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Ossification of the ligaments progresses slowly in the initial stages, and most patients are unaware of the disease until obvious
myelopathy symptoms appear. Consequently, treatment and clinical outcomes are not satisfactory. This study is aimed at
developing an automated system for the detection of the thoracic ossification of the posterior longitudinal ligament (OPLL)
using deep learning and plain radiography. We retrospectively reviewed the data of 146 patients with thoracic OPLL and 150
control cases without thoracic OPLL. Plain lateral thoracic radiographs were used for object detection, training, and validation.
Thereafter, an object detection system was developed, and its accuracy was calculated. The performance of the proposed
system was compared with that of two spine surgeons. The accuracy of the proposed object detection model based on plain
lateral thoracic radiographs was 83.4%, whereas the accuracies of spine surgeons 1 and 2 were 80.4% and 77.4%, respectively.
Our findings indicate that our automated system, which uses a deep learning-based method based on plain radiographs, can
accurately detect thoracic OPLL. This system has the potential to improve the diagnostic accuracy of thoracic OPLL.

1. Introduction

Ossification of the posterior longitudinal ligament (OPLL)
is characterized by ectopic bone formation within the pos-
terior longitudinal ligament of the spine. OPLL can result
in neurological complications via the compression of the
spinal cord [1]. The previous studies of ossification lesions
on CT showed the prevalence of spinal ligament ossifica-
tion in Japanese patients was reported as 6.3% for cervical
OPLL and 1.6% for thoracic OPLL, the latter being more
common in the cervical spine. The extent of ossified
lesions throughout the vertebrae tended to be greater in
women than in men. Ossification of the ligaments pro-
gresses slowly in the early stages, and most patients are

unaware of the disease until obvious myelopathy symp-
toms appear due to the large osteophytes that develop over
time. Therefore, patients with late-stage OPLL are often
hospitalized, and their clinical outcome is usually unsatis-
factory. Furthermore, since the molecular etiology of the
disease is not understood and efficient treatment strategies,
especially pharmacotherapy and preventive interventions
for OPLL, have not been proposed, symptomatic OPLL
patients may be treated with spinal Surgical treatment by
indirect decompression which is the only option for symp-
tomatic OPLL patients [2, 3].

Genetic factors may contribute to the development of
OPLL [4], as reflected in the geographic variation in OPLL
prevalence and the increased prevalence within families.
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For example, in Tokyo, OPLL is reported to be found in
27.7% of siblings compared to 3.9% of the general popula-
tion [5]. Prevalence rates of 6.3, 1.6, and 0.7% are shown
for cervical, thoracic, and lumbar OPLL, respectively. Cervi-
cal OPLL is at high risk of neurological compression due to
the relatively narrow diameter of the cervical subaxis and
marked movement in the cervical spine region [6]. Thoracic
OPLL is rare and difficult to diagnose on simple radiographs
and is often missed, often being found after the patient has
become severely paralyzed. OPLL is better treated with sur-
gery when the paralytic symptoms are mild, and detection
in the early stages improves postoperative outcomes [5].

The prevalence of OPLL is 1.9–4.3% in Japan for people
over the age of 30, 1.0–3.0% in China and South Korea, and
0.1–1.7% in Europe and North America [7, 8]. The cervical
spine is commonly affected by OPLL, but thoracic OPLL
(T-OPLL) is rare [9]. The prevalence of thoracic OPLL in
Japan has been reported to be 0.6–1.9% [10–12]. Ohtsuka
et al. reported that the prevalence of T-OPLL in a Japanese
population was 0.8% in men and 0.6% in women based on
plain thoracic radiographs [12]. Mori et al. reported that
the prevalence of T-OPLL was 1.9% in a Japanese population
(1.0% in men and 3% in women) based on chest computed
tomography (CT) [10]. This difference may highlight the
difficulty in detecting thoracic OPLL on plain X-ray. Because
thoracic OPLL is rare and difficult to diagnose on plain X-
ray images, it is often missed, often after severe paralysis
has occurred. Therefore, a highly accurate and automatic
detection system would make it possible to detect thoracic
OPLL before severe paralysis occurs. Thoracic OPLL has a
good outcome when the paralytic symptoms are mild and
surgery is performed, and the postoperative outcome is
improved if the disease is detected in a mild stage.

