T∗

HA exists whenever
R0

H > 1 and R0
P > 1, i.e., R0

HP > 1. The stability is shown
in the numerical simulation part.

3.4.3. Possibility of Existence of Backward Bifurcation for the
Coinfection Dynamical System (4). Let S = v1, PP = v2, HP =
v3, HI = v4, HA = v5, PI = v6, C = v7, PT = v8, and THA = v9,
and the total human population is given by N = v1 + v2 +
v3 + v4 + v5, +v6 + v7, +v8 + v9.

Moreover, by the vector representation V =
v1, v2, v3, v4, v5, v6, v7, v8, v9

T , the dynamical system (4)
will be rewritten as dV/dt =H V with H =
h1, h2, h3, h4, h5, h6, h7, h8, h9

T and

dv1
dt

= h1 = 1 − p1 − p2 Γ + ε1v2 + ε2v3 + ηv8 − λH + λP + μ v1,

dv2
dt

= h2 = p1Γ − δλH + ε1 + μ v2,

dv3
dt

= h3 = p2Γ − ε2 + μ + σλP v3,

dv4
dt

= h4 = λHv1 + δλHv2 − μ + τ + ξ1 + ϕ1λP v4,

dv5
dt

= h5 = τv4 − μ + μ1 + ξ2 + ϕ2λP v5,

dv6
dt

= h6 = λPv1 + σλPv3 − γ + μ + μ2 + φλH v6,

dv7
dt

= h7 = φλHv6 + ϕ1λPv4 + ϕ2λPv5 + ρλPv9 − μ + μ3 + θ v7,

dv8
dt

= h8 = γv6 − μ + η v8,

dv9
dt

= h9 = ξ1v4 + ξ2v5 + θv7 − ρλPv9 − μv9,

34

where λH = β1/N v4 + αv5 + ϑv7 for 1 ≤ ρ1 <∞ and λP =
β2/N v6 + ωv7 for 1 ≤ ω <∞.

Then, the Jacobian matrix of the new dynamical system
given in (22) atE0

HP, represented by J E0
HP and determined by

J E0
HP =

−μ ε1 ε2 E1 E2 E3 E4 η 0

0 − ε1 + μ 0 E5 E6 0 E7 0 0

0 0 − ε2 + μ 0 0 E8 E9 0 0

0 0 0 E10 E11 0 E12 0 0

0 0 0 τ − μ + μ1 + ξ2 0 0 0 0

0 0 0 0 0 E13 E14 0 0

0 0 0 0 0 0 − μ + μ3 + θ 0 0

0 0 0 0 0 γ 0 − μ + η 0

0 0 0 ξ1 ξ2 0 θ 0 −μ

,

35

where E1 = − β1/N0 v01, E2 = − β1α/N0 v01, E3 = − β2/N0 v01,
E4 = − β1/N0 ϑv01 − β2/N0 ωv01, E5 = − β1/N0 v02, E6 = β1/
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N0 δαv02, E7 = − β1/N0 ρ1v
0
2, E8 = − β2/N0 v03, E9 = − β2/N0

ωv03, E10 = β1/N0 v01 + β1/N0 δv02 − μ + τ + ξ1 , E11 = β1
/N0 αv01 + β1/N0 δv02, E12 = β1/N0 ϑv01 + β1/N0 δϑv02, E13
= β2/N0 v01 + β2/N0 v03 − γ + μ + μ2 , E14 = β2/N0 ωv01
+ β2/N0 ωv03.

Let us assume R0
P >R0

H without loss of the generality,
andR0

HP = 1, i.e.,R0
P = 1. Moreover, let β2 = β∗ be a bifurca-

tion parameter. Solving for β2 using R0
P = 1 as R0

P = β2 μ
1 − p1 + ε1 / μ + μ2 + γ μ + ε1 = 1, we determined as
β∗ = β2 = μ + μ2 + γ μ + ε1 / μ 1 − p1 + ε1 .

