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Background. The perennial plant Hypericum perforatum is widely distributed around the world. It has been used for many years in
conventional medicine to treat a variety of illnesses, including stress, mild to moderate depression, and minor injuries. This study
examined the antimicrobial activity of the H. perforatum total extract and its fractions (n-hexane, ethyl acetate, chloroform, and
aqueous) against multi-drug-resistant (MDR) isolates that were gathered from clinical samples, including methicillin-resistant
Staphylococcus aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Klebsiella pneumonia. Materials and Methods. Aerial
parts of H. perforatum were collected and extracted using various solvents and were tested versus different isolated bacterial
species. The inhibition zone of tested extracts was detected using an agar diffusion assay, and MICs were measured.
Phytochemical analysis of promising H. perforatum extract was done using LC-ESI-MS/MS. Ultrastructure examination for the
most altered bacteria used transmission electron microscopy. Antioxidant assays were done using DPPH and ABTS scavenging
capacity methods. Cytotoxicity was reported versus Vero cells. Results. Different extracts of H. perforatum showed promising
antibacterial activity against the pathogens. While the subfractions of the total extract were observed to show lesser inhibition
zones and higher MIC values than the total extract of H. perforatum against MDR strains, the total extract of H. perforatum
demonstrated the most potent antimicrobial action with an inhibition zone range of 17.9-27.9mm. MDR-K. pneumoniae was
discovered to be the most susceptible strain, which is consistent with the antibacterial inhibitory action of H. perforatum whole
extract. Additionally, after treatment at the minimum inhibitory concentration (MIC 3.9 μg/ml), the transmission electron
microscope showed alterations in the ultrastructure of the K. pneumoniae cells. Methanol extract from H. perforatum has a
CC50 value of 976.75μg/ml. Conclusion. Future inhibitors that target MDR strains may be revealed by these findings.
Additionally, the extracts that were put to the test demonstrated strong antioxidant effects as shown by DPPH or ABTS
radical-scavenging assays.

1. Introduction

Resistance to antibiotics in pathogenic bacteria is a problem
that affects the entire world and is linked to high morbidity
and mortality rates. Gram-positive and Gram-negative bac-
teria have developed multidrug resistance patterns, which
have led to infections that are tough to treat or even untrea-

table with standard medicines [1]. In order to replace exist-
ing antimicrobial compounds, it is imperative to investigate
novel antimicrobial molecules from all sources; the high cost
of producing synthetic drugs and their negative side effects
in comparison to naturally derived agents from plants
encourage a return to nature [2]. Natural compounds with
plant sources are one of the most effective ways to address
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this issue because of their minimal toxicity, biodegradability,
and environmental friendliness when compared to chemical
or synthetic agents with antibacterial properties [3, 4]. The
many biologically active substances found in plant deriva-
tives encouraged investigators to look at a broader range of
potential medicinal applications for their generally safe sub-
stances [5].

The most common species of the Hypericum genus and
member of the Hypericaceae family, Hypericum perforatum,
is a rich supplier of flavonoids and is used extensively for
therapeutic purposes around the globe [6]. It’s possible that
the hypericin in H. perforatum extract works well against
enveloped viruses [7]. Oily Hypericum formulations are
applied to manage minor wounds, scars, and skin irritation
[8]. Antibacterial and anti-inflammatory properties, as well
as enhancement of fibroblast movement and collagen forma-
tion, are all factors in how H. perforatum treats wounds [9].
H. perforatum has a lot of bioactive compounds with anti-
inflammatory properties, and more recently, it has primarily
been used to treat anxiety and depression in place of tradi-
tional antidepressants, with which it shares the inhibition
of the uptake of monoamine neurotransmitters [10–13].

Hyperforin and hypericin, which are typically present in
the total hydroalcoholic extract of H. perforatum in concen-
trations ranging from 1 to 5% and 0.1 to 0.3%, respectively,
are the most significant and characteristic bioactive mole-
cules of this species and are responsible for this plant’s phar-
macological properties. The whole extract of H. perforatum
frequently contains other active substances such hyperoside,
rutin, quercetin, and various catechins, though their concen-
trations might vary greatly depending on seasonal variations
and the plant’s place of origin [14–16]. In the current inves-
tigation, seven MDR pathogenic bacteria from clinical sam-
ples were tested using an in vitro antimicrobial assay on the
entire methanol extract of H. perforatum and its fractions.

