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Iris bulleyana Dykes (Southwest iris) is an extensively distributed Iridaceae species with blue or white flowers. Hereby, we
performed a systematic study, employing metabolomics and transcriptomics to uncover the subtle color differentiation from
blue to white in Southwest iris. Fresh flower buds from both cultivars were subjected to flavonoid/anthocyanin and carotenoid-
targeted metabolomics along with transcriptomic sequencing. Among 297 flavonoids, 24 anthocyanins were identified, and 13
showed a strong down-accumulation pattern in the white flowers compared to the blue flowers. Significant downregulation of
3GT and 5GT genes involved in the glycosylation of anthocyanins was predicted to hinder the accumulation of anthocyanins,
resulting in white coloration. Besides, no significant altered accumulation of carotenoids and expression of their biosynthetic
genes was observed between the two cultivars. Our study systematically addressed the color differentiation in I. bulleyana
flowers, which can aid future breeding programs.

1. Introduction

Southwest iris (Iris bulleyana Dykes) is a perennial plant of
the genus Iris, widely distributed in southwestern regions
of China, viz., Sichuan, Yunnan, and Tibet [1]. Iris (Irida-
ceae) genus, with over 300 species originating from North-
ern Hemisphere, is famous for its broad-spectrum palette
of flower colors and patterns [2]. The name “iris” is derived
from a Greek word with the meaning “rainbow.” There are
about 60 species of iris plants in China. Most varieties are
flower color variants, such as white-flowered: I. tectorum f.
alba Makino [3], I. sanguinea Donn ex Horn. f. alba Makino
[4], and I. japonica Thunb. f. pallescens PL Chiu et Y. T;
dark-colored: I. haynei Baker, I. petrana Dinsmore, and I.
bostrensis Mouterde; violet-colored: I. ruthenica Ker-Gawl.
f. leucantha YT Zhao [5], I. potaninii Maxim. var. ionantha
YT Zhao [6], and I. lortetii W. Barbey; blue-colored: I. latis-
tyla YT Zhao f. albiflora J. Luo [7] and I. lactea Pall. var.
chrysantha Zhao [8]; and yellow-colored: I. halophila var.

sogdiana [9]. The subtle color variants of the Iris genus,
ranging from dark purple, through blue, pink, and violet,
to yellow and white flowers, have been the focus of scientists
for many decades [10, 11].

Flowers tend to show colossal color variation within and
between species [12–14]. Based on published reports, the
identified pigments responsible for color variation in flowers
can be categorized as carotenoids, flavonoids, and betalains
pertaining to their synthesis, structures, and subcellular
localization [15]. The synthesis of each pigment involved
the interplay of multiple underlying genes [16]. Flavonoids
from the phenylpropanoid class are secondary metabolites
with a broad-spectrum color range, from pale-yellow to blue
[16–18]. Particularly, anthocyanins, a subclass of flavonoids
with a wide distribution in seed plants, have a major role in
governing pigmentation in many flowers [16, 19–23].
Carotenoids are considered a vital component of the photo-
system, and their subsequent expression confers yellow to
red color in fruits and flowers [21, 24–26]. The coexistence
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of flavonoids/anthocyanins and carotenoids, resulting in
rich coloration, has been described in many studies
[27–31]. Flavonoids/anthocyanins and carotenoids are
often present in the same organs, and their combination
increases color variety. The synthesis pathways of these
two types of pigments are well characterized [23, 26, 27,
32–35] and have been attributed to many plant species,
i.e., Arabidopsis thaliana [36], Rosa rugosa [23], Dianthus
caryophyllus [37], and Dracocephalum moldavica [38]. Beta-
lains, water-soluble metabolites, yellow-to-red nitrogen-
containing compounds are derived from tyrosine. However,
the exclusiveness of the coexistence of betalains with flavo-
noids/anthocyanin in Caryophyllales (Caryophyllaceae)
and Molluginaceae (Molluginaceae) has raised major taxo-
nomic debate [16].