Plain radiographic images are frequently difficult to diag-
nose T-OPLL because of the complex anatomy of the chest.
Radiographic evidence of T-OPLL can be masked by superim-
posed bony structures, such as the ribs [13]. On the other
hand, CT allows evaluation of bone morphology without such
structures, making it easier to confirm lesions than X-rays.
However, performing CT for all patients at the time of initial
diagnosis is not feasible because of high cost and radiation
exposure. Therefore, cases are often difficult to identify and
can be missed, leading to delayed diagnosis.

T-OPLL may not be diagnosed until the patient has dif-
ficulty walking and has poorer surgical outcomes than OPLL
of the cervical spine [14]. This is thought to be due to poor
blood flow to the thoracic spinal cord and thoracic spine
kyphosis, which results in the reduced mobility of the tho-
racic spinal cord [15, 16]. Therefore, the early diagnosis of
T-OPLL and prompt therapeutic intervention are important.
Thoracic OPLL has two main types of ossification, beak and
continuous, and both beak and continuous may be present
at the same time. The beak type is considered to have poorer
outcomes than the continuous type, which is more localized
and may be more difficult to detect [17] When the thoracic
spine is divided into upper (T1-T4), middle (T5-T8), and
lower (T9-T12) vertebrae, it is difficult to confirm the bone
morphology, especially in the upper part, due to the struc-
ture of the thorax.

There have been studies on cervical OPLL using machine
learning. However, to our knowledge, there have been no
reports on thoracic OPLL using machine learning [18]

Considering the above, high diagnostic accuracy in plain
radiography would enable early diagnosis and efficient CT in
cases where it is necessary. In this study, we developed a new
system using artificial intelligence to automatically detect T-
OPLL on plain radiographs.

2. Materials and Methods

2.1. Patients. This study was approved by our institutional
review board (No. 2016-0177), and the requirement for con-
sent was waived because of the retrospective nature of the
analyses. In this study, we retrospectively reviewed the med-
ical records of patients who underwent surgery for T-OPLL
at our hospital between April 1997 and March 2021. Diag-
noses of T-OPLL were established based on CT. We
excluded patients without preoperative plain lateral thoracic
spine radiographs and preoperative thoracic spine CT
images. Patients with a history of spinal surgery or spinal
fracture were excluded. We included 146 consecutive
patients in this study. We used 146 images with T-OPLL.
150 patients with nonthoracic spine disease (spinal cord
tumors other than thoracic spinal cord, lumbar spinal canal
stenosis, etc.) who presented to our hospital between April
1997 and March 2021 and had plain lateral thoracic spine
radiographs and thoracic spine CT taken were selected as
controls. 150 images were used as controls.

The participant characteristics are shown in Table 1. T-
OPLL patients included 75 men and 71 women, with an
average age of 53 1 ± 14 6 years. There were 112 upper
(Th1-4), 96 middle (Th5-8), and 33 lower (Th9-12) levels.
Types of T-OPLL included 104 beak type and 92 continuous
waveform type. The control group included 75 men and 75
women, with an average age of 54 1 ± 17 6 years.

2.2. Plain Thoracic Radiograph Dataset. The dataset used in
this study included plain lateral thoracic spine radiographs
in the neutral position for the 146 T-OPLL cases and 150 con-
trol cases without T-OPLL.We only used plain lateral thoracic
spine radiographs as representative images for training the
object detection model because lateral radiographs, rather
than frontal thoracic radiographs, are commonly used to diag-
nose OPLL. The following augmentations were used for the
collected images: image scaling: scaling from the range of
quarter to twice, selected at random, and left-right image flip-
ping: flipping the image to the left-right side. Each time an
image is selected, there is a 50% chance that it will be flipped
left-right.

2.3. Image Preparation for Deep Learning. Plain thoracic lat-
eral radiographs from DICOM files were exported in the
JPEG format from the picture archiving and communication
systems at our hospital. Since JPEG can be processed faster
than DICOM, the images were selected as JPEG for future
versatility. Since the target substances can be confirmed with
JPEG, it was determined that there was no significant differ-
ence in detection results. Images were annotated with a label
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[18] by manually inputting a minimal bounding box con-
taining the OPLL on the thoracic lateral radiographs after
the exact location of the OPLL was confirmed by CT to gen-
erate an image for the object detection training by one
orthopedic spine surgeon (13 years) (Figure 1).

We identified the OPLLs on CT and placed them into a
minimal bounding box containing the OPLL on the plain
lateral radiograph of the thoracic spine.