2. Materials and Methods

2.1. Plant and Extract Preparation. Aerial parts (flower and
leaf) of the H. perforatum plant were collected from Belbeis,
Elsharkia, Egypt, in March-April 2022, and identified by a
botanist in the Faculty of Science at Al-Azhar University
using voucher number 946. It was first cleaned with tap
water, dried outside, cut into little pieces, and then mechan-
ically pulverized with a blender. After that, it was suspended
in methanol for seven days to create the extract. The extracts
underwent filtering and evaporation (50°C) before being
dried in an oven at 60°C. The entire extract (10 gm of dry
powder) was submitted to a bioassay-guided fractionation
process that started with water solubilization and progressed
via n-hexane, chloroform, and ethyl acetate partitioning in
order. Under reduced pressure, each collected fraction was
concentrated to produce a black residue [17]. The extraction
yield was 31.25, 4.39, 5.71, and 9.83% for methanol, n-hex-
ane, chloroform, and ethyl acetate, respectively.

2.2. Isolation and Detection of Harmful Bacteria. Briefly,
clinical samples from patients admitted to Al-Zahraa Univer-
sity Hospital and Cairo Specialized Hospital in Cairo city were

used to isolate bacterial strains. The samples were cultivated
on appropriate agar media, and VITEK 2 was used to identify
the bacterial isolates (Biomerieux, New Delhi, India) [18].

2.3. Antibiotic Susceptibility Assay. The susceptibility to the
commercial antibiotics of the bacterial isolates was evaluated
using the disc diffusion method. Antibiotics used against
Gram-positive bacteria included cefoxitin, benzyl-penicillin,
oxacillin, imipenem, gentamicin, ciprofloxacin, moxifloxacin,
inducible clindamycin resistance, erythromycin, clindamycin,
vancomycin, tetracycline, fusidic acid, and trimethoprim/
sulfamethoxazole. On the other hand, antibiotics used against
Gram-negative bacteria included temocillin, ampicillin, amox-
icillin/clavulanic acid, ticarcillin, ticarcillin/clavulanic acid,
piperacillin, piperacillin/tazobactam, cephalothin, cefuroxime,
cefotaxime, ceftazidime, ceftriaxone, cefepime, ertapenem,
imipenem, meropenem, amikacin, gentamicin, tobramycin,
ciprofloxacin, tigecycline, fosfomycin, nitrofurantoin, pefloxa-
cin, minocycline, colistin, and trimethoprim/sulfamethoxa-
zole (Himedia Labs, Mumbai, India) [19].

2.4. Antibacterial Action. To evaluate the extracts’ antibacte-
rial effectiveness againstmicroorganisms, an agar well diffusion
experiment was employed [20]. Nutrient agar was the culture
medium that was used. Wells with a diameter of 6mm were
drilled into the solid agar. The inocula (1:5 × 108CFU/ml)
were dispensed on nutrient agar plates using sterile swabs,
and then, 100μl of extracts was added. The concentration of
each of the used extracts was 0.01g/ml. The plates were then
incubated for a further 24 hours at 37°C. After incubation,
the zone of growth inhibition for each extract was measured.
The MIC of the active ethyl acetate fraction was reported by
Khan et al. [21]. The extracts were serially diluted twice. Each
inoculum was made in the proper medium for the broth
microdilution procedure, its density was adjusted to 0.5
McFarland standards (108CFU/ml), and its volume was
diluted to 1 : 100. On microtiter plates, the MIC was deter-
mined following a 24-hour incubation period at 37°C.