Iris plants are generally dominated by two types of
pigments: flavonoids/anthocyanins and carotenoids. Blue-
purple colors are mainly attributed to anthocyanin pig-
ments, while orange, yellow, and pink colors are attributed
to carotenoid synthesis. Various studies have identified mul-
tiple genes involved in the flavonoids/anthocyanins biologi-
cal pathways for which alteration in gene expression
induces color mutation. These genes include CHS (chalcone
synthase) in parsley [39], petunia [40], tobacco [41], and saf-
flower [42]; CHI (chalcone isomerase) in petunia [43],
tobacco [44], and carnation [45]; F3H (flavanone-3-hydrox-
ylase) in carnation [46], cineraria [47], saussurea [48], and
peony [49]; DFR- dihydroflavonol 4-reductase in lily [50],
gentian [51], peony [49], and saussurea [52]; ANS (antho-
cyanidin synthase) in gerbera [53] and peony [49]; glycosyl-
transferase (GT) in Veronica persica [54] and Bellis
perennis [55]. Besides, some known transcription factors
have also been reported to play a regulatory role in pigmen-
tation, i.e., MYB, bHLH, and WD40 [56–58]. However, Iris
bulleyana Dykes has not been characterized for its color for-
mation. Due to its wide distribution in southwestern China
and as a model species for studying the color formation,
insight into the mechanisms underlying pigmentation will
facilitate understanding the color formation and further
breeding of colorful cultivars. Hereby, we have profiled the
transcriptome and metabolome of Southwest iris (I. bul-
leyana Dykes) and its white variant (I. bulleyana Dykes f.
alba YT Zhao) to pinpoint the genetic mechanism underly-
ing flower color variation. Our study discussed the differen-
tial expression of key genes in carotenoids and anthocyanin
biosynthesis pathways for their potential involvement in
color formation in iris.

2. Results

Southwest iris (I. bulleyana Dykes) generally has blue petals;
however, another variant with white petals (I. bulleyana
Dykes f. alba YT Zhao) is also present (Figure 1). To under-
stand the genetic variation underlying this variation, we per-
formed transcriptomic and targeted metabolomics following
sample collection from Southwest iris and its white variant.

2.1. The Differential Landscape of Metabolites between Blue-
and White-Colored Southwest Iris. Randomly selected fresh

flower buds of Southwest iris and its white variant were col-
lected and subjected to targeted metabolomics, revealing the
differential landscape of metabolites, specifically anthocya-
nin and carotenoids.

Flavonoid profiling identified 297 metabolites with 69
differentially accumulated (25 downregulated and 44 upreg-
ulated in white flower samples compared to blue flowers) fla-
vonoids between both flowers (Additional Files 1 and 2). A
total of 24 anthocyanins were identified in the two groups
of samples, and only 13 showed differential expression pat-
terns between both flower types, and all 13 were downregu-
lated in white flowers compared to blue flowers (Table 1).
These anthocyanins included cyanidin 3-O-glucosyl-malo-
nylglucoside, delphinidin O-malonyl-malonylhexoside, peo-
nidin, cyanidin O-syringic acid, cyanidin 3-O-glucoside
(kuromanin), delphinidin 3-O-glucoside (mirtillin), malvi-
din 3,5-diglucoside (malvin), delphinidin 3-O-rutinoside
(tulipanin), pelargonidin 3-O-beta-D-glucoside (callistephin
chloride), cyanidin 3-O-galactoside, peonidin 3, 5-
diglucoside chloride, petunidin 3, 5-diglucoside, and peoni-
din 3-sophoroside-5-glucoside. Some of these anthocyanins
were further validated using the LC-MS/MS standard-
based quantification (Table 2). White variant showed less
abundance of these three metabolites; particularly, delphi-
nindin chloride and myrtillin (delphinidin 3-glucoside (Dp
3G)) chloride were not detected in white flowers. These
results emphasized that either downregulation or blockage
of anthocyanins in the white variant of Southwest iris is
likely to be the major reason for differentiation from blue
to white color.

Furthermore, carotenoid metabolites were also investi-
gated in both groups. Eleven carotenoids were identified
using targeted metabolomics (Additional Files 3, 4, and 5).
There was no significant differential accumulation of carot-
enoids in blue and white flowers. However, α-carotene
depicted higher accumulation in blue flowers compared to
white, while zeaxanthin and xanthophyll (lutein) both up
accumulated in white flowers. The changes in accumulation
patterns of these three carotenoids were statistically nonsig-
nificant, suggesting a neglected role of carotenoids in color
differentiation from blue to white flowers. The accumulation
pattern of carotenoids in purple and white flowers explained
the conserved yellow stripes on both flowers.

