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Background. Coronavirus disease (COVID-19) is an infectious illness that spreads widely over a short period of time and finally
causes a pandemic. Unfortunately, the lack of radiologists, improper COVID-19 diagnosing procedures, and insufficient medical
supplies have all played roles in these devastating losses of life. Deep learning (DL) could be used to detect and classify COVID-19
for potential image-based diagnosis.Materials and Methods. This paper proposes an improved deep convolutional neural network
(IDConv-Net) to detect and classify COVID-19 using X-ray and computed tomography (CT) images. Before the training phase,
preprocessing methods such as filtering, data normalization, classification variable encoding, and data augmentation were used in
conjunction with the proposed IDConv-Net to increase the effectiveness of the detection and classification processes. To extract
essential features, deep CNN is then employed. As a result, the suggested model can identify patterns and relationships crucial to
the image classification task, resulting in more precise and useful diagnoses. Python and Keras (with TensorFlow as a backend)
were used to carry out the experiment. Results. The proposed IDConv-Net was tested using chest X-rays and CT images
collected from hospitals in Sao Paulo, Brazil, and online databases. After evaluating the model, the proposed IDConv-Net
achieved an accuracy of 99.53% and 98.41% in training and testing for CT images and 97.49% and 96.99% in training and
testing for X-ray images, respectively. Further, the area under the curve (AUC) value is 0.954 and 0.996 for X-ray and CT
images, respectively, indicating the excellent performance of the proposed model. Conclusion. The findings of our proposed
IDConv-Net model confirm that the model outperformed compared to existing COVID-19 detection and classification models.
The IDConv-Net outperforms current state-of-the-art models by 2.25% for X-rays and 2.81% for CT images. Additionally, the
IDConv-Net training approach is significantly quicker than the current transfer learning models.

1. Introduction

The worldwide outbreak of the coronavirus disease
(COVID-19) is still wreaking havoc on people’s lives and
health [1]. COVID-19 is a highly infectious disease with
limited and less effective treatment options [2]. The trans-
mission of COVID-19 occurs through respiratory droplets
released when an infected individual talks, coughs, or

sneezes due to infection with the SARS-CoV-2 virus. The
virus can also be spread by contacting the mouth, nose, or
eyes after touching a surface or object that has been exposed
to the virus [3]. Numerous COVID-19 patients frequently
overburden the healthcare systems in many countries. About
347.49 million/5.60 million patients have been diagnosed/
died with COVID-19 infection since December 2019. The
incidence of illnesses and deaths due to COVID-19 is
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increasing each day. According to a report [4] on 12 September
2022, a total of instances of COVID-19 have been reported at
613,958,298 in the world. Among them, 6,516,913 have died,
and 592,777,665 have recovered. Furthermore, over 1,075,668
out of 97,095,092 patients have died in America; 684,914 out
of 34,574,765 patients have died in Brazil; 528,165 out of
44,500,580 patients have died in India; 29,334 out of 2,014,887
patients have died in Bangladesh, etc. [4].

Generally, late detection of COVID-19 can assault the lungs
and harm the tissues of the disease-ridden patient [5]. The lungs
and human respiratory system are still particularly susceptible
organs where the COVID-19 virus can easily proliferate. Dam-
age results and the air sac is filled with liquid and expelled as an
outcome [6, 7]. As a consequence, the patient has trouble
breathing with oxygen. So, we want to rapidly and precisely
determine the degree of lung injury to survive the patients
and reduce fatality [8]. Moreover, early COVID-19 detection
can save the patient’s life and stop spreading. A significant level
of protection should be offered by a parenteral COVID-19
vaccine approach capable of inducing a potent, long-lasting
immune response involving neutralizing antibodies and T
cells [9, 10]. Different vaccine platforms and strategies have
advantages and disadvantages from an immunological per-
spective. As a result, the COVID-19 vaccine has significantly
changed the pandemic’s trajectory and reduced the rate of
mortality [9, 11].

One of the diagnostic methods used for detecting
COVID-19 is real-time reverse transcription polymerase
chain reaction (RT-PCR), which is a recommended tech-
nique by the WHO for identifying the presence of the virus
causing COVID-19 [12]. However, the RT-PCR method
takes a few hours to two days to produce test results. Addi-
tionally, this technique is difficult, expensive, manual, and
unavailable everywhere. The expense and lack of RT-PCR
affect many developing and underdeveloped nations [13].
Further, RT-PCR testing needs a laboratory kit; many
nations find it difficult to produce or gather during the out-
break [14]. Moreover, the COVID-19 RT-PCR test’s reduced
sensitivity was noted in several investigations. Many researchers
have reported this test’s sensitivity to 71% to 98%, which
reduces the detection accuracy of COVID-19 cases [15].

Another approach is medical imaging which plays a crit-
ical role in COVID-19 detection and management. Specifi-
cally, chest X-rays and computed tomography (CT) scans
have been used to detect and monitor COVID-19 patients.
Medical imaging, such as chest X-rays and CT scans, can
be helpful in detecting COVID-19 for several reasons,
including the visualization of lung abnormalities, the confir-
mation of the diagnosis, the severity assessment, and the
monitoring of disease progression [16]. Specifically, medical
imaging is used by radiologists to verify the COVID-19 diag-
nosis manually. However, as radiologists must manually
diagnose a significant number of COVID-19 patients, it is
a laborious, error-prone, and exhausting process that neces-
sitates competent radiologists [17].

Over the years, artificial intelligence (AI) has shown
potential in the field of medical imaging. Deep learning
(DL) is an effective tool for analyzing medical imaging data
because it can automatically identify patterns and features

from large datasets without requiring manual feature engi-
neering [18]. Furthermore, DL has the potential to improve
the speed, accuracy, and accessibility of COVID-19 diagnosis,
which can help to control the spread of the virus better and
improve patient outcomes. There has been a significant amount
of research on the use of medical imaging for COVID-19 detec-
tion. Several researchers have applied machine learning (ML)
and DL methods, such as convolutional neural networks
(CNNs), transfer learning (TL), autoencoders, and ensemble,
to medical imaging for COVID-19 detection. Further, these
ML and DLmethods have shown promise in COVID-19 detec-
tion using medical imaging [19]. Moreover, deep CNNs have
demonstrated potential in COVID-19 detection and classifica-
tion using medical imaging due to their ability to automatically
learn hierarchical features from the input images. Furthermore,
CNNs are designed tominimize noise and variation in the input
images. Additionally, it allows the network to leverage knowl-
edge learned from a large and diverse dataset, which can
improve performance on the target task. However, in some
research on COVID-19, lung cancer, monkeypox, brain stroke,
etc., detection and classification were performed using CNN
with insufficient accuracy [6, 20, 21]. Additionally, in some
cases, CNN and transfer learning require a longer training time
in the detection and classification.