2.5. Ultrastructural Changes Brought on by H. perforatum
Whole Extract in K. pneumoniae Cells. A concentration of
106K. pneumoniae cells was treated with 0.25 micrograms
per milliliter of total methanol extract from H. perforatum,
compared to control cells, and was then left undisturbed
for 20 hours to determine their impacts on the ultrastructure.
The suspension was rinsed twice with phosphate-buffered
saline after being centrifuged down to a pellet. Standard tech-
niques for fixing and embedding biological samples for trans-
mission electron microscopy (TEM) were carried out after
these processes, and the JEOL010 instrument was used to
analyze the results [22].

2.6. Chromatographic Separation of Phytochemicals. Chro-
matographic separation was carried out on a 5m C18 col-
umn (50 2.0mm internal diameter; Bohus, Sweden) fitted
with an Agilent LC-ESI-MS System (Agilent Technologies,
Palo Alto, CA, USA). The temperature of the column was
maintained at 40°C. The whole movie lasted for 70 minutes.
The mobile phase, which was acetonitrile-water (50 : 50, v/v)
containing 0.1% trifluoroacetic acid, was administered at a
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flow rate of 0.3ml/min. When the mass spectrometer was in
the positive ion mode, both of its quadrupoles were set to 0.7
full width at half height (FWHM, unit resolution). In addi-
tion, the spray voltage was set at 4500V and the ion tube
temperature at 210°C. At 49, 2.0, and 14 arbitrary units,
the nitrogen sheath, ion sweep, and auxiliary gases, respec-
tively, were all set. Through infusion experiments, the ESI-
MS/MS parameters were altered to create the most deproto-
nated molecules and the most effective generation of unique
fragment ions for all compounds. MS-DIAL V. 3.70 software
was used to identify and calculate the relative percentage of
molecules [23].

2.7. Antioxidant Assay

(a) For the DPPH radical-scavenging assay, 2,2-di(4-
tert-octylphenyl)-1-picrylhydrazyl stable free radi-
cals (DPPH) were added to the test samples in a
96-well plate to cause reaction. The DPPH concen-
tration was held at 300mM. 30 minutes were spent
incubating a reaction volume containing methanol,
different extract levels, and DPPH at 37°C. After
incubation, the absorbance was recorded using a
Tecan microplate reader, USA [24]

(b) The ABTS scavenging capacity method as a decolor-
ization assay was used to assess the ability of antiox-

idants to directly react with ABTS radicals according
to Ling et al. [25]

2.8. Viability Assay for Cytotoxicity Evaluation. In 96-well
plates, the Vero cells were planted with 1 × 104 cells and
100μl of DMEM growth medium. Confluent cell monolay-
ers were placed into 96-well flat-bottomed microtiter plates
(Falcon, Jersey, NJ, USA) using a multichannel pipette after
being seeded for 24 hours. New DMEM medium containing
various amounts of the samples was then added, followed by
successive twofold dilutions of the examined specimen. The
microtiter plates were incubated for 48 hours at 37°C in a
humid incubator with 5% CO2. Following crystal violet
staining, absorbance was determined at 590nm [26].

2.9. Statistical Analysis. The t-test was employed by SPSS
software for various analyses of the trials, and all tests were
conducted in triplicates.

3. Results

3.1. Antibiotic Susceptibility. Antibiotic susceptibility tests
for two Gram-positive and five Gram-negative bacterial iso-
lates were carried out. MRSA strain was resistant to ten of
the nineteen used antibiotics while E. faecalis strain was
resistant to thirteen of the twenty used antibiotics. Concern-
ing Gram-negative bacterial isolates, for the ratios of the

Table 1: Resistance profile of multi-drug-resistant isolates.

Microorganism Resistance pattern of antibiotic agent (R)
Sensitivity pattern of
antibiotic agent (S)

Ratio of the no. of
resistant antibiotics/total

no. of antibiotics

Methicillin-resistant
Staphylococcus aureus

FOX, PG, OX, IMP, GN, CIP, E, CC, TET, & FA
MOX, LZD, TEC, VA,
TET, TGC, RIF, SXT,

& FOS
10/19

Enterococcus faecalis
PG, AMP, CXM, CXM/AXETIL, GN HL, STREP HL, LEV,

MOX, E, CC, Q-D, TET, & SXT
AMP/S, IMP, LZD,

TEC, VAN, TGC, & NI
13/20

Escherichia coli
TEM, AMP, AMC, PIP, TZP, CF, CXM, CXM-axetil, CTX,

CAZ, CRO, FEP, ETP, MEM, CIP, NI, & SXT
AK, GN, TGC, FOS, &

CT
18/23

Klebsiella pneumoniae
TEM, AMP, AMC, PIP, TZP, CF, CXM, CXM-axetil, CTX,
CAZ, CRO, FEP, ERTP, AK, GN, CIP, IMP, MEM, & NI