2.2. Differential Landscape of Expressed Genes between Blue-
and White-Colored Southwest Iris. In order to analyze the

(a1) (a2) (b1) (b2)

Figure 1: A1 and A2 are the blooming flowers of the Southwest iris
and white-flowered iris, respectively; B1 and B2 are the flower buds
of the Southwest iris (LHWY) and white-flowered iris (BHWY),
respectively.
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metabolism of anthocyanins in different colors, two libraries
were constructed with blue and white perianths during the
full bloom period for high-throughput sequencing. The
clean data of each sample reached 8.91Gb, and the Q30 base
percentage was higher than 91.76%. The GC contents of the
white and blue flowers were 46.32 and 46.49%, respectively
(Additional File 6). Through the above sequencing quality
control, high-quality clean data were obtained and used for
downstream analysis. Subsequently, 370,387 transcripts
and 299,827 unigenes were recombined and annotated
against seven databases, viz., NT, NR, KOG, GO, and PFAM
(Figure 2(a)). Principal component analysis (PCA) differen-
tiated both color variants into two groups, and biological
replicates were closely grouped (Figure 2(b)). PCA results
suggested high reliability of transcriptome data for further
analysis.

2.3. Differential Expression between Blue and White Flowers
of Southwest Iris. Based on differential expression analysis
in Southwest iris and its white variant, a total of 422 differ-

entially expressed genes (DEGs) were identified, with 242
upregulated and 180 downregulated genes in the blue
flowers compared to the white flowers (Additional File 7).
The identified DEGs depicted significant enrichment in phe-
nylpropanoid biosynthesis, flavonoid biosynthesis, pyrimi-
dine biosynthesis, and photosynthesis. Accumulating
KEGG annotation and DEGs, we identified 21 genes associ-
ated with flavonoid/anthocyanin biosynthesis and caroten-
oid biosynthesis (Table 3). Three genes, viz., c174379_g1
(3GT (anthocyanin 3-O-glucosyltransferase)), c178689_g1
(CHS (chalcone synthase)), and c134319_g1 (5GT (anthocy-
anin 5-O-glucosyltransferase)), showed downregulation
expression pattern in the white variant as compared to the
blue flowers. While other genes c165047_g2 (CHS2 (chal-
cone synthase 2)), c151362_g1 (CHI (chalcone-flavonone
isomerase)), c173776_g1 (FNS (flavone synthase)), c145508_
g1 (F3H (flavanone 3-hydroxylase)), c144091_g2 (F3 ′ H (fla-
vonoid 3 ′-hydroxylase)), c144091_g1 (F3 ′ 5 ′ H (flavonoid
3′,5′-hydroxylase)), c144091_g1 (FLS (flavonol synthase))
c151171_g1 (DFR (dihydroflavonol-4-reductase)), c117196_

Table 1: Differentially accumulated anthocyanins in white and blue flowers. Values represent relative ion intensity.

No. Anthocyanins LHYW1 LHYW2 LHYW3 BHYW1 BHYW2 BHYW3 VIP FC LogFC

1
Cyanidin 3-O-glucosyl-

malonylglucoside
6500 7470 5980 4210 9 9 1.39399 0.21193 -2.238

2
Delphinidin O-malonyl-

malonylhexoside
36000 27200 31900 9 9 9 2.16576 0.000284 -11.782

3 Peonidin 135000 117000 111000 30700 44300 9 1.14918 0.206636 -2.274

4 Cyanidin O-syringic acid 1930000 2260000 1770000 9 9 9 2.65906 4:53E − 06 -17.751

5 Cyanidin 3-O-glucoside (kuromanin) 480000 509000 480000 9 9 9 2.50372 1:84E − 05 -15.731

6 Delphinidin 3-O-glucoside (mirtillin) 4480000 4770000 4070000 22600 23200 14700 1.76263 0.004542 -7.7824

7 Malvidin 3,5-diglucoside (malvin) 384000 438000 461000 9 9 9 2.48778 2:1E − 05 -15.536

8
Delphinidin 3-O-rutinoside

(tulipanin)
74100000 81200000 85400000 645000 402000 433000 1.71279 0.006149 -7.345

9
Pelargonidin 3-O-beta-D-glucoside

(callistephin chloride)
3570000 3530000 2790000 9 9 9 2.71313 2:73E − 06 -18.48

10 Cyanidin 3-O-galactoside 77300000 77100000 71400000 9 9 9 3.02707 1:2E − 07 -22.99

11 Peonidin 3, 5-diglucoside chloride 13900 21900 20300 9 9 9 2.09231 0.000481 -11.020

12 Petunidin 3, 5-diglucoside 1660000 1860000 1620000 126000 133000 104000 1.23394 0.070623 -3.823

13 Peonidin 3-sophoroside-5-glucoside 139000 131000 127000 9 9 9 2.34867 6:8E − 05 -13.843
∗BHWY represents the sample of the white variant of the Southwest iris (I. bulleyana Dykes f. alba YT Zhao), while LHWY represents the Southwest iris
(blue).