After considering these issues, we require a compatible
deep learning framework that will be able to help consultants
and healthcare staff quickly and correctly identify COVID-
19 disease from X-ray and CT images [22]. This research is
aimed at demonstrating an enhanced deep convolutional
neural network-based solution for automatic COVID-19
detection from chest X-rays and CT images. The COVID-
19 radiography dataset that is publicly available is limited,
and a large dataset is preferred to train deep CNN models.
Even after using overfitting mitigation techniques, training
DL models on a small dataset can result in overfitting. One
of the most critical issues when designing the architecture is
limiting the number of trainable parameters to avoid overfit-
ting. An early call-back function can be employed to avoid
overfitting. Further, data augmentation can also be used to
address problems with small datasets. While developing deep
learning models, overcoming the vanishing gradient problem
is crucial. Additionally, the problem of accuracy degradation
during deeper network training needs to be addressed.

This paper’s primary contributions include the following:

(i) We propose an improved IDConv-Net model that
can effectively and precisely differentiate between
patients with normal chest conditions and those
with COVID-19 by utilizing both chest X-rays and
CT images

(ii) Moreover, the novelty of the IDConv-Net model is
that it can detect and classify disease from different
modalities of images with higher accuracy. The
model training approach time is very quick due to
the use of fewer layers

(iii) Furthermore, to evaluate the performance of IDConv-
Net, we run the model using X-ray and CT images
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from which the best classification rate is achieved
when compared to other existing detection models.
In addition, ourmodel provides a lowermiss detection
which indicates that the model is more reliable in
detecting COVID-19 even though the dataset is
entirely unknown

(iv) Lastly, the experimental findings support the notion
that the suggested IDConv-Net model outperformed
previous state-of-the-art approaches to COVID-19
detection and classification. Additionally, the proposed
IDConv-Net model correctly detects COVID-19 in
both datasets, such as chest X-rays and CT images

The subsequent sections of this paper are organized as
follows: Section 2 provides a literature review of the study,
while Section 3 describes the method used and the required
materials in detail. Our proposed IDConv-Net model is elab-
orated on in Section 4, while Section 5 presents the potential
training parameters employed in our model. Section 6 of this
paper presents the study’s findings, while Section 7 provides
a discussion of these results. The paper concludes with a
summary in Section 8.

2. Related Works

To stop the COVID-19 pandemic from spreading, it is
essential to identify the virus quickly and precisely. Chest
X-ray and CT images are available in almost all hospitals
worldwide and are the most widely used and economically
advantageous medical imaging technology for evaluating
lung problems [22, 23]. Chest X-ray and CT scans can
reliably identify lung injury in COVID-19 patients earlier
[9, 24]. It identifies the virus’s stage while indicating its pres-
ence [16]. However, the lack of distinctive characteristics
and the resemblances between lung lesions and other viral
diseases make COVID-19 susceptible to misdiagnosis [25].
Considering these, potential AI appliances such as ML and
DL can overcome the COVID-19 disease detection errors
caused by people from X-ray and CT imaging techniques
[26–28]. AI has proven its efficiency and performance in
detecting diseases like cancer, tumor, pneumonia, and
COVID-19. DL-based approach, such as CNN, plays a key
role in processing medical images, particularly in features
extracting and classifying [29]. In [30], Bassi and Attux
developed a dense CNN to classify COVID-19, pneumonia,
and normal from chest X-rays. They proposed a novel
approach of output neurons that modifies the twice-
transfer learning techniques. They achieved a good perfor-
mance from their model regarding the classification of
COVID-19. However, larger datasets and clinical investiga-
tions were required to guarantee accurate generalization.
Agrawal and Choudhary [20] suggested a deep CNN for
detecting COVID-19, utilizing two datasets of chest X-rays.
For image segmentation, they used an encoder-decoder
architecture. The CNN structure encoder extracts features
and transfers them to the decoder as part of the segmenta-
tion procedure for this experiment. The findings demon-
strated that, for two datasets used in COVID-19 detection,

the suggested model achieved high accuracy of 94.4% and
95.2%, respectively.

The authors [31] introduced a novel COVID-CXNet uti-
lizing a familiar transfer learning-based CheXNet model.
They utilized relevant and meaningful features in the detec-
tion of novel coronavirus. A CNN-long short-time memory
(CNN-LSTM) model was designed by Purohit et al. [32] to
extract features from raw data hierarchically. They employed
several COVID-19 chest X-ray datasets to test and investi-
gate the model accomplishment of COVID-19 detection.
For the larger dataset, however, the model needs to be
trained for longer, which needs to be cut down.

Ayalew et al. [17] presented the DCCNet model for the
diagnosis of COVID-19 patients. The authors employed
two methods, namely, histograms of oriented gradients
(HOG) and CNN, to extract features from input images,
and used a support vector machine (SVM) classifier to clas-
sify COVID-19. The SVM classifier yielded 99.97% accuracy
during training and 99.67% accuracy during testing when
combined with CNN and HOG-based features.

Indumathi et al. [33] mentioned an ML algorithm to clas-
sify and predict COVID-19-affected zone. FromMarch to July
2020, they used the Virudhunagar district’s COVID-19 data-
set. They achieved a 98.06% accuracy rate, which was higher
than the 95.22% accuracy rate of the C5.0 algorithm.

Salau [34] used an SVM technique to classify and iden-
tify COVID-19 using chest CT data. After extracting features
from CT scans using a discrete wavelet transform (DWT)
technique, the study built a classification model. The find-
ings demonstrated that the suggested model has a high accu-
racy of 98.2% in COVID-19 detection.