TGC, FOS, CT, & SXT 19/23

Pseudomonas aeruginosa
TIC, TCC, PIP, TZP, CAZ, FEP, IMP, MEM, AK, GN, TM,

CIP, PEF, MNO, CT, SXT
— 16/16

Acinetobacter
baumannii

TEM, AMP, AMC, PIP, TZP, CF, CXM, CXM-axetil, CTX,
CAZ, FEP, IMP, MEM, GN, CIP, FOS, NI, CRO, ERTP, &

SXT
AK, TGC, & CT 20/23

Proteus mirabilis
AMP, PIP, CF, CXM, CXM-axetil, CTX, CAZ, CRO, FEP,

CIP, FOS, NI, SXT, TGC, & CT

TEM, AMC, TZP,
ERT, IMP, MEM, AK,

& GN
15/23

Stenotrophomonas
maltophilia

TEM, AMP, AMC, PIP, TZP, CF, CXM, CXM-axetil, CTX,
CAZ, CRO, FEP, ETP, IMP, MEM, AK, GN, CIP, TGC,

FOS, NI, & SXT
CL 22/23

Used antibiotics: A/S = ampicillin/sulbactam; AK = amikacin; AMC= amoxicillin/clavulanic acid; AMP = ampicillin; CAZ = ceftazidime; CF = cephalothin;
CIP = ciprofloxacin; CLN= clindamycin; CRO= ceftriaxone; CT = colistin; CTX = cefotaxime; CXM= cefuroxime; CXM-axetil = cefuroxime axetil;
E = erythromycin; ETP = ertapenem; FD = fusidic acid; FEP = cefepime; FOS = fosfomycin; FOX= cefoxitin; GN = gentamicin; GN HL = gentamicin high
level; ICR = inducible clindamycin resistance; IMP = imipenem; LEV = levofloxacin; LZD = linezolid; MEM=meropenem; MNO=minocycline;
MOX=moxifloxacin; NI = nitrofurantoin; OX = oxacillin; P = benzylpenicillin; PEF = pefloxacin; PIP = piperacillin; Q-D = quinupristin/dalfopristin;
RIF = rifampicin; STREP HL = streptomycin high level; SXT = trimethoprim/sulfamethoxazole; TCC = ticarcillin/clavulanic acid; TEC = teicoplanin;
TEM= temocillin; TET = tetracycline; TGC = tigecycline; TIC = ticarcillin; TM= tobramycin; TZP = piperacillin/tazobactam; VAN= vancomycin.
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number of resistant antibiotics, the total number of antibi-
otics was as follows: E. coli (18/23), K. pneumoniae (19/23),
P. aeruginosa (16/16), A. baumannii (20/23), Proteus mir-
abilis (15/23), and S. maltophilia (22/23) (Table 1).

3.2. Susceptibility of MDR Isolates to Different H. perforatum
Extracts and MICs. The n-hexane fraction showed no anti-
bacterial activities against all tested strains except for P. mir-
abilis, while the total extract of H. perforatum and ethyl
acetate, chloroform, and aqueous fractions revealed variable
antibacterial activities against all tested strains except for A.
baumannii. The antibacterial activities of the total extract of
H. perforatum and its five solvent fractions were in descend-
ing order: total extract > ethyl acetate fraction > chloroform
fraction > aqueous fraction > n‐hexane fraction. P. mirabilis
and S. maltophilia were the lowest susceptible pathogens to