2.4. Deep Learning-Based Object Detection. Our object detec-
tion system was developed using Python (version 3.7.7;
https://www.python.org), Google’s open-source deep learning
framework TensorFlow (version 1.14.0; https://www
.tensorflow.org), and Keras (version 2.2.4; https://github
.com/keras-team/keras/releases/tag/2.2.4). There are several
object detection systems such as region-based convolutional
neural networks (R-CNN), fastest-RCNN, and you only look
once (YOLO). In this study, we used YOLO version 4 architec-
tural model 15 because of its superior processing speed, and
we trained the object detection model using the OPLL loca-
tions and the OPLL labels as the training data. When a OPLL
is detected in the model, the probability (greater than or equal
to 0 and less than or equal to 1) is assigned to the detected
OPLL. The assigned probability was checked, the optimal
probability threshold was manually determined, and the
experiment was repeated to get the best results, with 0.01 being
the final probability threshold. All regions with the probability
exceeding the determined threshold are detected. Therefore,
multiple regionsmay be detected, and in such cases, the region
with the greatest probability was selected (Figure 2). The
object detection model was trained and validated using a com-
puter equipped with a Quadro P6000 graphics processing unit
(NVIDIA, Santa Clara, CA), a Xeon E5-2667 v4 3.2GHz CPU
(Intel, Santa Clara, CA), and 64GB of RAM. Adam optimizer
with the learning rate of 0.0001 was adopted for training.

2.5. Performance Evaluation. For performance evaluation in
this study, the 5-fold cross-validation was used to accurately
assess the generalization capability of the model. This

method divides the dataset into several smaller groups and
repeats the training and evaluation of the model so that each
division is used as a test set at least once. This ensures that
the performance of the model is independent of any partic-
ular subset of the dataset [19]. As for the sample size, previ-
ous reports for object detection models such as this one
reported that the model was validated with 50 cases [20],
and the sample size for this study is larger than that, which
is not considered inadequate. The 286 training images (146
cases with T-OPLL, 150 cases without T-OPLL) were
divided into 5 parts, one for testing (58, 57, 57, 57, and 57)
and one for training (228, 229, 229, 229, and 229). Then,
23 images of the training data (228 or 229) were randomly
selected as validation data, and the remaining 203 or 204
were trained with data processing, making it one epoch.
The performance of the training model was checked on the
validation data, and the accuracy and loss function were calcu-
lated. Thereafter, as the training was repeated, we trained the
model until the loss function of YOLOv4 converged on the
validation set. The accuracy of the created model was calcu-
lated using the test data. Data augmentation helped to
improve the learning accuracy over the training iterations.
The following augmentations were used for the collected
images: image scaling: scaling from the range of quarter to
twice, selected at random, and left-right image flipping: flip-
ping the image to the left-right side. Each time an image is
selected, there is a 50% chance that it will be flipped left-right.

2.6. Image Assessment by Doctors. Two orthopedic spine sur-
geons (15 and 22 years of experience, respectively) reviewed
the plain lateral thoracic spine radiographs, which were
identical to those used for training the deep learning-based
object detection model. A third party other than the image
evaluator created DICOM data with anonymized patient
information for the images, which were then imported into
the PACS system used in daily practice, and the images were
evaluated by the surgeons. Based on their evaluation of the
images, the doctors diagnosed each patient. Surgeons inde-
pendently reviewed the images. Clinical information was
not provided for any patient to ensure a fair comparison
between the doctors and the object detection model.

2.7. Statistical Analyses. All statistical analyses were per-
formed using SPSS (version 28.0, IBM, Armonk, NY), and
the results of the fivefold cross-validation of the object detec-
tion were obtained. We calculated the criteria for true detec-
tion, false detection, and no detection for the detection
model using the plain lateral thoracic radiographs. False
detection included location error and the detection in the
control group. Data are presented as the mean ± standard
deviation unless otherwise specified.

3. Result

The performance of the object detection model is listed in
Table 2. For object detection, the true positive (TP), false
positive (FP), false negative (FN), and true negative (TN)
values of the object detection model were 121/296 (40.8%),
45/296 (15.2%), 4/296 (1.4%), and 126/296 (42.6%),

Table 1: Baseline characteristics of the patients.

Patients Controls

N 146 150

Sex (M/F) 75/71 75/75

Age (years) 53 1 ± 14 6 54 1 ± 17 6

Height (cm) 162 5 ± 10 0 159 5 ± 12 1

Weight (kg) 80 9 ± 21 1 60 6 ± 16 2
Level of thoracic spine

Upper 112 n.a.

Middle 96 n.a.

Lower 33 n.a.

Type of OPLL

Beak 104 n.a.

Continuous 92 n.a.