Chaunzwa et al. [35] used a DL framework to detect lung
cancer from CT images. In [36], the identification of
COVID-19 on CT scans is accomplished using ML methods.
However, their investigation only used images that cost 150
for CT scans. Khan et al. [37] highlight promising DL
research for understanding radiography pictures and pro-
gressing the investigation of constructing specific DL-based
assessment methods for unique COVID-19 variations, delta,
omicron, and challenges ahead. In [6, 21], to identify
COVID-19, the authors implemented an SVM technique.
Using 208 test data, they achieved a lower recognition rate.
In [38], the authors applied ML techniques to detect
COVID-19 automatically using X-ray images to enhance
accuracy. Rahimzadeh and Attar [39] considered Xception
and ResNet50V2 approaches for COVID-19 identification
from X-ray images. In [40], the researchers employed pre-
trained transfer learning models, such as ResNetV2, Incep-
tionV3, and ResNet50, for detecting lung disease and
COVID-19 using X-ray images. In [40], COVID-19 was
identified using just X-ray data by CNN models like Incep-
tion-ResNetV2, ResNet50, and InceptionV3, where the
models had 98%, 97%, and 87% classification accuracy,
respectively. These experiments used a few X-ray data. They
may have tested their models’ performance on other modal-
ities, such as CT scans.

However, some problems with past research include
insufficient detection accuracy for different modalities of
images, small datasets, overfitting issues, and using CNN
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without first preprocessing images. Further, some works
require prolonged training time, which is another drawback.
This study used a number of image preprocessing approaches
to address these drawbacks. Furthermore, the proposed
enhanced model improves detection and classification perfor-
mance and reduces the training approach time.

3. Materials and Methods

This section elaborates on the methodology provided for
identifying COVID-19. Figure 1 depicts the process of the
proposed methodology.

3.1. Image Data Acquisition. A dataset is the backbone of
research. We used two types of images, 2D CT and X-ray
images. For CT images, the settings for the 64-slice scanner
were calibrated with the following parameters: collimation
of either 128 × 0 6mm or 64 × 0 6mm, tube voltage of 120
kilovolts (kV), section thickness of five millimeters (mm),
slice interval of five millimeters (mm), the pitch of
1.375mm, and field of view of three hundred fifty by three
hundred fifty (mm). In addition, the patient’s position was
supine; both arms were elevated, and the patient was
instructed to hold their breath. The datasets were recon-
structed with a wall thickness and increment ranging
between 1.5 and 2mm [41].

We collected 1,252 COVID-19 positive and 1,230 nor-
mal images from the SARS-CoV-2 CT-scan dataset which
images were gathered from real patients in hospitals from
Sao Paulo, Brazil.

Our COVID-19 CT scan image dataset consisted of
7,593 COVID-19 images obtained from 466 patients, as well
as 6,893 normal images obtained from 604 patients. Then,
merge CT images of both datasets to create a new 2D-CT
dataset containing 8,845 COVID-19 and 6,893 normal
images, totaling 17,168 images. Similarly, we collected 576
COVID-19 positive and 1,583 normal X-ray images from
COVID-19 X-ray dataset and 4273 COVID-19 positive
images and 10192 normal X-ray images from the COVID-19
Radiography Database and then merged them to create an
enlarged size of the new X-ray dataset. We used a new merged
X-ray and 2D-CT image dataset to perform our model better.
Overall, the merged X-ray dataset contains 4,192 positive
COVID-19 and 11,775 normal images, and the merged 2D-
CT dataset consists of 8,845 COVID-19 positive and 8,123
normal CT images. We represent some sample CT and
X-ray images in Figures 2 and 3. In Table 1, we highlighted
the number of images extracted from the sources dataset.
The datasets were partitioned into training, validation, and
testing sets, as shown in Table 2. For each dataset, 80% of
the images were allocated for training, 10% for validation,
and 10% for testing purposes.

3.2. Data Preprocessing. Preprocessing is crucial in trans-
forming raw data into a format appropriate for the ML or
DL approach. It primarily enhances the source images by
controlling normalization, multicollinearity, scaling, shuffle,
and data division [42]. Furthermore, preprocessing methods
enhance the image quality, making an experiment more suc-

cessful. Moreover, it is very difficult to handle high dimen-
sions of input data. Sometimes, it may cause overfitting
and poor results. For this reason, we downsized the images
to 224 × 224. We applied the dimensionality reduction tech-
nique for less computational time and quick visualization.
Before training the model, it is essential to convert string
or nonnumeric features into numeric ones. So, we utilized
data transformation for data compatibility, which means
converting string or non-numeric features into numeric
[43–45]. We also use feature engineering, which entails
selecting the features that would be helpful in training a
model. The normalizing technique was utilized to compare
various features on a comparable scale. As a result, we can
use higher learning rates or models to converge more
quickly for a given learning rate. It also helps to stabilize
the gradient descent step.

3.3. Normalization of Data. The significance of data normal-
ization for developing exact prescient models has been ana-
lyzed for the different ML algorithms that have recreated a
crucial position [46]. The fundamental objective of data nor-
malization is data quality assurance before its application to
predictive analytics. Various data normalization techniques
can be utilized, including min-max normalization, Z-score
normalization, decimal scaling, and median standardization,
among others [47, 48]. The prime aims of data normaliza-
tion are given below:

(i) This data group makes all entries and attributes
appear identical

(ii) It provides the dataset with relevant information
that is more obvious and natural, reducing its size
and simplifying its structure so that it is easier to
identify, contrast, and retrieve

(iii) It enhances and simplifies the numerical data with-
out losing the critical characteristics with reduced
complexity, leading to easy segmentation

The dataset can be normalized by dividing an image’s
gray-scale value by 255. However, this study uses Z-score
normalization as a normalized technique [49], which is
stated as follows:

Zk =
Zk − S
std S

, 1

where Zk indicates the normalized weights of Z-score, Zk is
the weight of Sth row and kth column, S represents the mean,
and std S represents the standard deviation, which can be
expressed as

std S =
1
n
〠
n

k=1
Zk − S 2 2
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Herein,

S =
1
n
〠
n

k=1
Zk 3

When manipulating data, the values are typically scaled
into the [0–1] range, ensuring that the data is stored.

3.4. Working with Numerical Data. The most frequent data
types are dealt with in DL methods through numerical

Output = Sigmoid

Data
normalization

Data
reduction

Converting into
numerical data

Output = Sofmax

Model
evaluation

Feature
extraction

Data
augmentation

Data
preprocessing

Image data
acquisition

Training and
validation

Figure 1: Working flow diagram of the proposed methodology.
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Figure 2: CT scan images of COVID-19 and normal patients.
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Figure 3: X-ray images of COVID-19 and normal patients.
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values. For this reason, we had to maintain some procedures
to get numerical values for each extracted feature. Further-
more, we apply normalized and standardized operations to
get better processing to train models and support various
DL networks. In our experiment, we converted the two levels
of COVID-19 and non-COVID-19 to 0 and 1 using the
LabelEncoder function from the Python standard mod-
ule [50].