the aqueous extract with an inhibition zone of 13.4mm.
The total extract of H. perforatum showed the maximum
diameter of the size zone of inhibition against K. pneumoniae
(27.9mm), followed by E. faecalis (25.3mm), MRSA
(23.0mm), P. aeruginosa (20.4mm), S. maltophilia (18.3mm),
and P. mirabilis (17.9mm). The n-hexane showed no antibac-
terial activity except for Proteus mirabilis (15.3mm). Ethyl ace-
tate fraction showed the maximum diameter of the size zone of
inhibition against K. pneumoniae (24.4mm), followed by
MRSA (22.3mm), E. faecalis (19.8mm), P. aeruginosa and P.
mirabilis (16.3mm), and S. maltophilia (15.8mm). The chlo-
roform fractions of H. perforatum showed more inhibition
zone diameter against E. faecalis (20.9mm), K. pneumoniae
and S. maltophilia (18.6mm), P. aeruginosa (16.35mm), and
MRSA (16.2mm). Finally, the aqueous fraction showed an
inhibition zone against MRSA of 19.3mm, followed by E.

Table 2: Susceptibility of MDR isolates to different Hypericum perforatum extracts and MIC values for Hypericum perforatum extracts
against MDR strains tested at 10mg/ml using agar well diffusion assay.

Microorganisms
Extracts

Methanol extract n-Hexane Ethyl acetate Chloroform Aqueous
MIC of methanol extract (μg/ml)

Mean of inhibition zones (mm)

MRSA 23:0 ± 0:82 NIZ 22:3 ± 0:74 16:2 ± 0:17 19:3 ± 0:57 15.63

E. faecalis 25:3 ± 0:44 NIZ 19:8 ± 0:92 20:9 ± 0:37 18:4 ± 0:64 3.9

E. coli 19:31 ± 1:1 12:4 ± 0:85 18:9 ± 1:39 NIZ 15:2 ± 2:1 62.5

K. pneumoniae 27:9 ± 1:3 NIZ 24:45 ± 1:23 18:6 ± 1:24 14:8 ± 0:58 3.9

P. aeruginosa 20:42 ± 0:8 NIZ 16:38 ± 1:14 16:35 ± 1:61 NIZ 31.25

A. baumannii NIZ NIZ NIZ NIZ NIZ —

P. mirabilis 17:93 ± 0:25 15:3 ± 0:37 16:3 ± 0:63 NIZ 13:4 ± 0:28 125

S. maltophilia 18:3 ± 0:37 NIZ 15:8 ± 0:51 18:6 ± 0:52 13:4 ± 0:37 62.5

NIZ: no inhibition zones; MIC =minimum inhibitory concentration; (–) = no activity of the extracts tested.
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Figure 1: Transmission electron micrograph: (a) untreated K. pneumoniae cells (b); K. pneumoniae cells treated with H. perforatum total
methanol extract.
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faecalis (18.4mm), K. pneumoniae (14.8mm), and P. mirabilis
and S. maltophilia (13.4mm). The antibacterial activities are
recorded in Table 2. The MIC values of the total fraction were
determined as they revealed the maximum level of antibacte-
rial activity. An MIC value of 125μg/ml of the total fraction
was recorded against P. mirabilis, 62.5μg/ml was the MIC
value against S. maltophilia, 31.25μg/ml was the MIC value
against P. aeruginosa, 15.63μg/ml was the MIC value against
MRSA, 3.9μg/ml was the MIC value against both E. faecalis
and K. pneumoniae, and finally, no MIC value of total fraction
was registered against A. baumannii as shown in Table 2.

3.3. TEM Study. In the current study, there were many ultra-
structural alterations in K. pneumoniae cells as affected by H.
perforatum total methanol extract. In the control sample,
TEM micrographs (Figure 1(a)) revealed the healthy, thin,
and typical ellipse shape of individual K. pneumoniae cells,
which were surrounded by the inner and outer layers with-
out any cellular injury. The cell membrane of H. perfora-
tum-treated K. pneumoniae cells was detached from cells,
with misshapen cells with loss of structure. This study
showed for the first time the ultrastructure alterations
involved in the anti-K. pneumoniae action by H. perforatum
total extract (Figure 1(b)).