Then, we compute the eigenvalues of the Jacobian matrix
J E0

HP at E0
HP, for β2 = β∗, and we determined the eigen-

values given by λ1 = −μ<0 or λ2 = − ε1 + μ < 0 or λ3 = −
ε2 + μ < 0 or λ4 = E10 = β1/N0 v01 + β1/N0 δv02 − μ + τ
+ ξ1 = μ + τ + ξ1 R0

H − 1 < 0 if R0
H < 1 or λ5 = 0 or

λ6 = E13 = β2/N0 v01 + β2/N0 v03 − γ + μ + μ2 = γ + μ +
μ2 R0

P − 1 < 0 if R0
P < 1 or λ7 = − μ + d3 + θ < 0 or λ8

= − μ + η < 0 or λ9 = −μ < 0 From the computations,
we observed that all the eigenvalues are negative if R0

HP
< 1. We apply the centre manifold theory stated in [31], to
illustrate that the dynamical system (4) undergoes the phe-
nomenon of forward bifurcation atR0

P = 1. For the eigenvec-
tors of the Jacobian Jβ∗ , for the case R0

P = 1, the right
eigenvectors at β2 = β∗ corresponding to the zero eigenvalue

given by y = y1, y2, y3, y4, y5, y6, y7, y8, y9
T are

y1 =
ε2E7 μ + η y5 + ε2 + μ μ + η E2y5 + ε2 + μ ηγy5

μ ε2 + μ μ + η
, y2

= 0, y3 =
E7

ε2 + μ
y5, y4 = 0, y5 = y5 > 0, y6

= 0, y7 =
κ

μ + η
u5, y8 = 0, y8 = 0

36

Left eigenvectors corresponding to the zero eigenvalue
atβ2 = β∗

2 that holds y z = 1, given by

z = z1, z2, z3, z4, z5, z6, z7, z8, z9 and z1 = z2 = z3 = z4
= z6 = z7 = z8 = z9 = 0 and z5 = z5 > 0

37

After many steps of calculations and simplification, we
determined the bifurcation coefficients given by a and b as

a = 2z5y1y5
∂2h5 0, 0
∂v1∂v5

+ 2z5y3y5
∂2h5 0, 0
∂v2∂v5

= 2β∗
2 z5y5 y1 + y3 ,

= 2β∗
2z5y

2
5
−ε2β2v

0
3 μ + η − ε2 + μ μ + η β2v

0
1 − ε2 + μ ηγ − μ μ + η β2v

0
3

μ ε2 + μ μ + η

38

Thus,

a = −2β∗
2z5y

2
5
ε2β2y

0
3 μ + η + ε2 + μ μ + η β2v

0
1 + ε2 + μ ηγ + μ μ + η β2v

0
3

μ α2 + μ μ + η
< 0,

b = z5y5
∂2h5 0, 0
∂v5∂β2

= z5y5 v03 + v01 > 0

39

Therefore, using the criteria stated in [31], the HIV/AIDS
and pneumonia coinfection dynamical system (4) do not
exhibit the phenomenon of backward bifurcation whenever
R0

HP =R0
P = 1 Thus, there is no positive endemic equilibrium

point rather there is only the coinfection model disease-free
equilibrium point in the region at which R0

HP < 1.

4. Sensitivity and Numerical Analysis

In this section, we need to verify the qualitative analysis
results performed in Section 3, and we have performed
several sensitivity and numerical analyses. In this study, to
obtain more relevant model parameters illustrated in
Table 3, we have observed and reviewed different research
studies based on the mathematical modelling on infectious
diseases, and for some other parameters, we assumed realis-
tic values for the purpose of sensitivity and numerical anal-
yses and illustrations.

4.1. The Coinfection Model Sensitivity Analysis

Definition 8. Let z be variable; then, the normalized forward
sensitivity index of z which depends differentially on a
parameter ϑ is defined as SEI D ϑ = ∂z/∂ϑ ∗ ϑ/z [27].

The sensitivity indices we have calculated in this subsection
allow to investigate the relative significance of various
parameters in the proposed HIV/AIDS and pneumonia
coinfection spreading dynamics. The parameter which has
larger magnitude than that of all other parameters is the
most sensitive parameter. Now, we can compute the sensi-
tivity indices in terms of the model basic reproduction
numbers R0

H and R0
P sinceR0

HP = max R0
H ,R

0
P .

Applying the baseline parameter values given in Table 3,
we have derived Tables 4 and 5 to show the sensitivity indi-
ces of the model parameters.

In this study, with the baseline parameter values given in
Table 3, we have computed R0

H = 1 91 which implies that
HIV/AIDS spreads in the community, and we also have
determined the indices in Table 4. Sensitivity analysis results
show that the HIV/AIDS spreading rate β1 has the highest
impact on the HIV/AID only infection basic reproduction
number (R0

H).
Similarly, using baseline parameter values given in

Table 3, we have computed R0
P = 3 86 which implies that

pneumonia is spreading throughout the community, and
we also have computed the sensitivity indices as shown in
Table 5. Sensitivity analysis results show that the foremost
sensitive positive parameter is the pneumonia spreading
rateβ2. Using Tables 4 and 5, biologically, we can conclude
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that the most sensitive parameters are the HIV/AIDS and
pneumonia spreading rates.