3.5. Data Augmentation. Data augmentation is a powerful
and useful technique for improving machine learning
models’ accuracy and predictive ability by increasing the
number of images in a dataset through modified versions
of existing training images. Moreover, it reduces the com-
plexity of collecting more images to enlarge the dataset. Data
augmentation utilizes techniques such as data wrapping and
oversampling to increase the number of images in a dataset.
Nevertheless, it may appear to be an overfitting problem in
the results [51]. To mitigate this problem, we have applied
flipping, rotation shearing, mirroring, zooming, fill mode,
and channel shifting using principal component analysis to
augment the data [52]. The augmentation parameters that
we used to increase the number of images are given below:

Flipping: the image is horizontally and vertically flipped.
The flipping operation reconfigures the pixels while preserv-
ing the image’s attributes. An image’s vertical and horizontal
position is randomly adjusted by 0.2 degrees.

Rotation: the image is flipped by a number of degrees
between 0 and 360. In the model, every flipped image will
be different. The rotation range is from -360 to 360 degrees.

Shear: to produce or correct perception angles, the image
can be twisted along a particular axis using a shear range of
approximately 0.4 degrees.

Zoom: the zoom range of an image in the data augmen-
tation method can be zoomed in or out. This method
enlarges the image by zooming in or out randomly and add-
ing pixels around the image. The extent of zoom is around
0.5 degrees.

Fill mode: to fill the empty pixel’s values, the default
value “nearest” is applied, which replaces the nearest image
pixels.

Channel shifting: it randomly shifts channel values to
vary the hue by 10.

4. Our Proposed IDConv-Net Model

This section represents the proposed model and working
outline. The proposed IDConv-Net model has five convolu-
tional layers and four pooling layers (max pooling), batch
normalization, rectified linear unit (ReLU), dense and drop-
out layers, and sigmoid. The architecture of the IDConv-Net
model is shown in Figure 4, which consists of input images,
feature extraction, and classification layers. Firstly, the fea-
ture extraction layer extracts the critical features from the
input images; then, the last part of the model, such as the
fully connected layer, performs classification. As a result,
the model functions as a feature extractor before acting as
a classifier.

4.1. Feature Extraction. Feature extraction is an important
step in ML and Dl applications, as it can improve the effi-
ciency, accuracy, and interpretability of the subsequent
learning algorithms [53]. The feature extraction part of our
model consists of five convolutional layers followed by four
max-pooling layers through the ReLU activation layer (see
Figure 5), while subsequent ReLU layers follow through
the batch normalization layer and maximum pooling layer,
and finally, the last convolution layer, followed by the flat-
tening and dropout layer, as shown in Figure 4.

Apart from this, the input layer initially receives input
images with the size of 224 × 224 × 3 CT or X-ray chest
image, where 224 × 224 is the image’s dimension, and 3 is
the RGB channel. The convolutional layer is responsible
for featuring maps, i.e., feature representation, of the input
images [54]. The input image x is convoluted with a set of
trainable weights, sometimes referred to as multidimen-
sional filters f k, and the result is coupled with biases bk.

Table 1: Details of X-ray and CT datasets before and after merging images.

Type Dataset COVID-19 images Normal images Total images

X-ray

COVID-19 X-ray dataset 576 1,583 2,159

COVID-19 Radiography Database 3,616 10,192 13,808

Merged X-ray dataset 4,192 11,775 15,967

CT

SARS-COV-2 CT-scan dataset 1,252 1,230 2,482

Large COVID-19 CT scan slice dataset 7,593 6,893 14,686

Merged CT dataset 8,845 8,123 17,168

Table 2: The datasets used in this study.

Dataset Label Train set Validation set Test set Total

X-ray
COVID-19 3354 419 419

15,967
Normal 9,419 1,178 1,178

CT
COVID-19 7,075 885 885

17,167
Normal 6499 812 812
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Assume there are K filters; this layer’s kth output can be rep-
resented as given in the following equation:

Vp′′,q′′,n = 〠
C

c

f cn × xc rp ′ ′,q ′ ′ + bn, 4

= 〠
M

p′=1
〠
N

q′=1
〠
C

c=1
f cn × xc rp ′ ′,q ′ ′ + bn, 5

where x ∈ RM×N×C , f ∈ RM ′×N ′×C , x ∈ RM ′′×N ′′×C and M,
N , C are the height, width, and channel of the input, respec-
tively. Further, N″ =N −N ′ + 2P/S + 1, M″ =M −M ′ + 2P
xc rp ′ ′,q ′ ′ represents the local region of pth row and qth col-
umn of input image, where P is the zero padding number
and S is the pixels of stride. Further, the batch normalization
(BN) layer improves network training and lessens sensitivity
to network initialization between the convolutional and
activation unit (ReLU) layers [55]. In this paper, the ReLU
activation function is applied, mathematically shown in
Equation (6), and it only keeps the positive part of the
activation.

a p,q,n = f z p,q,n =MAX z p,q,n , 0 6

Furthermore, the polling layer takes maximum values with
a pool size of (2, 2). Consequently, the max-pooling layer
pooled the feature maps with the dimension 111 × 111 × 64,
followed by the second convolutional layer. Similarly, the sec-
ond convolutional layer convolved feature maps, followed by a
second pooling layer with a similar filter size of 2 × 2 and a
stride of 2. Consequently, the image’s dimension will be
reduced to 54 × 54 × 256. Table 3 displays the proposed
IDConv-Net model, which outlines its constituent layers,
including their corresponding output sizes. The IDConv-Net
model is comprised of five convolution layers, four activation
layers, and four max-pooling layers. The resulting output fea-
tures are then passed through a flatten layer, a dense layer, a
dropout layer, and a sigmoid activation layer.

4.2. Classification. The classification layer is the final layer of
the proposed model that produces the network’s output in
the form of predefined categories or classes. The classifica-
tion layer follows the feature extraction layer that extracts
the high-level features from the image. The output of the
feature extraction layer is sent to a flattened layer as the first

Conv4

Input data

Conv5

Dense

Sigmoid

Convolution + ReLU

 1 × 1 × 102400 10 × 10 × 102424 × 24 × 1024
52 × 52 × 512

109 × 109 × 256

222 × 222 × 64

Max pooling
Fully connected

Flatten

Conv3

Conv2

Conv1

Figure 4: The architecture of our recommended IDConv-Net model.