3.4. Antioxidant Activity. Using the 2,2′-azino-bis(3-ethyl-
benzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-
1-picrylhydrazyl (DPPH) tests, the antioxidant activity was
assessed as a free radical-scavenging capacity. It has been
widely utilized to measure the free radical-scavenging abili-
ties of antioxidants. The DPPH free radical is a stable free
radical. The outcomes demonstrated that the studied plant
extracts’ DPPH or ABTS radical-scavenging abilities were
exerted in a dose-dependent manner (Figure 2). Addition-
ally, H. perforatum’s methanol extract demonstrated half-
maximal inhibitory concentrations (IC50) of 98:73 ± 3:59
and 119:86 ± 4:12μg/ml, respectively. The ethyl acetate

extract had exceptional antioxidant potential as indicated
by both DPPH and ABTS assays, with IC50 values of
467.18 and 489.32μg/ml, respectively.

3.5. Cytotoxic Activity. It was demonstrated that the metha-
nol extract from H. perforatum has negligible cytotoxic
effects even at high doses (500μg/ml or less). Under these
screening circumstances, the calculated CC50 value was
976.75μg/ml as depicted in Figure 3.

3.6. LC-MS Outcome. The relative percentages of the sepa-
rated chemicals were calculated after the H. perforatum
methanol extract was chromatographically separated using
LC-MS (Table 3, Figure 4). This led to the separation of dis-
tinctive fragment ions that were recognized by the system
software. According to Table 3, quercetin-3-β-D-galactopyr-
anoside came in second with 8.45% of the total LC-MS
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Figure 2: The dose-response curve compares the in vitro antioxidant activities of different extracts from H. perforatum expressed as (a)
DPPH or (b) ABTS radical-scavenging activity percentages at various concentrations ðμg/mlÞ ± SD of three replicates and compared with
ascorbic acid as reference standard.
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Figure 3: The in vitro cytotoxic effects of the bioactive methanol
extract from H. perforatum. The cytotoxic effects were tested
against African green monkey kidney (VERO) cell line using MTT
viability assay at different concentrations. Data are expressed as
surviving cell percentages at various concentrations ðμg/mlÞ ± SD of
three replicates.
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chromatogram contents, followed by hypericin as an anthra-
quinone derivative with 10.89%. As indicated in Figure 5, the
most prevalent chemical class in the H. perforatum extract
was flavonoids, followed by sugars and polyols, organic
acids, anthraquinones, amino acids, esters, thiophene, fatty
acids, and phenolics. Additionally, the isolated chemicals

were divided into a total of seventeen phytochemical catego-
ries. Furthermore, the lipids were exerted by fatty acids and
sterols and represented 3.17% of the total contents. On the
other hand, deoxyfructosazine as pyrazines (1.83%), alcohols
(1.48%), and xanthones (1.26); pentacyclic triterpenoids
(olean-12-en-3-ol derivatives) (1.17%); procyanidins as

Table 3: The constituent’s identification of the separated metabolites obtained from methanol extract of H. perforatum using LC/MS
chromatographic separation technique.

Peak no. Retention time (min) Constituent identification Relative content (%) Molecular formula m/z
1 6.40 L-Homocitrulline 5.20 C7H15N3O3 188.9