Table 2: Determination of three anthocyanins in white and blue flowers by LC-MS/MS.

Sample Delphinidin3-Orutinoside Delphinidin chloride Myrtillin chloride

BHWY-1 3.88 0 0

BHWY-2 4.38 0 0

BHWY-2 4.5 0 0

LHWY-1 372.1 436.58 5077.71

LHWY-2 2341.98 1446.2 17526

LHWY-3 1279.91 1031.9 12234
∗BHWY represents the sample of the white variant of the Southwest iris (I. bulleyana Dykes f. alba YT Zhao), while LHWY represents the Southwest iris
(blue).
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Figure 2: Transcriptomic analysis of differentially expressed genes (DEGs) between Southwest iris (LHWY) and its white variant (BHWY).
(a) Bar plots representing the number of unigenes identified and annotated through multiple platforms, viz., NT, NR, KOG, GO, and PFAM.
(b) PCA based on the FPKM values in LHWY and BHWY samples.

4 BioMed Research International



T
a
bl
e
3:

E
xp
re
ss
ed

ge
ne
s
in

th
e
fl
av
on

oi
d/
an
th
oc
ya
ni
n
an
d
th
e
ca
ro
te
no

id
sy
nt
he
si
s
pa
th
w
ay
s
ba
se
d
on

tr
an
sc
ri
pt
om

e
se
qu

en
ci
ng

da
ta

of
So
ut
hw

es
t
ir
is
w
hi
te

an
d
bl
ue

ge
no

ty
pe
s.

N
o.