Input

Feature extraction

Pooling

Classifcation

Fully connected

Output

Feature map

Convolution

Figure 5: The workflow of the feature extractor and classifier.
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step in classification, which converts the data’s form into a
one-dimensional data vector. In the classification function,
a dropout layer is followed by a thick layer with 1024 neu-
rons. A dense layer produces the final output with two neu-
rons and a sigmoid activation function, which identifies the
image as belonging to one of the chest diseases: COVID-19
or the normal.

The classification layer in a CNN using the sigmoid
activation function can be represented using the following
equation:

y = σ Wx + b , 7

where x is the output of the previous layer, W is the weight
matrix of the classification layer, b is the bias vector, and σ is
the sigmoid activation function defined as

σ x =
1

1 + e−x
8

The output of the final layer of the proposed model is
passed through the sigmoid function to obtain a value
between 0 and 1, which can be interpreted as the probability
that the input image belongs to the positive class. The
decision boundary can be set to 0.5, so if the output of the
sigmoid function is greater than 0.5, the input image is
classified as belonging to the positive class. If it is less than
or equal to 0.5, the input image is classified as belonging to
the negative class. Moreover, a dropout layer is utilized with

a value of 0.3 for the last convolution layer to avoid overfit-
ting between the training and testing performance.

5. Training and Performance

The performance of the training and testing set depends on
the experiment setup and performance matrices such as pre-
cision, Recall, F-score accuracy, sensitivity, and specificity.
Experiment setup and performance matrices were described
in this section.

5.1. Experiment Setup. Hyperparameter tuning is an impor-
tant step in building machine learning models, as it involves
selecting the optimal hyperparameters that result in the best
performance of the model. To get excellent performance
from the model, we repeatedly fine-tuned the model. We
used three optimized hyperparameters during our study’s
training phase: batch size, epochs, and learning rate. Manu-
ally tuning that parameter is time-consuming; therefore, we
have applied the grid search method to select the best value
of the hyperparameter. Table 4 summarizes the initial and
optimal parameters found during the experiment. From
Table 4, we can infer that the best-optimized batch size is
32, epochs are 50, and the learning rate is 0.001 for both
datasets. We performed a grid search method using ML
frameworks and libraries, such as scikit-learn in Python to
obtain these values.

Adam, also known as adaptive momentum, is used to
enhance the performance of our suggested IDConv-Net
model because it performs consistently while categorizing
binary images [56]. The experiment was conducted using
an organization laptop with Windows 10, a Core i7 proces-
sor, and 16GB of RAM. Furthermore, we run the model
on a Jupiter laptop and the Google Colab GPU environment
with 12GB of RAM.

The proposed model was developed and fine-tuned
using chest X-ray and CT image dataset to get insight into
the COVID-19 identification issues. We split our dataset
into three sections: training, validation, and testing to evalu-
ate the performance of the IDConv-Net model. To assess the
performance, we have used 80% data for the model training
up, 10% data for model validation, and the rest 10% for
model testing. Table 2 shows the data distribution for the
training, validation, and testing sets, respectively, for a better
understanding of both datasets.

5.2. Performance Metrics. Performance measures are crucial
to assessing the proposed approach. In this study, we mea-
sured precision, recall, F1-score, and accuracy using four
metrics: true positives (TP), false positives (FP), true nega-
tives (TN), and false negatives (FN).

(i) TP. The experimental result for the COVID-19
patients is accurate. That means the model detects
positive results for COVID-19-affected patients

(ii) TN. The experimental result for the Non-COVID-
19 patients is accurate. That means the model
detects negative results for Non-COVID-19 affected
patients

Table 3: The proposed IDConv-Net model with its layers and
output size.

Layer No Name Layer Type Output size

1 Input — 224 × 224 × 3

2 C1 conv2d 222 × 222 × 64

3 A1 Activation 222 × 222 × 64

4 M1 max_pooling 111 × 111 × 64

5 C2 conv2d 109 × 109 × 256

6 A2 Activation 109 × 109 × 256

7 M2 max_pooling 54 × 54 × 256

8 C3 conv2d 52 × 52 × 512

9 A3 Activation 52 × 52 × 512

10 M3 max_pooling 26 × 26 × 512

11 C4 conv2d 24 × 24 × 1024

12 A4 Activation 24 × 24 × 1024

13 M4 max_pooling 12 × 12 × 1024

14 C5 conv2d 10 × 10 × 1024

15 F1 Flatten 1 × 1 × 102400

16 D1 Dense 1 × 1 × 1024

17 Dr1 Dropout 1 × 1 × 1024

18 D2 Dense 1 × 1 × 1

19 A5 Activation 1 × 1 × 1

8 BioMed Research International



(iii) FP. The experimental result is wrong for the Non-
COVID-19 patients. That means the model detects
positive results for Non-COVID-19 affected patients

(iv) FN. The experimental result is wrong for the
COVID-19 patients. That means the model detects
negative results for COVID-19-affected patients

Each of these performance metrics is used to assess the
performance described in the equation below:

Precision (P): it is comprehended as a positive predictive
value. It measures the proportion of positive and projected
instances out of the total number of cases that are expected
to be positive.

P =
TP

TP + FP
9

Recall (R): it calculates the percentage of individuals who
are truly positive out of the total number of individuals who

Input: COVID-19 or Non-COVID-19 X-ray or CT images datasets D with resize image dimension (S).
Featured Vector using IDConv-Net = (Fv)
1: Initialize Fv>= Sp.p =1
2: characteristics extracted from each image D(p, 1, 570).
3: Fv(p, 1) = S(x, 1) + Fv(p, 1).
4: Fv = Total characteristics extracted by IDConv-Net.
5: Assign. Ho =Output of the hidden layer, Hd = Last hidden layer outcome.
6: Vt(p, 1) =Ho(p, 1) +Hd(p, 1).
7: Ft =Output of the IDConv-Net through a hidden and FC layer.
8: Training_feature (Ttrain_feature) = [Fv, Ft].
9: Test_image = imread(image).
10: Move to: step 1 and 2 to extract essential test features (Ttest_feature) from test set.
11: Outcome (i) = classify (Ttrain_feature, Ttest_feature).
12:Output: True for COVID-19 Positive or False for COVID-19 Negative.