In this subsection, we performed numerical simulation
illustrated in Figure 2 to investigate the HIV/AIDS and
pneumonia coinfection model parameters sensitivity indices
with respect to the coinfection reproduction number, and
from the result, we observed that both the HIV and pneu-
monia spreading rates β1 and β2, respectively, are epidemio-
logically the most sensitive parameters having a direct
proportionality with the HIV/AIDS and pneumonia repro-
duction numbers, respectively. Furthermore, the HIV infec-
tion protection portion p2 and pneumonia infection
protection portion p2 and treatment rates are more sensi-
tive parameters having an indirect proportionality with the
associated reproduction number.

4.2. The Coinfection Model Numerical Simulations. In this
part, we carried out simulations for the HIV/AIDS and
pneumonia codynamics by using the parameter baseline
values given in Table 3 mainly to verify the qualitative anal-
ysis performed throughout Section 3. To investigate the
numerical results of the constructed coinfection model (4),
the initial data should have nonnegative values because the
number of people in each class cannot be negative. In this
subsection, the numerical simulations were conducted with
MATLAB by applying the Runge-Kutta ODE45 method.
Throughout this subsection, we examine the behavior of
the coinfection model solutions and their convergence to
the corresponding equilibrium points, investigate the
impact of the model parameters on the diseases spreading
in the community, and more specifically examine the
effect of protection and treatment strategies on the dis-
eases spreading dynamics. In order to simulate the
HIV/AIDS and pneumonia coinfection model (4), set
the nonnegative initial data S 0 , PP 0 ,HP 0 ,HI 0 ,
HA 0 , PI 0 , C 0 , PT 0 , THA 0 = 1500, 350, 250, 150,
100, 200,90,85,70 .

4.2.1. Simulation to Show Behaviour Solutions Whenever
R0

HP < 1. The numerical trajectories given in Figure 3 show
the behavior of the coinfection model solutions over time
whenever R0

HP < 1. From this numerical result, we can justify
the qualitative results proved in Section 3.3.1. The HIV/AIDS
and pneumonia dynamical system (4) effective reproduction
number is calculated as R0

HP = 0 46. We also observed that
after 100 days, the coinfection dynamical system solutions
converge to the disease-free equilibrium point if R0

HP = max
R0

H ,R
0
P =max 0 46, 0 87 = 0 87 < 1. Epidemiologi-

cally, it means that the coinfection outbreaks in the population
will be eliminated in the near future.

4.2.2. Simulation to Show Solution Trajectories Whenever
R0

HP > 1. In this subsection, we have carried out the numerical
simulation of the coinfection dynamical to examine the solu-
tion trajectory behavior whenever R0

HP = 3 86 > 1. Figure 4
shows that the simulation trajectories will converge to the
model endemic equilibrium point whenever the coinfection
model computed effective reproduction number is R0

HP =
max R0

H ,R
0
P =max 1 91, 3 86 = 3 86 > 1. It means that

Table 4: Sensitivity indices forR0
HP =R0

H .

Sensitivity index Value

SEID β1 +1

SEID ε2 +0.01

SEID p2 -0.67

SEID μ1 +0.38

SEID τ +0.31

SEID ξ1 -0.56

SEID ξ2 -0.45

SEID α +0.37

Table 5: Sensitivity indices for R0
HP =R0

P .

Sensitivity index Values

SEID β2 +1

SEID μ2 +0.01

SEID γ -0.60

SEID ε1 0.21

SEID p1 -0.72

Table 3: Parameter values used for sensitivity and numerical
analyses.