Values are presented as mean ± standard deviation for each group. n.a.: not
applicable.
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respectively. The TP, FP, FN, and TN values for spine sur-
geon 1 were 110/296 (37.2%), 30/296 (10.1%), 28/1296
(9.5%), and 128/296 (43.2%), respectively, and those for
spine surgeon 2 were 107/296 (36.2%), 34/296 (11.5%), 33/
296 (11.1%), and 122/296 (41.2%), respectively.

We calculated the accuracy (TP+TN/TP+FP+FN+TN),
precision rate (PR: TP/TP + FP), recall rate (RR: TP/TP +
FN), and F-measure (F: 2RR∗PR/ RR + PR ), as shown in
Table 3. The accuracy, PR, RR, and F of the object detection
model were 83.4%, 72.9%, 96.8%, and 83.2%, respectively.
The accuracy, PR, RR, and F of spine surgeon 1 were
80.4%, 78.6%, 79.7%, and 79.1%, respectively, and those of
spine surgeon 2 were 77.4%, 75.9%, 76.4%, and 76.2%,
respectively. The accuracy, RR, and F of the object detection
model were higher than those of the spine surgeons, whereas
the PR of the object detection system was lower than that of
spine surgeons. However, there was no statistically significant
difference in accuracy between this model and the two sur-
geons (chi-square test, p: object detection vs. surgeon 1
0.336, object detection vs. surgeon 2 0.062).

3.1. Comparison between the Beak and Continuous
Waveform Types. A comparison of the performance for the
beak and continuous waveform types is shown in Table 4.
The accuracies of the object detection model regarding the
beak and continuous waveform types were 81.7% (85/104)
and 91.3% (84/92), respectively (surgeon 1, 71.2% [74/104]

and 89.1% [82/92], respectively; surgeon 2, 69.2% [72/104]
and 85.9% [79/92], respectively). The accuracy of our object
detection was higher than that of the spine surgeons for the
beak type, whereas the accuracy of our object detection
model was comparable to that of the spine surgeons for
the continuous waveform type. Our object detection model
and both surgeons had a higher accuracy for the beak type
than for the continuous waveform type.

3.2. Comparison among OPLL Levels. A comparison of per-
formance among the upper, middle, and lower levels is
shown in Table 5. The accuracies for the upper, middle,
and lower levels were 91.1%, 88.5%, and 72.7% for the object
detection system, respectively; 84.8%, 78.1%, and 75.8%, for
surgeon 1, respectively; and 83.0%, 75.0%, and 63.6%, for
surgeon 2, respectively. Regarding the upper and middle
levels, the accuracy of our object detection was higher than
those of the spine surgeons, whereas for the lower level,
the accuracy of our object detection was comparable to that
of the spine surgeons. The accuracies of the object detection
model and surgeons were highest at the upper level and low-
est at the lower level.

4. Discussion

In this study, we developed a system for the automatic detec-
tion of T-OPLL based on the plain lateral radiographs of the

(a) (b)

Figure 1: Preparation of images for training the object detection model. Images were annotated with a label [12] by manually inputting a minimal
bounding box containing the OPLL on the thoracic lateral radiographs after the exact location of the OPLL was confirmed by CT to generate an
image for the object detection training by one orthopedic spine surgeon (13 years): (a) dataset image of a plain lateral thoracic spine radiograph;
(b) sagittal plane CT image to identify OPLL. CT: computed tomography; OPLL: ossification of the posterior longitudinal ligament.
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thoracic spine and evaluated its performance. The system
was able to detect T-OPLL with the same accuracy as spine
surgeons. Therefore, this system has the potential to become
a useful automatic screening tool for T-OPLL.

The system was able to automatically detect the position
of T-OPLL from lateral thoracic spine radiographs. To our
knowledge, an automatic detection system has been previ-
ously reported for cervical OPLL [21], but this is the first
study to evaluate the performance of an automatic position-

ing system for T-OPLL. Although OPLLs can be accurately
detected by CT, it is difficult to identify them on plain radi-
ography. T-OPLL is particularly difficult to identify because
of thoracic structures and other factors [22, 23]. The gold
standard for diagnosis of OPLL is CT. However, CT is not
practical as a screening test for T-OPLL in a large number
of people because of the cost and radiation exposure. There-
fore, it is desirable to narrow down the number of cases
using plain radiographs. The accuracy of the system devel-
oped in this study was higher than that of spine surgeons,

(a) (b) (c)

Figure 2: Object detection method: (a) plain lateral radiographs of the thoracic spine; (b) final region with the highest probability; (c)
sagittal plane CT image to identify OPLL. CT: computed tomography; OPLL: ossification of the posterior longitudinal ligament.