Algorithm 1: Suggested algorithm for the classification of COVID-19.

Table 4: Parameter settings used during this study.

Parameters
Study X-ray Study CT

Initial parameter Optimize parameters Initial parameter Optimize parameters

Batch size 10, 20, 32, 64 32 10, 20, 32, 64 32

Epochs 30, 40, 50, 60 50 25, 30, 50, 70 50

Learning rate .001, .01, 0.1 .001 .001, .01, 0.1 .001

Table 5: Performance comparisons between the IDConv-Net and state-of-the-art models on X-ray images.

Model Dataset Precision Recall F1-score Training accuracy Testing accuracy

AlexNet [57] Lungs X-ray 69.25 90.43 81.83 69.84 67.76

nCOVnet [58] Chest X-ray 82.00 97.62 89.13 97.00 88.10

Deep CNN [59] covid-chestxray 99.17 71.76 83.27 72.78 71.90

InceptionResnetV2 [60] covid-chestxray 92.11 92.38 92.07 93.83 92.18

MobileNetV2 [61] covid-chestxray 20.00 100 33.33 62.12 60.00

ResNetV2 [61] covid-chestxray 40.00 100 57.14 71.89 70.00

VGG-16 [62] COVID-19 and pneumonia 86.17 86.23 86.38 87.36 86.39

AlexNet [40] Covid_Data 84.62 94.57 89.32 92.93 82.62

DenseNet201 [61] covid-chestxray 100 83.33 90.91 92.23 90.00

DenseNet121 [63] Radiography Database 89.47 100 94.44 — 94.74

Proposed IDConv-Net model Merged X-ray 97.14 91.87 94.43 97.49 96.99

Table 6: Confusion matrix of the proposed IDCNN model on
X-ray images.

Actual value
COVID-19 Normal

Predicted value
COVID-19 407 12

Normal 36 1142
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are either positive or expected to be positive. It is commonly
referred to as the actual positive rate.

R =
TP

TP + FN
10

F1 -score (F1): precision and recall are used to determine
F1-score. It is significant to the experiment because of indi-
cating the test accuracy.

F1 = 2 ×
Precision × Recall
Precision + Recall

11

Accuracy (A): the ratio is the number of right prediction
cases separated by the total number of cases.

A =
TP + TN

TP + TN + FP + FN
12

The value of all performance metrics ranges from 0 to 1.

6. Results

The study used secondary datasets of two modalities: X-rays
and CT images. The experiment utilized 15967 X-ray images,
where 14370 images were used for model training and valida-
tion, and the remaining 1597 images were used to evaluate the
model. Similar to the first experiment, 15471 CT images were
used for model training and validation, and the remaining
1697 images were used to evaluate the model. In this experi-
ment, 17168 CT images were used.

Firstly, we ran the experiment five times to optimize the
hyperparameters, including node size, batch size, learning
rate, and drop rate. The optimized learning rate was 0.0001
and 0.001 for the X-ray and CT studies, respectively, and
0.99 momentum while training the model with the Adam
optimizer using the binary cross-entropy loss. In our research,
we have used 50 epochs. However, it was completed in 48
epochs for the CT images and 47 epochs for the X-ray images
due to the early stopping function, which is accountable for
terminating the execution when reaching an optimum result.
Moreover, the complete trainable parameters in model train-

ing were 8,004,481 out of 8,088,129. Furthermore, the sigmoid
activation function is used in the final layer since our model
works as a binary classifier.

We utilized X-ray and CT images separately to evaluate
the performance of the proposed IDConv-Net model. To
evaluate the performance of IDConv-Net, firstly, we train
the model with X-ray images. We used 80% of the data for
model training and 10% for validation. The remaining 10%
was used to evaluate the model’s performance. After evaluat-
ing the IDConv-Net model with X-ray images, we achieved
an accuracy of 97.49% and 96.99% for training and testing,

Table 7: Performance comparisons between the IDConv-Net and state-of-the-art models on CT images.

Model Dataset Precision Recall F1-score Training accuracy Testing accuracy

Noisy-OR Bayesian [64] Transverse-section CT 86.87 86.67 86.70 87.05 86.70

Decision fusion [65] COVID-CT 88.14 88.79 86.70 89.78 88.34

Ensemble [66] CT (HRCT) 90.63 93.55 92.06 92.83 91.94

DenseNet [67] HRCT images 96.00 97.00 93.00 91.36 92.00

DenseNet161 [68] COVID19Net 85.39 77.55 81.28 84.36 82.76

Ensemble (Hard voting) [68] COVID19Net 82.80 78.57 80.63 82.88 81.77

Ensemble (Soft voting) [68] COVID19Net 83.70 78.57 81.05 84.21 82.27

VGG16-based DL [69] Hospital of Tabriz Data 91.50 89.78 90.63 91.68 90.14

3D-ResNets with attention [63] Several cooperative hospitals 86.27 92.33 85.20 — 93.30

U-NET [70] CT segmentation dataset 96.38 96.04 86.10 95.93 95.60

Proposed IDConv-Net model Merged 2D-CT 98.64 98.31 98.48 99.53 98.41

Table 8: Confusion matrix of the proposed IDCNN model on CT
images.

Actual value
COVID-19 Normal

Predicted value
COVID-19 873 12

Normal 15 797
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Figure 6: Accuracy curve of the proposed IDConv-Net model for
X-ray images.
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respectively (see Table 5). Furthermore, the model achieved
a precision of 97.14%, recall of 91.87%, and F1-score of
94.43% from the X-ray image dataset. From the confusion
matrix of the X-ray image dataset (see Table 6), only 12
out of 419 COVID-19 images are misidentified. Further-
more, only 36 out of 1178 normal images are miss identified.

In a different study, we used a CT scan image dataset to
train the IDConv-Net model. In this study, 80% of the data
were utilized for model training, and 10% were used for
model validation. The performance of the model was
assessed using the final 10%. We achieved an accuracy of
99.53% and 98.41% for training and testing, respectively,
after evaluating the IDConv-Net model on CT images. The
findings of IDConv-Net are compared with other state-of-
the-art methods shown in Table 7, where the suggested
model achieved a precision of 98.64%, recall of 96.31%, F1
-score 98.48%, training accuracy of 99.53%, and testing
accuracy 98.41%. From the confusion matrix of the CT
image dataset (see Table 8), only 12 out of 885 COVID-19
images are miss detected, whereas 15 out of 812 normal
images are miss detected. The accuracy and confusion
matrix proves the model classification reliability even with
an entirely new data set.