G
en
e
ID

N
am

e
FP

K
M

G
en
e
ex
pr
es
si
on

B
io
sy
nt
he
ti
c
pa
th
w
ay
s

LH
Y
W
1

LH
Y
W
2

LH
Y
W
3

B
H
Y
W
1

B
H
Y
W
2

B
H
Y
W
3

1
c1
74
37
9_
g1

3G
T

14
47
.4
9

65
4.
47

11
08
.7
4

0.
84

1.
13

1.
63

D
ow

nr
eg
ul
at
ed

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

2
c1
78
68
9_
g1

C
H
S

23
3.
67

45
8.
13

29
7.
36

1.
61

2.
21

1.
79

D
ow

nr
eg
ul
at
ed

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

3
c1
34
31
9_
g1

5G
T

42
0.
46

93
.7
7

20
4.
55

31
.3
5

46
.7
1

85
.0
9

D
ow

nr
eg
ul
at
ed

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

4
c1
65
04
7_
g2

C
H
S2

18
79
.2
2

10
59
.7
2

13
52
.5
4

41
3.
99

63
0.
32

11
14
.0
6

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

5
c1
51
36
2_
g1

C
H
I

18
1.
68

10
0.
62

21
0.
58

14
3.
38

14
0.
11

16
9.
77

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

6
c1
73
77
6_
g1

FN
S

22
.7
9

40
.9
6

21
.9
2

8.
67

18
.5
4

21
.4
9

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

7
c1
45
50
8_
g1

F3
H

17
2.
22

87
.5
2

16
1.
13

76
.0
0

10
7.
12

13
7.
77

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

8
c1
44
09
1_
g2

F3
′ H

17
.2
9

13
.6
5

16
.7
3

4.
34

10
.6
4

17
.2
4

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

9
c1
44
09
1_
g1

F3
′ 5

′ H
73
.4
1

31
.8
4

47
.4
4

10
.1
1

14
.4
3

37
.6
9

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

10
c1
72
65
8_
g1

FL
S

4.
01

19
.8
9

7.
5

2.
44

6.
95

7.
05

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

11
c1
51
17
1_
g1

D
FR

95
.9
3

55
.5
7

88
.3
0

53
.8
0

71
.6
2

95
.0
0

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

12
c1
17
19
6_
g1

A
N
S

33
6.
02

15
6.
6

22
8.
65

63
.2
1

11
3.
07

21
5.
08

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

13
c1
61
52
8_
g2

5,
3G

T
8.
47

7.
46

8.
88

1.
27

1.
74

2.
45

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

14
c1
67
43
8_
g1

3A
T

53
3.
38

16
9.
4

43
8.
8

13
6.
09

19
8.
22

29
8.
18

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

15
c1
05
33
1_
g2

U
R
T

1.
15

0.
21

0.
3

0.
12

0.
19

0.
42

N
o
di
ff
er
en
ce

Fl
av
on

oi
d/
an
th
oc
ya
ni
n
sy
nt
he
si
s
pa
th
w
ay

16
c1
60
75
9_
g1

PS
Y
2

4.
30

4.
57

4.
67

9.
07

8.
38

6.
56

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

17
c1
72
81
6_
g1

PD
S

12
6.
86

58
.0
3

11
0.
79

91
.2
4

10
0.
89

84
.3
4

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

18
c1
68
46
0_
g1

Z
D
S

18
4.
16

11
9.
93

21
2.
84

20
4.
53

22
1.
12

21
1.
14

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

19
c1
68
44
2_
g1

LC
Y
B

16
.3
6

9
15
.3
7

11
.0
5

16
.6
7

16
.5
3

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

20
c1
44
63
6_
g1

Z
EP

26
.3

15
.0
2

25
.0
9

18
.2
4

25
.1
1

24
.5
7

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

21
c1
43
88
2_
g1

V
D
E

7.
53

5.
65

8.
93

6.
97

13
.2
8

10
.9
3

N
o
di
ff
er
en
ce

C
ar
ot
en
oi
d
sy
nt
he
si
s
pa
th
w
ay

∗
B
H
W
Y
re
pr
es
en
ts
th
e
sa
m
pl
e
of

th
e
w
hi
te

va
ri
an
t
of

th
e
So
ut
hw

es
t
ir
is
(I
.b

ul
le
ya
na

D
yk
es

f.
al
ba

Y
T
Z
ha
o)
,w

hi
le
LH

W
Y
re
pr
es
en
ts
th
e
So
ut
hw

es
t
ir
is
(b
lu
e)
.

5BioMed Research International



g1 (ANS (anthocyanin synthase)), c161528_g2 (5,3GT (gluco-
syltransferase)), c167438_g1 (3AT (3-Amino-1,2,4-triazole)),
c105331_g2 (URT-UDP-rhamnose: anthocyanidin 3-O-gluco-
side rhamnosyltransferase), c160759_g1 (PSY2 (phytoene syn-
thase)), c172816_g1 (PDS (phytoene desaturase)), c168460_g1
(ZDS (Z-carotene desaturase)), c168442_g1 (LCYB (lycopene
β-cyclase)), c144636_g1 (ZEP (zeaxanthin epoxidase)), and
c143882_g1 (VDE (violaxanthin deepoxidase)) did not show
a significant differential expression between the two variants.
These results further confirm that the carotenoid biosynthesis
pathway has no important effect on the white/blue flower col-
oration. Besides, the downstream product of CHS (chalcone
substance) has little change between the two flower types, indi-
cating that the flower color variation observed in the South-
west iris is mainly affected by the sharp downregulation of
3GT and 5GT genes.

Based on previously published reports suggesting the
involvement of MYB and bHLH transcription factors as a

key regulators in plant pigmentation [56–58], we identified
158 MYBs and 122 bHLHs. However, their expression was
conserved between the Southwest iris and its white variant.