Parameter Value Reference

Γ 1000 humans/day [21]

μ (1/64 5 × 365)/day [6]

ε1 0.005/day [7]

ε2 0.0004/day [7]

μ1 0.00034/day [7]

μ2 0. 057/day [13]

θ 0.0021/day Assumed

Φ1,Φ2 1 no unit Assumed

δ, σ 1 no unit Assumed

ξ1 0.0023/day [25]

μ3 0.15/day Assumed

φ 1 no unit Assumed

η 0.1/day [13]

β1 0.3425/day [6]

β2 0.0115/day [13]

p1 0.597/day [7]

p2 0.006/day [7]

ξ2 0.13/day [5]

γ 0.2/day [13]

φ, α, ω 1 no unit Assumed
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the HIV/AIDS and pneumonia coinfection model (4)
solutions approach to its endemic equilibrium point if R0

HP
= 3 86 > 1

4.2.3. Simulation to Show the Impact of HIV Spreading Rate
on Pneumonia Transmission. Numerical simulation illus-
trated in Figure 5 investigates the impact of HIV spreading
rate β1 on the number of coinfected people denoted by C

From the result, we observed that when we increase the value
of β1, then the number of coinfected people in the population
increases. Whenever HIV spreading rate β1 increases from a
value 0.00001 to a value 0.8, then the HIV/AIDS and pneumo-
nia coinfection population denoted by C is highly increases,
and thus, we recommend for the stakeholders to exert their
optimum effort on decrease the HIV spreading rate with
applying suitable intervention mechanisms.
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Figure 2: Simulation of sensitivity indices of parameters with respect to R0
HP.
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Figure 3: Simulation of the dynamical system (4) solutions at R0
HP = 0 46 < 1.
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4.2.4. Simulation to Investigate the Impact of Pneumonia
Spreading on the Coinfection. Numerical simulation illus-
trated in Figure 6 investigates the impact of pneumonia
spreading rate β2 on the number of coinfectious people
denoted by C. From the result, we observed that increasing
the value of β2 leads to an increase of the number of coinfec-
tious people in the population. Consequently, increasing pneu-

monia transmission rate β2 from 0.00001 to 0.8 leads to a
highly increase of HIV/AIDS and pneumonia coinfection C.

4.2.5. Treatment Impact on the Number of HIV-Infected
Population. In this subsection, we perform numerical simu-
lation illustrated in Figure 7 to investigate the impact of HIV
treatment (antiretroviral therapy or ART) rate ξ1 on the
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Figure 4: Simulation of the coinfection system (4) at R0
HP = 3 86 > 1.
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Figure 5: Effect of HIV spreading rate β1 on the coinfection C.
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HIV-infected population denoted by HI . From the numeri-
cal simulation result, we observe that whenever we increase
the value of HIV treatment (antiretroviral therapy or ART)
rate ξ1 from 0.3 to 0.8, the number of HIV-infected popu-
lation is going down throughout the community.

4.2.6. Treatment Impact on the Number of AIDS Patients. In
this subsection, we perform numerical simulation illustrated
in Figure 8 to investigate the impact of HIV treatment (anti-
retroviral therapy or ART) rate ξ2 on the AIDS patient
population denoted by HA. From the numerical simulation
result, we observe that whenever we increase the value of

HIV treatment (antiretroviral therapy or ART) rate ξ2
from 0.3 to 0.8, the number of AIDs patient population is
going down throughout the community.

4.2.7. Treatment Impact on HIV/AIDS and Pneumonia
Coinfection. In this part, we simulate the state variable which
represents HIV/AIDS and pneumonia coinfection dynamics
illustrated in Figure 9. From the result, we observed that
whenever the treatment rate θ is going up, then the number
of HIV/AIDS and pneumonia population decreases in the
community. Epidemiologically, it means whenever the
stakeholders of human being health increase treatment
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Figure 6: Effect of pneumonia spreading rate β2 on the coinfection C.
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intervention strategies from the rate 0.4 to the rate 0.8, this
implies that the number of HIV/AIDS and pneumonia coin-
fected individuals is going down.

4.2.8. Impact of the HIV/AIDS Spreading Rate β1 on R0
H .

Simulation illustrated in Figure 10 investigates the influence
of the HIV/AIDS spreading rate β1 on the effective repro-
duction number R0

H . Since increasing the HIV/AIDS
spreading rate leads to increase, the HIV/AIDS transmission
in the community health stakeholders shall introduce effec-

tive intervention strategies to minimize the value of β1 less
than 0.829.

4.2.9. Impact of Portion of Protection against HIV Infection
p2 on R0

H . The numerical simulation represented in
Figure 11 illustrated that the portion p2 of the human
recruitment rate that entered to the HIV/AIDS protected
class using condom intervention strategy has a significant
effect on R0

H . From the result, we observed that increasing
the value of p2 leads to a decrease in the spreading rate of
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HIV/AIDS in the population. And we recommend for the
health stakeholders to introduce the portion of human
recruitment portion p2; more than 0.79 makes the effective
reproduction number value R0

H below unity.