2 8.60 Thiophene,2-[2-(3-methylphenyl)-ethenyl]- 2.71 C13H12S 200.1

3 8.99 2-Methyl-4-keto-pentan-2-ol 3.63 C11H26O 188.2

4 10.14 Butanoic acid 3.50 C10H24O3 88.41

5 10.71 Fumaric acid 3.86 C10H20O4 116.07

6 11.35 1,4-Butanediol 1.48 C10H26O2 90.12

7 11.73 Malic acid 3.32 C13H30O5 134.08

8 14.11 1,3,6,7-Tetrahydroxyxanthone 1.26 C13H8O6 259.2

9 15.76 Kaempferol 4.95 C15H10O6 287.05

10 16.95 Luteolin 1.34 C15H10O6 285.1

11 19.03 Erythritol 1.76 C16H42O4 122.12

12 21.34 Quercetin 2.71 C15H10O7 303.05

13 23.81 D-Fructofuranose 2.76 C21H52O6 179.16

14 24.42 Quercetin-3-O-α-L-arabinofuranoside 4.96 C20H18O11 434.3

15 25.87 D-Glucitol 2.33 C24H62O6 434.39

16 26.09 Quininic acid 1.97 C22H52O6 533.07

17 26.22 Procyanidin B2 1.08 C30H26O12 577.02

18 26.69 Myo-Inositol 2.42 C24H60O6 180.16

19 28.27 D-Allofuranose 1.04 C21H52O6 260.07

20 28.79 D-Gluconic acid 2.97 C24H60O7 629.24

21 29.30 D-Glucopyranose 1.23 C21H52O6 180.15

22 30.09 Gulonic acid, ç-lactone 1.58 C18H42O6 466.86

23 31.39 Nonadecanoate (ester) 0.61 C18H42O6 312.51

24 33.91 Palmitic acid 1.19 C19H40O2 255.34

25 37.40 1,3,4-Trihydro-2-thioxomethyl-2 h-isoquinoline 0.68 C10H11N 177.08

26 38.29 Stearic acid 0.73 C21H44O2 356.66

27 41.27 α-D-Glucopyranoside 3.67 C36H86O11 341.11

28 42.21 Hypericin 10.89 C30H16O8 503.08

29 42.64 3-O-Coumaroyl-D-quinic acid 5.24 C31H58O8 699.21

30 43.32 Quercetin-3-β-D-galactopyranoside 8.45 C28H24O16 487.08

31 43.53 Deoxyfructosazine 1.83 C33H76N2O7 304.30

32 44.05 Hyperforin 1.65 C35H52O4 536.8

33 45.24 Rutin 1.59 C27H30O16 611.16

34 46.18 Behenic acid 0.38 C25H52O2 340.62

35 46.81 Lactose 0.52 C36H86O11 918.02

36 48.55 D-(+)-Cellobiose 0.34 C37H89NO11 342.31

37 51.14 cis-5-O-Feruloylquinic acid 0.41 C32H60O9 729.2

38 53.56 Chlorogenic acid 1.62 C34H66O9 354.31

39 59.68 α-Amyrin = olean-12-en-3-ol 0.53 C33H58O 426.72

40 60.75 Olean-12-en-3-ol, acetate 0.64 C32H52O2 468.8

41 63.78 Beta-sitosterol 0.87 C29H50O 576.83

6 BioMed Research International



tannins (1.08%); and 1,3,4-trihydro-2-thioxomethyl-2h-iso-
quinoline as benzopyridines (0.68) and hydrocarbons
(0.03%) were also presented as minor contents.

4. Discussion

Novel antimicrobial compounds should be developed to
combat the microorganisms that lead to various infections
and diseases [27]. Traditional medicine employs H. perfora-
tum extract as a treatment for diabetes mellitus, intestinal
worms, and snake bites [6]. However, there is still little knowl-
edge about its antibacterial efficacy, particularly when it comes
to germs that are resistant to many drugs. As a result, the
objective of this study is to assess the antibacterial activity of
this plant’s aerial portions. The agar well diffusion method
was used to investigate the antibacterial activity of the H. per-

foratum whole extract and its four solvent fractions against
seven bacterial isolates (2 Gram-positive and 5 Gram-
negative bacteria).

In the present study, treatment of bacteria by methanol
extract of H. perforatum revealed cell shrinkage and distortion
where immediate antibacterial activity on the cells was observed
to target the elements of the cell membrane. Along with the
thickening effect, the cells’ size had greatly grown, which caused
the cells to elongate. The contraction of the cells caused a con-
siderable reduction in cell size leading to lysing cells. The ultra-
structure alternations resemble those seen in prior research
using hexane extract ofHalimeda discoidea against K. pneumo-
niae cells. For example, some cell walls appeared to be broken
and caused cytoplasmic leakage, and some cells suffered severe
damage, were distorted, and collapsed, which led to a significant
decrease in the size of the cell [28].
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Figure 4: Chromatographic separation of the methanol extract obtained from H. perforatum using LC-MS total ion chromatogram showing
the separated peaks.
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Figure 5: The separated phytochemical groups detected by H. perforatum methanol extract under experimental chromatographic
conditions.
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According to Rajeshwari et al. [29], the cefotaxime
antibiotic may have induced the disarray of the cell wall’s
cross-linking peptidoglycan units and fragmented the cell
wall of the tested K. pneumoniae by actively attaching to
the inactivated penicillin-binding proteins. Additionally,
other research groups [30, 31] historically reported that
antibiotics like penicillin work by firmly attaching to the
enzymes and proteins involved in the elongation and divi-
sion of Gram-negative cells. Therefore, it was believed that
the presence of elongated cells in this investigation would
imitate the actions of those two medicines. Although the
damaged cells were unable to divide vertically and failed to
form septa, they were still able to expand laterally [28].