2.4. Proposed Mechanisms of Blue/White Color Formation in
Southwest Iris. In the two Southwest iris variants, we identi-
fied 13 anthocyanins differentially accumulated. The initial
anthocyanins are very unstable and can easily degrade [59,
60]; therefore, they need to be glycosylated and transferred
into vacuoles for pigmentation. The 3GT and 5GT genes
play this function [61], and because they were significantly
downregulated in the white flower of Southwest iris, antho-
cyanin glucosides could hardly be produced, resulting in
no blue coloration. In contrast, the high activity of 3GT
and 5GT in the blue Southwest iris favored the formation
and accumulation of anthocyanin glycosides, contributing
to the blue color of the flowers (Figure 3). We did not
observe any change in the carotenoid pathway, which
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Figure 3: Schematic diagram of differential biosynthesis of pigmentation in Southwest iris where 3GT and 5GT downregulation shunted the
anthocyanin pathways and resulted in white phenotype. Anthocyanin biosynthesis has been represented through a series of catalysts,
including CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone-3-hydroxylase), F3 ′ H (flavonoid 3′-hydroxylase), F3 ′ 5 ′
H (flavonoid 3′,5′-hydroxylase), DFR (dihydroflavonol 4-reductase), ANS (anthocyanidin synthase), 3GT (anthocyanin 3-O-
glucosyltransferase), and 5GT (anthocyanin 5-O-glucosyltransferase). No significant differential expression was observed for the above-
mentioned genes except for 3GT and 5GT, with downregulated expression pattern in white flowers resulting in the down-accumulation of
13 anthocyanins. No significant change in the carotenoid pathway explains the conserved yellow stripes in the flowers of both genotypes
(PSY2 (phytoene synthase), PDS (phytoene desaturase), ZDS (Z-carotene desaturase), LCYB (lycopene β-cyclase), and CHYE (carotenoid
ε-hydroxylase)). The genes colored in green exhibited normal expression between the two genotypes, while the genes colored in red were
downregulated in the white variant. The blue box is the main anthocyanin synthesis process in the blue iris flower.
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explains the conserved yellow stripes in the flowers of both
genotypes (Figure 3).

To further confirm the expression of identified genes in
the development of flower color, we performed qRT-PCR
for three groups of selected genes related to flower color reg-
ulation, viz., flavonoid biosynthesis, anthocyanin biosynthe-
sis, and carotenoid biosynthesis. The qRT-PCR results have
been presented in Figure 4. Interestingly, the genes 3GT
and 5GT showed significantly lower expression patterns in
white flowers compared to blue flowers (Figure 4(b)), which
further confirms our hypothesis that downregulation of 3GT

and 5GT genes resulted in white coloration. Besides, genes
related to carotenoid synthesis did not show significant dif-
ferential expression in both flowers (Figure 4(a)), supporting
our transcriptome results.

3. Discussion

Flower colors, with their eye appeal and aesthetic value, have
been the focus of many biological studies [12–14], and
genetic pathways for color development have been well char-
acterized. Carotenoids, flavonoids, and betalains are primary
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metabolites characterized for their role in pigmentation in
flower and fruit color. However, certain species-specific var-
iations due to mutation, activities of regulatory genes, and
multigene influence have also been reported [12–14, 35].
Therefore, this study was systematically designed utilizing
metabolomics and transcriptomics to uncover flower color
differentiation between Southwest iris (I. bulleyana Dykes)
with blue flowers and its white variant (I. bulleyana Dykes
f. alba YT Zhao).

Anthocyanins, a branch of flavonoids, have many bio-
logical functions in higher plants. Previously published liter-
ature suggested the essential role of anthocyanins in plant
pigmentation. For instance, the red seed coat in peanuts
has a strong association with anthocyanins [62]. A study
by Qiu et al. demonstrated a significant increase in total
anthocyanins in purple passion fruit compared to yellow
[63]. White, yellow, blue, and pink Primula vulgaris [64]
showed a gradual increase in total anthocyanin content as
the color deepened. Moreover, anthocyanins play a critical
role in plant defense responses against biotic and abiotic
stress conditions [65, 66]. In iris, the presence/absence of
anthocyanins is a critical factor for color development [19].
Flavonoid-targeted metabolomics identified 13 anthocya-
nins showing significant down-accumulation in white
flowers compared to the blue flowers, which are predicted
to favor the blue coloration. Cyanidin 3-O-glucosyl-malonyl-
glucoside [67, 68], delphinidin O-malonyl-malonylhexoside
[69], delphinidin 3-O-glucoside (mirtillin) [70–72], and del-
phinidin 3-O-rutinoside (tulipanin) have been previously
reported for their active role in blue color pigmentation in
perianths. Differential accumulation of anthocyanins pertain-
ing to different flower colors and their corresponding shades
has been reported in different iris species [73–76]. Further,
anthocyanins, as biological/chemotaxonomic markers, have
been used for the taxonomic classification ofspecies and
cultivars [77, 78].