Finally, we can infer that our proposed model can accu-
rately classify COVID-19 and normal patients from X-ray
and CT image datasets. The proposed model obtained a bet-
ter accuracy with a bit of loss, which is shown in Figures 6
and 7. In another study, the model outperformed the exist-
ing models with a little loss on CT images, as shown in
Figures 8 and 9.

Moreover, the area under the curve (AUC) summarizes
the receiver operating characteristics (ROC) curve demon-
strating the classifier’s ability to distinguish between classes.
The horizontal axis (X-axis) represents the false positive rate
(FTR), and the vertical axis (Y-axis) represents the true pos-
itive rate (TPR). The AUC-ROC value is an indicator of the
detection performance of the model, with a higher value
indicating better performance. The AUC-ROC 0.954 and

0.966 have been achieved simultaneously from our proposed
model using X-ray and CT image datasets shown in
Figures 10 and 11, respectively. The results of our study indi-
cate that training time for a deep learning model is an impor-
tant consideration for detecting and classifying COVID-19.
Based on the data presented in Table 9, it can be observed that
our proposed IDConv-Net model exhibited significantly
reduced training times compared to other transfer learning
models. Specifically, the training time for the X-ray image
dataset was only 31 ± 1 minutes, while the training time for
the CT image dataset was 34 ± 1minutes. These training times
were substantially lower than those observed in existing
models, which took double as long. Therefore, our IDConv-
Net model can be considered a highly efficient and effective
approach for image classification tasks. We have also demon-
strated the random prediction outcomes of test images using
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Figure 7: Loss curve of the proposed IDConv-Net model for X-ray
images.

Model accuracy

0

0.86

0.84

0.88

0.90

0.92

0.94

0.96

0.98

1.00

10 20 30
Epoch

Ac
cu

ra
cy

40 50

Training
Validation

Figure 8: Accuracy curve of the proposed IDConv-Net model for
CT images.

Model loss

0

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30
Epoch

Lo
ss

40 50

Training
Validation

Figure 9: Loss curve of the proposed IDConv-Net model for CT
images.

11BioMed Research International



our suggested IDConv-Net in Figures 12 and 13. In this direc-
tion, we evaluated the identification accuracy by comparing
the actual and predicted test images with a confidence level.

7. Discussion

In this study, 2D-CT and X-ray images were used. The 2D
approach is slice-based, using a single slice image as input
to produce a score for each individual. As opposed to this,
3D is a volume-based technique that uses the entire volume
(a sequence of slices) as its input to produce a single patient
score. However, 2D is still trustworthy for inspecting impor-

tant areas of images and for complex geometry. Moreover,
we applied preliminary filtration to all chest images on the
train set to control quality and remove incomprehensible
slices for processing the chest CT images. Before being
approved to train in the IDConv-Net model, two expert phy-
sicians graded the diagnosis for the images. A third expert
evaluated the evaluation set to ensure no grading errors.
Furthermore, we applied the generalization technique to
enhance the model performance. The grid-search approach
was utilized to identify the optimum hyperparameters. We
have chosen the local minima by defining a set of discrete
values. The objective function is then evaluated at its grid
point by inputting the appropriate parameter values follow-
ing that. Subsequently, the local minimum can be identified as
the lowest objective function value grid point. The minimum
and maximum values for each prior were also employed; these
parameters were determined empirically according to the
characteristics of the images and the number of instances.
The parameter settings used in this study are shown in
Table 4 with the initial and optimized parameters.

After training, the model can process new data and esti-
mate accurate predictions. In addition, we also used some
techniques like data feature extraction preprocessing to get
an accurate classification.

We can see the results of the comparison of the proposed
model with the state-of-the-art model in Table 5, where we
obtained such excellent results due to applying some image
preprocessing techniques like noise removal, filtering, data
transformation, and feature extraction. Furthermore, our
model is quicker because we use fewer layers than the
state-of-the-art model. Figure 6 represents the training and
validation accuracy of the proposed model during the train-
ing. Figure 7 shows the training and validation loss during
the model training. From these curves, we can infer that
there is no overfitting and exhibits a good model perfor-
mance. Although we have used 50 epochs, the model termi-
nates execution after 47 epochs for X-ray and 48 epochs for
CT images due to the early stopping function.

Similarly, for the CT scan study, Table 7 highlights that
our proposed model achieved an excellent performance
compared to state-of-the-art models. Moreover, Figure 8
shows the accuracy for the training and validation sets dur-
ing the model build-up. Similarly, Figure 9 indicates the loss
of train and validation sets during the model train. After
evaluating the model, we got excellent accuracy and loss
curves which indicates the model’s good performance.

The study’s most significant part was increasing the
accuracy level of detection and classification. It is also possi-
ble that the goal is to obtain accuracy as close to 100% as
possible because, even in a few cases, misdiagnosis is not
worth it.

Although similar models of CNN (e.g., AlexNet, nCOV-
net, MobileNetV2, and ResNetV2) could detect COVID-19
with insufficient accuracy, moreover, more hidden layers of
these models consume more time to yield results. In addi-
tion, these models increase the complexity of providing the
detection results. Our proposed IDConv-Net model has
great significance as a binary classifier. Firstly, it works as a
feature extractor, then as a classifier. Moreover, the model
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Figure 10: AUC-ROC of the proposed IDConv-Net model for
X-ray images.
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is more flexible, less complex, and consumes less time due to
fewer hidden layers.

In medical imaging, evaluating ML and DL models used
for COVID-19 detection commonly employs the AUC-ROC
performance metric, in addition to accuracy. The ROC curve
is a graphical representation of the sensitivity and specificity
of a binary classifier, and the AUC-ROC quantifies the
model’s ability to distinguish between positive and negative

classes in a binary classification task. Figures 10 and 11 rep-
resent the AUC-ROC of the proposed model for X-ray and
CT images. The proposed model obtained 0.954 and 0.966
AUC-ROC for X-ray and CT images, respectively. A high
AUC-ROC value indicates that the model has good discrim-
ination between COVID-19 positive and negative cases, with
high sensitivity and specificity. However, its use should be
combined with other performance metrics and clinical

Actual: Normal
Predicted: Normal

Confidence: 98.59%

Actual: Normal
Predicted: Normal

Confidence: 99.12%

Actual: Normal
Predicted: Normal

Confidence: 96.89%

Actual: COVID-19
Predicted: COVID-19
Confidence: 96.85%

Actual: Normal
Predicted: Normal

Confidence: 96.73%

Actual: Normal
Predicted: Normal

Confidence: 99.98%

Actual: COVID-19
Predicted: COVID-19
Confidence: 99.25%

Actual: COVID-19
Predicted: COVID-19
Confidence: 95.12%

Figure 12: Random prediction outcomes using proposed IDConv-Net model from X-ray test images.