Table 2: Diagnostic performance of our detection system and that
of spine surgeons 1 and 2.

Detection (n)
TP FP FN TN

Object detection 121 46 4 125

Spine surgeon 1 110 32 28 130

Spine surgeon 2 107 42 33 120

TP: true positive; FP: false positive; FN: false negative; TN: true negative.

Table 3: Accuracy of our object detection system and that of spine
surgeons 1 and 2.

AC (%) PR (%) RR (%) F (%)

Object detection 83.4 72.9 96.8 83.2

Spine surgeon 1 80.4 78.6 79.7 79.1

Spine surgeon 2 77.4 75.9 76.4 76.2

AC: accuracy; PR: precision rate; RR: recall rate; F: F-measure.

Table 4: Accuracy of our system and that of spine surgeons 1 and 2
for the beak and continuous waveform types.

OPLL type
Accuracy (%)

Object detection Surgeon 1 Surgeon 2

Beak 81.7 71.2 69.2

Continuous waveform 91.3 89.1 85.9

Table 5: Accuracy of our system for the upper, middle, and lower
thoracic spine.

Level of the
thoracic spine

Accuracy (%)
Object detection Surgeon 1 Surgeon 2

Upper 91.1 84.8 83.0

Middle 88.5 78.1 75.0

Lower 72.7 75.8 63.6
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and we believe that it could be useful as a screening test to
identify cases that may require CT.

Thoracic spinal stenosis is a rare condition that may
coexist with spinal disorders at other levels, leading to
delayed diagnosis, misdiagnosis, and inappropriate treat-
ment [24–26]. In addition, T-OPLL has poor prognosis
due to problems with blood flow to the thoracic spinal cord
and kyphosis of the thoracic spine [14–16]. Therefore, T-
OPLL requires early diagnosis and timely intervention.

Because the system in this study seems more accurate
than spine surgeons, we believe it can be a support tool for
early diagnosis. If early diagnosis is feasible, it will be possi-
ble to educate patients about the worsening of neurological
disorders due to falls, and careful follow-up and appropriate
intervention will be possible.

The beak-type form of T-OPLL is considered to have a
poor clinical prognosis [27, 28]. The accuracy of the present
system was the same as that of the spine surgeons for the
continuous type, but for the beak type, the accuracy was
higher than that of the spine surgeons. Therefore, this sys-
tem should be clinically useful in this regard. In addition,
both the detection system and the surgeons had higher
detection accuracy with the continuous type than with the
beak type. This may be because the lesions are more exten-
sive in the continuous type.

T-OPLL was predominant in the middle and upper tho-
racic spine regions [6]. The accuracy of the system was higher
in the upper thoracic vertebrae, where the frequency was
higher than at the other levels. The accuracy of this system
was higher than that of the surgeons at all levels. Because of
the high accuracy in the upper thoracic spine, which had a
higher frequency, this system is considered practical.

This system has the potential to perform thoracic OPLL
with the same accuracy as a spine specialist using only X-
rays in a clinic without a spine specialist and without CT.
This would enable patients to see a spine specialist at an
early stage, which may improve treatment outcomes. We
are considering making this system into an app and releas-
ing it to the public in the future.

The current study has several limitations. First, the num-
ber of radiographic images used in this study was relatively
small; hence, it was necessary to improve the accuracy of
our system with additional radiographs. However, the pro-
posed system achieved a performance comparable to that
of spine surgeons through data augmentation of the limited
radiographic images [29]. Data augmentation amplifies the
training datasets by applying random transformations, such
as flipping and scaling. This technique is useful for deep
learning using small datasets. Second, we only used lateral
images. Thus, the performance of the proposed system
should improve if frontal images are added. However, our
system is simple and has a short analysis time (0.1–0.2 s)
due to the use of lateral images alone. The addition of clini-
cal information such as neurological findings, such as the
JOA score, could be expected to further improve accuracy.
However, in this study, only images were used for learning,
and no learning with clinical information was conducted.
Further improvement in accuracy can be expected by adding
such information in the future.

5. Conclusions

In conclusion, in our newly developed object detection sys-
tem for T-OPLL using simple lateral chest radiographs, the
accuracy of the proposed system was equal to or better than
that of spine surgeons. Therefore, this system can be a
screening tool for T-OPLL by X-ray. The results of this sys-
tem may facilitate the decision of whether to perform a CT
scan, which is a gold standard, and may improve the accu-
racy of the diagnosis of T-OPLL.
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