Dp3pCRG5G (delphinidin-3-pcoumaroylrutinoside-5-
glucoside) is the most common anthocyanin in iris species
and is generally responsible for blue-colored perianths is dif-
ferent iris species such as Dutch iris, Siberian iris, and I. ger-
manica [19]. However, the precursor of DP3pCRG5G,
delphinidin is very unstable [60], which requires further gly-
cosylation for stabilization to the end product Dp3pCRG5G.
Our transcriptome results suggest a downregulation of 3GT-
anthocyanidin 3-O-glucosyltransferase in the white flower
[79]. The downregulation of the 3GT gene is predicted to
inhibit the synthesis of delphinidin 3-glucoside [80, 81]. Fur-
thermore, a downregulation of another gene 5GT (anthocya-
nidin 5-O-glucosyltransferase) was also observed in the
white flower, which may result in reduced levels of delphini-
din 3-rutinoside [82]. Florio et al., characterized acyltrans-
ferase, complemented by 5GT, for differential accumulation
of delphinidin-3-rutinoside and nasunin [82]. Contrary to
our results, a study concerning gentian identified delphini-
din 3,5,3′-O-triglucosideas a stable blue pigmentregulated
by the coexpression of 3GT and 5GT [83]. Another study
concerning rose petal coloration identified 5,3GT as a con-
tributor to petal coloration by catalyzing glycosylation at
two different positions on anthocyanidin [84]. However,

we observed a conserved expression of 5,3GT in blue and
white flowers. Interestingly, targeted metabolomics sug-
gested a significantly higher accumulation of cyanidin 3-O-
galactoside in blue flowers compared to white; however, we
did not identify UDP-galactose: anthocyanidin 3-O-
galactosyltransferase from the transcriptome data. UDP-
galactose has been reported previously to influence the
accumulation patterns of cyanidin 3-O-galactoside [85].
The reason for the differential accumulation of cyanidin 3-
O-galactoside in the blue and white iris is unclear and
requires further study to understand the accumulation pat-
tern. Further insights into substrate recognition, utility,
and structure-activity of 3GT and 5GT could provide signif-
icant results for pigmentation in the iris.

Moreover, we identified yellow stripes on both flowers,
which were explained by similar accumulation patterns of
carotenoids in purple and white flowers. Carotenoid biosyn-
thesis has been well-documented in many plant species [34,
86, 87]. Yellow, orange, and red colors in plants are mainly
attributed to carotenoid accumulation patterns [88]. A study
concerning Iris germanica L. demonstrated the role of the
phytoene synthase gene (crtB) in managing yellow color by
increasing metabolite flux into carotenoid biosynthesis path-
ways [2]. However, in this study, there were no significant
differences in accumulation patterns of carotenoids in pur-
ple and white flowers, explaining the conserved yellow
stripes on both flowers. Moreover, the gene identified in
carotenoid biosynthesis pathways depicted nonsignificant
differences in purple and white flowers.

In contrast to our results, a recent report by Wang et al.
[89] suggested a shunted anthocyanin pathway due to the
absence of naringenin, a key compound in the pathways,
as a major constraint in color differentiation from blue to
white in Iris laevigata Fisch. However, in our study, narin-
genin chalcone was detected with a similar expression pat-
tern of the corresponding CHI gene in both blue and white
flowers, which highlights that various mechanisms are
involved in the color variation in different Iris species.

Altogether, the down-accumulation of various anthocya-
nins, probably due to the strong downregulation of 3GT and
5GT, plays a major role in color differentiation between blue
and white flowers in the Southwest iris. Further functional
verification of these genes can provide a valid reference for
the differential pigmentation pattern in the Southwest iris.

4. Materials and Methods

4.1. Plant Materials and Sample Collection. Wild Southwest
iris, Iris bulleyana Dykes, and its white variant I. bulleyana
Dykes f. alba YT Zhao were used in this study. Iris bulleyana
Dykes grows naturally in the outskirts of Shangri-La county,
Yunnan province, China. No permissions were necessary to
collect such samples. The formal identification of the plant
materials was undertaken by the corresponding author of
this article. No voucher specimen of this material has been
deposited in a publicly available herbarium. During its flow-
ering stage, random samples from plants grown under a
controlled environment were selected with the same condi-
tions as the degree of development, size, and length. Flower
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samples were collected when half of the flower parts
appeared from the bud (Figures 1(b1) and 1(b2)) after
quickly removing the stalks and bracts at the base of the
buds and placed in liquid nitrogen. Samples were stored at
-80°C. The samples were collected with three biological rep-
licates for each flower color, viz., blue (Iris bulleyana Dykes)
and white (I. bulleyana Dykes f. alba YT Zhao). A total of six
samples were used for transcriptome sequencing analysis,
metabolome analysis, and qRT-PCR analysis.