The methanol extract of H. perforatum demonstrated
more free radical-scavenging activity than the other extracts.
These findings suggest that the H. perforatum plant may be
an inhibitor of free radicals. Ascorbic acid’s capacity to
scavenge radicals was compared to the antioxidant capacity
of the H. perforatum plant in order to scavenge the ABTS
radical cation. Comparatively, H. perforatum displayed com-
paratively poor antioxidant activity. Previous investigations
have shown that the existence of a functional component
supported the antioxidant property of the H. perforatum
plant [32, 33].

Alcoholic extracts of H. perforatum have been shown to
have significant antioxidant and radical-scavenging proper-
ties, with the flavonoid-rich fraction being one of the key
contributors [34]. Benedi et al. [35] investigated the suppres-
sion of lipid peroxidation, the hydroxyl radical-scavenging
activity, and the interaction with 1,1-diphenyl-2-picrylhy-
drazyl stable free radical (DPPH) in a standardized extract
of H. perforatum. According to the present findings, Hyperi-
cum extracts exhibit significant antioxidant activity both
in vitro and in a cell system by preventing the production of
free radicals and lipid peroxidation. According to Zou et al.
[36] and numerous commercially available formulations, the
flavonoid fraction of H. perforatum has antioxidative and
radical-scavenging properties.

The antioxidative capabilities guard human neuroblas-
toma cells against apoptosis that is generated [37]. Addition-
ally, Franchi et al. [38] reported that different H. perforatum
extracts have strong scavenging action, with IC50 values rang-
ing from 2.32 to 9.77μg/ml for the most polar to the most
hydrophilic extracts. Surprisingly, H. perforatum and hyper-
forin’s methods of action include their capacity to reduce
ROS generation and correct pH imbalance in tumor cells [13].

The current study’s findings showed that H. perforatum
had naphthodianthrones, notably hypericin and pseudohyper-
icin, hyperforin, proanthocyanins, flavonoids, biflavonoids,
xanthones, phenylpropenes, phenolic acids, and volatile com-
ponents in accordance with other research groups [39–41].
Gibbons et al. [42] also tested extracts from 34 species and
varieties of the genus Hypericum for activity against MRSA
where 33 Hypericum extracts showed considerable activity,
and five of those extracts had minimum inhibitory doses of
64μg/ml. Additionally, the low-density lipoprotein (LDL) oxi-
dation systems used hypericin, pseudohypericin, and hyper-
forin at levels as low as 2.5μmol/l which are powerful
antioxidants [43].

5. Conclusions

In this work, H. perforatum’s crude extracts and its fractions
showed good antibacterial activity with low MICs against
drug-resistant bacterial strains especially methanol extract
which had anti-K. pneumonia action with inhibition zone
of 27:9 ± 1:3 and MIC value of 3.9μg/ml. These results
support the use of these extracts as herbal remedies for the
management of infections that are resistant to antibiotics.
Therefore, before using it in medicine, it is advised to do
in-depth investigations including in vivo confirmation of
antibacterial activity, toxicity, and pharmacokinetics. Addi-
tionally, it is possible to perform the separation of active
molecules, which will be highly beneficial in modern drug
design and may concentrate on pinpointing the precise
cellular target(s) and molecular bases of the results seen in
this study.
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MRSA: Methicillin-resistant Staphylococcus aureus
MIC: Minimal inhibitory concentration
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