4.2.10. Impact of HIV Infection Treatment ξ1 on R0
H . Simu-

lation illustrated in Figure 12 shows that the HIV treatment
rate ξ1 has a significant effect on R0

H . From the result, we
observed that whenever we increase the HIV treatment rate
ξ1, then the HIV spreading rate decreases in the population.
We recommend for the health stakeholders to exert their

optimum effort to introduce the HIV treatment rate ξ1 more
than the value 0.97 to make R0

H less than unity.

4.2.11. Impact of Pneumonia Spreading Rate β2 on R0
P.

Numerical simulation illustrated in Figure 13 examined
the effect of pneumonia spreading rate β2 on the effective
reproduction of pneumonia R0

P . From the figure, we
observed that increasing the value of β2 leads to increase
the effective reproduction number of the pneumonia, and
whenever β2 < 0 149 , then R0

P < 1. Thus, stakeholders of
public health shall exert optimum effort to minimize the
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spreading rate β2 for prevention and controlling of pneu-
monia spreading throughout the population. Epidemiolog-
ically, it means that whenever the pneumonia spreading
rate increases, then the pneumonia disease increases in
the community, and the disease will be eliminated from
the population if β2 < 0 154.

4.2.12. Impact of Portion p1 of Pneumonia Protection on R0
P.

Numerical simulation illustrated in Figure 14 shows that
the portion p1 of pneumonia protection of the human
recruitment rate has an influential impact on R0

P . From
the result, we observed that increasing the portion of

pneumonia protection decreases the pneumonia spreading
throughout the population. Thus, for stakeholders, we rec-
ommend to introduce the portion p1 of the human
recruitment greater than 0.803 and to make the value of
R0

P below one.

4.2.13. Impact of Pneumonia Treatment Rate γ on R0
P.

Numerical simulation represented in Figure 15 illustrated
that the treatment rate γ of pneumonia has a crucial indirect
role on R0

P. From the result, we observed that whenever the
pneumonia treatment rate increases, then the pneumonia
spreading in the population decreases. Thus, we recommend
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for health stakeholders to exert their optimal effort to maxi-
mize treatment rate γ more than the value 0.76 and making
the value of R0

P less than unity.

5. Conclusions

This study presented the HIV/AIDS and pneumonia coin-
fection dynamical system analysis to investigate protection
and treatment intervention mechanisms’ impacts on the
coinfection spreading dynamics. Using parameter values
adopted from published literatures, we have determined
some basic results from the HIV/AIDS and pneumonia
coinfection dynamical system qualitative and numerical
analysis stated as follows: the proposed coinfection model
has six equilibrium points; the HIV/AIDS submodel
disease-free and endemic equilibrium points that are both

globally and locally asymptotically stable whenever its effec-
tive reproduction number is less than one which indicates
that the HIV/AIDS submodel do not exhibits the phenome-
non of backward bifurcation; the pneumonia only disease-
free and endemic equilibrium points that are both globally
and locally asymptotically stable whenever its effective
reproduction number is less than one which indicates that
the pneumonia submodel do not exhibits the phenomenon
of backward bifurcation; and the HIV/AIDS and pneumonia
coinfection model disease-free and endemic equilibrium
points that are both globally and locally asymptotically sta-
ble whenever its effective reproduction number is less than
one which indicates that the HIV/AIDS submodel do not
exhibits the phenomenon of backward bifurcation. The
qualitative and quantitative sensitivity analyses reveal that
the disease-spreading rates, protection rates, and treatment
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rates are the most sensitive parameters at which the stake-
holders should give emphasis on these parameters and exert
their maximum effort to control the transmission of the dis-
eases in the community by applying suitable intervention
measures. The coinfection model numerical simulation per-
formed verified the qualitative results by investigating the
impacts of some model parameters on the models associated
with effective reproduction, the model state variables, and the
behavior of the coinfection model solutions regarding con-
vergence to the model equilibrium points. From the result,
we recommend to the health stakeholders to minimize the
disease-spreading rates and to maximize the protection and
treatment rates for reducing the effective reproduction num-
bers below one. Finally, since the model formulation in this
study is not exhaustive, any potential researcher can modify
this study in various ways, such as by incorporating optimal
control strategies, stochastic method, fractional order
approach, environment effects, age structure, or validating
models by collecting real data.
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