4.2. Metabolic Profiling. The targeted metabolite landscape
for flavonoids/anthocyanins and carotenoids was explored
and analyzed according to the standard procedure detailed
by Yuan et al. [90]. The flower samples collected from Iris
bulleyana Dykes and I. bulleyana Dykes f. alba YT Zhao
were grounded to powder and subjected to LC-MS analysis.
UPLC-MS/MS analysis was performed by Metware (http://
www.metware.cn). Prior to further data analysis, quality
control (QC) analysis was performed. VIP (variable impor-
tance in projection) values were identified utilizing PLS-DA.
Themetabolites were considered differentially expressed when
the VIP ≥ 1, and fold change ≥ 2 or fold change ≤ 0:5. To vali-
date the anthocyanin metabolome, three selected anthocya-
nins were further tested using HPLC-MS/MS performed by
Metware (http://www.metware.cn), and their correspond-
ing concentrations were identified in both variants of
Southwest iris.

4.3. RNA Extraction, Library Preparation, and Sequencing.
Transcriptome sequencing was performed by constructing
six libraries corresponding randomly collected bud samples,
each with three replicates, of Iris bulleyana Dykes and I. bul-
leyana Dykes f. alba YT Zhao. After extraction of total RNAs
with TRIzol reagent (Takara, China), contamination and
RIN (RNA integrity number) were checked using 1% aga-
rose gel and Agilent 2100 Bioanalyzer system (Agilent Tech-
nologies, CA, USA), respectively. Pair-end sequencing
libraries were constructed using 3μg RNA for each sample.
Further, libraries were generated using NEBNext® UltraTM
RNA Library Prep Kit for Illumina® (NEB, USA) following
manufacturer’s instructions. Illumina HiSeq platform was
utilized for RNA sequencing and was performed by the com-
pany Novogene (https://en.novogene.com/). The libraries
were sequenced by paired-end sequencing on Illumina HiSeq.

Low-quality reads and short sequence reads (<50 bp)
were removed using FastQC and Perl program. Clean reads
were de novo assembled using Trinity v2.11.0 (http://
trinityrnaseq.sourceforge.net). The transcriptome data of Iris
bulleyana Dykes and I. bulleyana Dykes f. alba YT Zhao
have been deposited to the national center for biotechnology
information (NCBI) sequence read archive (SRA) under
accession number PRJNA676187.

4.4. Differential Expression Analysis of Identified Genes. The
read numbers mapped to each gene were counted using fea-
tureCounts v1.5.0-p3 [55]. Then, calculating the expected
number of FPKM (fragments per kilobase of exon model
per million reads mapped) of each gene based on the length
of each gene and reads count mapped to the gene. DEGs

between blue and white groups of colored samples were
identified using the DESeq R package (v1.18.0) [91] and
edgeR package (v 3.24.3). The threshold p value in multiple
tests to judge the significance of gene expression difference
was based on the false discovery rate (FDR) method. When
FDR ≤ 0:05 and FPKM values showed at least a 2-fold differ-
ence among samples, the gene was considered a significant
DEG. DEGs commonly detected by both packages were used
in this study.

4.5. Validation of Gene Expression Using qRT-PCR. To verify
the RNA-seq data, qRT-PCR was used following total RNA
extraction from flower bud samples in three replicates, using
the Tiangen RNAprep Pure Plant kit (Tiangen Biotech,
Beijing, China), following the manufacturer’s protocol.
Twenty genes related to flavonoid/anthocyanin and caroten-
oid pathways of the transcriptome data were selected, and
corresponding primers were designed for qRT-PCR using
the Oligo-7 software (Additional File 8). The primers were
synthesized by Sangon Biotech (Shanghai, China). Actin
was used as an internal reference gene for qRT-PCR analysis
of the target genes [92]. The cDNA was extracted from RNA
and used as a template to make the reaction for qRT-PCR by
using Takara qPCR kit SYBR Premix Ex TaqTM II (Tli RNa-
seH Plus). Three biological repeats were used for each qRT-
PCR reaction.

4.6. KEGG Enrichment Analysis of DEGs. To test the statisti-
cal enrichment of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, the GOseq R package was used. The
KEGG pathways enriched with DEGs (FDR < 0:05) were
detected using KOBAS 2.0 software [62] based on the method
of overrepresentation analysis (ORA). The adjusted p value of
significantly corroborated KEGG terms was less than 0.05.
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