Table 9: Time comparison between our proposed IDConv-Net and state-of-the-art models (50 epochs).

Model
Time of first epoch

(seconds)
Time per remaining epochs

(seconds)
Total time
(minutes)

X-ray CT X-ray CT X-ray CT

DenseNet201 129 138 103 ± 2 113 ± 2 86 ± 1 95 ± 1

VGG-19 296 319 209 ± 2 219 ± 2 174 ± 1 183 ± 1

ResNet50 89 103 78 ± 2 86 ± 2 65 ± 1 72 ± 1

VGG-16 278 296 193 ± 2 207 ± 2 161 ± 1 173 ± 1

AlexNet 167 187 113 ± 2 119 ± 2 95 ± 1 99 ± 1

DenseNet121 91 106 82 ± 2 93 ± 2 69 ± 1 78 ± 1

MobileNetV2 79 88 68 ± 2 79 ± 2 57 ± 1 66 ± 1

InceptionV3 132 158 86 ± 2 98 ± 2 72 ± 1 82 ± 1

Proposed IDConv-Net 84 96 37 ± 2 44 ± 2 31 ± 1 34 ± 1
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validation to ensure that models are effective and safe for
clinical practice.

Overall, the proposed IDConv-Net provides effective
results individually on the X-ray and CT images. Finally,
according to Tables 5 and 7, our suggested IDConv-Net
model achieved the best accuracy for the X-ray and CT
image datasets, respectively. Moreover, to avoid overfitting,
we used dropout with a value of 0.3 in the last convolution
layer of the proposed model. Furthermore, we used an early
stopping function during the training of our proposed model
to ensure that the model is not overfitted. Thus, the model is
good and reliable for detecting COVID-19 in an unknown
dataset. We also performed a qualitative analysis where the
proposed IDConv-Net achieved a high prediction outcomes
rate with a confidence level ranging from 95 to 99+ on
the testing set, indicating that it can accurately classify
COVID-19 using both X-ray and CT images. Figures 12
and 13 illustrate the actual and predicted outcomes with a
confidence level of identification for X-ray and CT images,
respectively. These results suggest that a deep CNN model
can be an effective tool for COVID-19 diagnosis and poten-
tially assist healthcare professionals in detecting and treating
the virus. Moreover, the results of our study demonstrate that
our proposed model can detect and classify COVID-19 in a
relatively short time frame. As shown in Table 9, our pro-
posed model achieved comparable outcomes to a transfer

learning model while requiring less training time across dif-
ferent image modalities. The reduced training time of our
proposed model can be attributed to several factors, includ-
ing the use of fewer layers in the model architecture and
the implementation of enhanced preprocessing techniques.
By using a more streamlined model architecture, we were
able to reduce the computational demands of the training
process while still achieving high levels of performance.
Therefore, we can infer that the proposed model works
appropriately for both datasets and acquires better accuracy
than state-of-the-art detection and classification models.
Additionally, DL models’ predictions could have been under-
stood and interpreted with the use of a collection of tools and
frameworks called explainable AI (XAI). Furthermore, XAI
develops a set of ML techniques that produce more
understandable models while preserving high performance
(prediction accuracy) and enabling human users to compre-
hend, properly trust, and manage the new breed of AI part-
ners. Another solution to prevent COVID-19 is wearing a
face mask and practicing regular hand washing. These are
two important measures that effectively reduce the spread
of COVID-19. Low-cost sensor-based hand washing tech-
niques can contribute to reducing the spread of COVID-19.
However, these measures are most effective when combined
with other prevention strategies, such as social distancing
and avoiding large gatherings [71, 72].
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Figure 13: Random prediction outcomes using proposed IDConv-Net model from CT test images.
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The advantage of the study is the proposed model con-
sists of fewer layers than other detection models. As a result,
it reduces complexity and training time due to a lower layer
than other models. Another advantage of the model is that it
can detect and classify both data types with higher accuracy.
The most vital advantage of the model is that it does not
contain overfitting in both datasets’ training and testing
results. In addition, the following advantages of the model
can increase its accuracy if we use balanced datasets. In con-
trast, the drawbacks of the study are that the model yields
less accuracy for X-ray images than CT images due to poor
resolution and bony structure of chest scan. However, it
can be overcome using high-resolution X-ray images. Another
drawback of the model might reduce accuracy if we use imbal-
anced datasets. The other drawback is that some slices among
hundreds of pieces do not contain disease features. These
slices are taken from the chest scan’s superior/upper, middle,
or inferior/lower part. As a result, the model sometimes pro-
vides a minor misclassification for COVID-19.

8. Conclusion and Recommendation

COVID-19 poses a severe threat to all living things in the
world. A new variant of COVID-19 (e.g., Omicron) will be
dangerous and deadly if it mutates with delta or another
lethal variant and then spreads quickly worldwide. As a
result, early detection of COVID-19 can protect against its
spread by isolating affected people. For this purpose, our
proposed IDConv-Net can compensate by detecting and
classifying COVID-19 at an early stage. Our proposed
IDConv-Net model achieves a training accuracy of 99.53%
and a testing accuracy of 98.41% for CT images. On the
other hand, the IDConv-Net model also achieves a training
accuracy of 97.49% and a testing accuracy of 96.99% for
X-ray images. Furthermore, our suggested IDConv-Net
model outperforms previous COVID-19 detection and clas-
sification models that are currently available. Additionally,
our proposed model requires less training time than existing
models to detect and classify COVID-19.

Overall, while the proposed model has shown great
promise in medical imaging applications, several challenges
still need to be addressed to make them more effective and
practical for use in real-world settings. The model is consid-
ered black-box, meaning it can be difficult to understand
how they make their predictions. In the future, we plan to
use Grad-CAM and XAI to make the model more compre-
hensive and user-friendly for disease diagnosis.
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